Dry Reforming of Ethanol and Glycerol: Mini-Review
Abstract
:1. Introduction
2. Dry Reforming of Ethanol
3. Dry Reforming of Glycerol
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Joos, F.; Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl. Acad. Sci. USA 2008, 105, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Peters, G.P.; Manning, A.C.; Boden, T.A.; Tans, P.P.; Houghton, R.A.; et al. Global Carbon Budget 2016. Earth Syst. Sci. Data 2016, 8, 605–649. [Google Scholar] [CrossRef]
- Garside, M. Ethanol Fuel Production in Top Countries 2018. Available online: https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/ (accessed on 29 October 2019).
- Bac, S.; Say, Z.; Kocak, Y.; Ercan, K.E.; Harfouche, M.; Ozensoy, E.; Avci, A.K. Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas. Appl. Catal. B Environ. 2019, 256, 117808. [Google Scholar] [CrossRef]
- Li, Z.; Yan, J.; Sun, J.; Xu, P.; Ma, C.; Gao, C. Production of value-added chemicals from glycerol using in vitro enzymatic cascades. Commun. Chem. 2018, 1, 71. [Google Scholar] [CrossRef]
- Pardo-Planas, O.; Atiyeh, H.K.; Phillips, J.R.; Aichele, C.P.; Mohammad, S. Process simulation of ethanol production from biomass gasification and syngas fermentation. Bioresour. Technol. 2017, 245, 925–932. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Li, S.; Savage, P.E.; Guo, L. Stability and activity maintenance of sol-gel Ni-MxOy (M = Ti, Zr, Ta) catalysts during continuous gasification of glycerol in supercritical water. J. Supercrit. Fluids 2019, 148, 137–147. [Google Scholar] [CrossRef]
- Hashemi, H.; Christensen, J.M.; Glarborg, P. High-pressure pyrolysis and oxidation of ethanol. Fuel 2018, 218, 247–257. [Google Scholar] [CrossRef]
- Bellido, J.D.A.; Tanabe, E.Y.; Assaf, E.M. Carbon dioxide reforming of ethanol over Ni/Y2O3–ZrO2 catalysts. Appl. Catal. B Environ. 2009, 90, 485–488. [Google Scholar] [CrossRef]
- Bahari, M.B.; Phuc, N.H.H.; Alenazey, F.; Vu, K.B.; Ainirazali, N.; Vo, D.-V.N. Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal. Today 2017, 291, 67–75. [Google Scholar] [CrossRef]
- Tavanarad, M.; Meshkani, F.; Rezaei, M. Production of syngas via glycerol dry reforming on Ni catalysts supported on mesoporous nanocrystalline Al2O3. J. CO2 Util. 2018, 24, 298–305. [Google Scholar] [CrossRef]
- Siew, K.W.; Lee, H.C.; Gimbun, J.; Chin, S.Y.; Khan, M.R.; Taufiq-Yap, Y.H.; Cheng, C.K. Syngas production from glycerol-dry(CO2) reforming over La-promoted Ni/Al2O3 catalyst. Renew. Energy 2015, 74, 441–447. [Google Scholar] [CrossRef]
- Da Silva, A.M.; de Souza, K.R.; Jacobs, G.; Graham, U.M.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst. Appl. Catal. B Environ. 2011, 102, 94–109. [Google Scholar] [CrossRef]
- Su, B.P.; Zafer, S.; Selin, B.; Emrah, O.; Ahmet, K. Dry reforming of glycerol over Rh-based ceria and zirconia catalysts: New insights on catalyst activity and stability. Appl. Catal. A Gen. 2018, 564, 157–171. [Google Scholar]
- Cimenti, M.; Hill, J. Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions. J. Power Sources 2009, 186, 377–384. [Google Scholar] [CrossRef]
- López Ortiz, A.; Pallares Sámano, R.B.; Meléndez Zaragoza, M.J.; Collins-Martínez, V. Thermodynamic analysis and process simulation for the H2 production by dry reforming of ethanol with CaCO3. Int. J. Hydrog. Energy 2015, 40, 17172–17179. [Google Scholar] [CrossRef]
- Kale, G.R.; Kulkarni, B.D. Thermoneutral point analysis of ethanol dry autothermal reforming. Chem. Eng. J. 2010, 165, 864–873. [Google Scholar] [CrossRef]
- Bahari, M.B.; Phuc, N.H.H.; Abdullah, B.; Alenazey, F.; Vo, D.-V.N. Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst. J. Environ. Chem. Eng. 2016, 4, 4830–4838. [Google Scholar] [CrossRef]
