## **Supporting Information**

## **Photoelectrochemical mesurement**

Photoelectrochemical experiments were conducted by adopting the traditional threeelectrode system, where the platinum sheet was used as the counter electrode and the Ag/AgCl electrode as the reference electrode. The working electrode preparation process was as follows: 5 mg of catalyst was dispersed in 0.8mL DMF with sustained ultrasound to form the uniform suspension, then  $20 \,\mu$ L of the suspension was dropwise added onto a FTO glass electrode (illumination area, 0.5cm\*0.5 cm) and dried naturally at the room temperature. The photocurrent measurement was accomplished on a CHI 660D electrochemical workstation (Shanghai, China), with UV lamp as the light source and the shutter devices as the timing switch of light on/off, and the electrolyte was 0.2 mol/L Na<sub>2</sub>SO<sub>4</sub>. The Nyquist plots were performed with sinusoidal perturbation amplitude of 10 mV and frequency range from 100 MHz to 0.01 Hz in dark.



Figure S1. The  $N_2$  adsorption-desorption isotherms for ZnO and 1.5 wt% Ag-ZnO



Figure S2. SEM imageand EDX spectrum for 1.5 wt% Ag-ZnO after reaction



**Figure S3.** Mineralization of tetracycline hydrochloride in different oxidation processes, Gaseous [O<sub>3</sub>]: 10 mg/L; O<sub>3</sub> flow rate: 50 mL/min; catalyst dosage: 0.5 g/L; tetracycline hydrochloride: 80 mg/L



**Figure S4.** Radical trapping experiments in photocatalytic ozonation process using 1.5 *wt*% Ag/ZnO as a catalyst. Reaction conditions:  $[Phenol]_0 = 50 \text{ mg/L}$ ; catalyst loading =0.5 g/L; ozone flow rate=50 mL/min; ozone concentration=10 mg/L.

| Catalysts                            | Measurement conditions                                                                                                                                                       | Performance                                                                      | Ref                                                                  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| ZnO                                  | Catalyst dosage: 1.0 g/L; [phenol]: 100 mg/L; Ozone<br>dosage: 0.50 mg/min; Reaction time: 60 min                                                                            | Degradation: 66%                                                                 | Bulletin of the Korean Chemical Society, 2012, 33, 215-220           |  |
| Pt-SiO <sub>2</sub> -ZnO             | Catalyst dosage: 1.0g/L; [phenol]: 100 mg/L; Light<br>source: 150-Watts mercury lamp; Reaction time: 60<br>min;                                                              | Degradation: 100%                                                                | International Journal of Photoenergy, 2012, 103672                   |  |
| Fe <sub>3</sub> O <sub>4</sub> /ZnO  | Catalyst dosage: 0.325 g/L; Reaction time: 150 min;<br>Light source: 575 W metal halide lamp                                                                                 | Degradation: 82%<br>(k=0.0057 min-1)                                             | Chemical Engineering Journal, 2014, 244, 327-334                     |  |
| Ag <sub>2</sub> SO <sub>4</sub> /ZnO | Catalyst dosage: 0.5 g/L; [phenol]: 40 mg/L. Reaction<br>time: 300 min; Light source: 80 W outdoor lamp                                                                      | Degradation: 35%<br>(k=0.01 min <sup>-1</sup> )                                  | Desalination and Water Treatment, 2015, 1072954                      |  |
| ZnO@SiO <sub>2</sub>                 | Catalyst dosage: 0.5 g/L; [phenol]: 50 mg/L. Reaction time: 120 min; Light source: 48 W UV-C lamp                                                                            | Degradation: 94%                                                                 | Environmental Science and Pollution Research, 2017, 24, 12655-12663  |  |
| BiOI/ZnO                             | Catalyst dosage: 1.0g/L; [phenol]: 25 mg/L. Reaction<br>time: 120 min; Light source: 500 W xenon lamp                                                                        | Degradation: 98%<br>( <i>k</i> =0.03 min <sup>-1</sup> )                         | Journal of Colloid and Interface Science, 2017, 494, 130-138         |  |
| Ag-ZnO/MWCNT                         | Catalyst dosage: 1.0g/L; [phenol]: 100 mg/L.<br>Reaction time: 60 min; Light source: UV-A Lamp                                                                               | Degradation: 81%                                                                 | Materials Science in Semiconductor Processing, 2018, 83, 175-<br>185 |  |
| Ag-ZnO                               | Catalyst dosage: 1.5 g/L; [phenol]: 50 mg/L. Reaction<br>time: 120 min; Light source: 24 W, 365 nm                                                                           | Degradation: 99%<br>( <i>k</i> =0.048 min <sup>-1</sup> )                        | Applied Catalysis B: Environmental, 2018, 225, 197-206               |  |
| ZrO <sub>2</sub> -ZnO                | Catalyst dosage: 1.0g/L; [phenol]: 50 mg/L. Reaction<br>time: 120 min; Light source: Ultra-Vitalux lamp,<br>300W                                                             | Degradation: 74%<br>Mineralization: 51%                                          | Journal of Nanomaterials, 2019, 1015876                              |  |
| Ag-ZnO                               | Catalyst dosage: 0.5 g/L; [O <sub>3</sub> ]: 10 mg/L; O <sub>3</sub> flowrate:<br>50 mL/min;; [phenol]: 50 mg/L. Reaction time: 60<br>min; Light source: 18 W G6 T 5, 365 nm | Degradation: 100%<br>( <i>k</i> =0.07 min <sup>-1</sup> )<br>Mineralization: 62% | This study                                                           |  |

## Table S1. Recent reports on ZnO-based catalyst for phenol removal

## Table S2 ICP analysis of Ag/ZnO samples

| Samples                    | 0.5wt% Ag/ZnO | 1.0wt% Ag/ZnO | 1.5wt% Ag/ZnO | 2.0wt% Ag/ZnO | 2.5wt% Ag/ZnO |
|----------------------------|---------------|---------------|---------------|---------------|---------------|
| Ag loading amount<br>(wt%) | 0.45          | 0.93          | 1.41          | 1.87          | 2.32          |