- Bahari, M.B.; Goo, B.C.; Pham, T.L.M.; Siang, T.J.; Danh, H.T.; Ainirazali, N.; Vo, D.-V.N. Hydrogen-rich Syngas Production from Ethanol Dry Reforming on La-doped Ni/Al2O3 Catalysts: Effect of Promoter Loading. Procedia Eng. 2016, 148, 654–661. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y. Dry reforming of ethanol for hydrogen production: Thermodynamic investigation. Int. J. Hydrog. Energy 2009, 34, 5382–5389. [Google Scholar] [CrossRef]
- Bej, B.; Pradhan, N.C.; Neogi, S. Production of hydrogen by steam reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst. Catal. Today 2014, 237, 80–88. [Google Scholar] [CrossRef]
- Le Saché, E.; Santos, J.L.; Smith, T.J.; Centeno, M.A.; Arellano-Garcia, H.; Odriozola, J.A.; Reina, T.R. Multicomponent Ni-CeO2 nanocatalysts for syngas production from CO2/CH4 mixtures. J. CO2 Util. 2018, 25, 68–78. [Google Scholar] [CrossRef]
- Le Saché, E.; Pastor-Pérez, L.; Watson, D.; Sepúlveda-Escribano, A.; Reina, T.R. Ni stabilised on inorganic complex structures: Superior catalysts for chemical CO2 recycling via dry reforming of methane. Appl. Catal. B Environ. 2018, 236, 458–465. [Google Scholar] [CrossRef]
- Stroud, T.; Smith, T.J.; Le Saché, E.; Santos, J.L.; Centeno, M.A.; Arellano-Garcia, H.; Odriozola, J.A.; Reina, T.R. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Catal. B Environ. 2018, 224, 125–135. [Google Scholar] [CrossRef]
- Bej, B.; Bepari, S.; Pradhan, N.C.; Neogi, S. Production of hydrogen by dry reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst. Catal. Today 2017, 291, 58–66. [Google Scholar] [CrossRef]
- Wei, Y.; Cai, W.; Deng, S.; Li, Z.; Yu, H.; Zhang, S.; Yu, Z.; Cui, L.; Qu, F. Efficient syngas production via dry reforming of renewable ethanol over Ni/KIT-6 nanocatalysts. Renew. Energy 2020, 145, 1507–1516. [Google Scholar] [CrossRef]
- Zawadzki, A.; Bellido, J.D.A.; Lucrédio, A.F.; Assaf, E.M. Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process. Technol. 2014, 128, 432–440. [Google Scholar] [CrossRef]
- Fedotov, A.S.; Antonov, D.O.; Bukhtenko, O.V.; Uvarov, V.I.; Kriventsov, V.V.; Tsodikov, M.V. The role of aluminum in the formation of Ni–Al–Co-containing porous ceramic converters with high activity in dry and steam reforming of methane and ethanol. Int. J. Hydrog. Energy 2017, 42, 24131–24141. [Google Scholar] [CrossRef]
- Fayaz, F.; Nga, N.T.A.; Pham, T.L.M.; Danh, H.T.; Abdullah, B.; Setiabudi, H.D.; Vo, D.-V.N. Hydrogen production from ethanol dry reforming over lanthania-promoted Co/Al2O3 catalyst. IIUM Eng. J. 2018, 19, 24–33. [Google Scholar] [CrossRef]
- Fayaz, F.; Danh, H.T.; Nguyen-Huy, C.; Vu, K.B.; Abdullah, B.; Vo, D.-V.N. Promotional Effect of Ce-dopant on Al2O3-supported Co Catalysts for Syngas Production via CO2 Reforming of Ethanol. Procedia Eng. 2016, 148, 646–653. [Google Scholar] [CrossRef]
- Fayaz, F.; Bahari, M.B.; Pham, T.L.; Nguyen-Huy, C.; Setiabudi, H.D.; Abdullah, B.; Vo, D.-V.N. Hydrogen-Rich Syngas Production via Ethanol Dry Reforming over Rare-Earth Metal-Promoted Co-based Catalysts. In Recent Advancements in Biofuels and Bioenergy Utilization; Springer: Berlin/Heidelberg, Germany, 2018; pp. 177–204. [Google Scholar]
- Cao, D.; Zeng, F.; Zhao, Z.; Cai, W.; Li, Y.; Yu, H.; Zhang, S.; Qu, F. Cu based catalysts for syngas production from ethanol dry reforming: Effect of oxide supports. Fuel 2018, 219, 406–416. [Google Scholar] [CrossRef]
- Cao, D.; Cai, W.; Li, Y.; Li, C.; Yu, H.; Zhang, S.; Qu, F. Syngas Production from Ethanol Dry Reforming over Cu/Ce0.8Zr0.2O2 Catalyst. Catal. Lett. 2017, 147, 2929–2939. [Google Scholar] [CrossRef]
- Shafiqah, M.-N.N.; Nguyen, T.D.; Jun, L.N.; Bahari, M.B.; Phuong, P.T.; Abdullah, B.; Vo, D.-V.N. Production of syngas from ethanol CO2 reforming on La-doped Cu/Al2O3: Impact of promoter loading. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2019; Volume 2124, p. 020011. [Google Scholar]
- Chen, Q.; Cai, W.; Liu, Y.; Zhang, S.; Li, Y.; Huang, D.; Wang, T.; Li, Y. Synthesis of Cu-Ce0.8Zr0.2O2 catalyst by ball milling for CO2 reforming of ethanol. J. Saudi Chem. Soc. 2019, 23, 111–117. [Google Scholar] [CrossRef]
- Aupretre, F.; Descorme, C.; Duprez, D.; Casanave, D.; Uzio, D. Ethanol steam reforming over MgxNi1−xAl2O3 spinel oxide-supported Rh catalysts. J. Catal. 2005, 233, 464–477. [Google Scholar] [CrossRef]
- Mavrikakis, M.; Barteau, M.A. Oxygenate reaction pathways on transition metal surfaces. J. Mol. Catal. A Chem. 1998, 131, 135–147. [Google Scholar] [CrossRef]
- Zhao, S.; Cai, W.; Li, Y.; Yu, H.; Zhang, S.; Cui, L. Syngas production from ethanol dry reforming over Rh/CeO2 catalyst. J. Saudi Chem. Soc. 2018, 22, 58–65. [Google Scholar] [CrossRef]
- Wu, X.; Kawi, S. Rh/Ce-SBA-15: Active and stable catalyst for CO2 reforming of ethanol to hydrogen. Catal. Today 2009, 148, 251–259. [Google Scholar] [CrossRef]
- Drif, A.; Bion, N.; Brahmi, R.; Ojala, S.; Pirault-Roy, L.; Turpeinen, E.; Seelam, P.K.; Keiski, R.L.; Epron, F. Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Appl. Catal. A Gen. 2015, 504, 576–584. [Google Scholar] [CrossRef]
- Blanchard, J.; Oudghiri-Hassani, H.; Abatzoglou, N.; Jankhah, S.; Gitzhofer, F. Synthesis of nanocarbons via ethanol dry reforming over a carbon steel catalyst. Chem. Eng. J. 2008, 143, 186–194. [Google Scholar] [CrossRef]
- Jankhah, S.; Abatzoglou, N.; Gitzhofer, F. Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments’ production. Int. J. Hydrog. Energy 2008, 33, 4769–4779. [Google Scholar] [CrossRef]
- De Oliveira-Vigier, K.; Abatzoglou, N.; Gitzhofer, F. Dry-Reforming of Ethanol in the Presence of a 316 Stainless Steel Catalyst. Can. J. Chem. Eng. 2005, 83, 978–984. [Google Scholar] [CrossRef]
- Kale, G.R.; Kulkarni, B.D. Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Process. Technol. 2010, 91, 520–530. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Song, X.; Chen, J. Dry autothermal reforming of glycerol with in situ hydrogen separation via thermodynamic evaluation. Int. J. Hydrog. Energy 2017, 42, 838–847. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Wang, M.; Wang, H.; Li, S.; Wang, S.; Ma, X. Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel 2009, 88, 2148–2153. [Google Scholar] [CrossRef]
- Siew, K.W.; Lee, H.C.; Gimbun, J.; Cheng, C.K. Production of CO-rich hydrogen gas from glycerol dry reforming over La-promoted Ni/Al2O3 catalyst. Int. J. Hydrog. Energy 2014, 39, 6927–6936. [Google Scholar] [CrossRef] [Green Version]
- Tavanarad, M.; Meshkani, F.; Rezaei, M. Synthesis and Application of Noble Metal Nanocatalysts Supported on MgAl2O4 in Glycerol Dry Reforming Reaction. Catal. Lett. 2018, 148, 164–172. [Google Scholar] [CrossRef]
- Hua, C.L.; Siew, K.W.; Gimbun, J.; Cheng, C.K. Synthesis and characterisation of cement clinker-supported nickel catalyst for glycerol dry reforming. Chem. Eng. J. 2014, 255, 245–256. [Google Scholar]
- Lee, H.C.; Siew, K.W.; Khan, M.R.; Chin, S.Y.; Gimbun, J.; Cheng, C.K. Catalytic performance of cement clinker supported nickel catalyst in glycerol dry reforming. J. Energy Chem. 2014, 23, 645–656. [Google Scholar] [CrossRef]
- Siew, K.W.; Lee, H.C.; Gimbun, J.; Cheng, C.K. Characterization of La-promoted Ni/Al2O3 catalysts for hydrogen production from glycerol dry reforming. J. Energy Chem. 2014, 23, 15–21. [Google Scholar] [CrossRef]
- Siew, K.W.; Lee, H.C.; Khan, M.R.; Gimbun, J.; Cheng, C.K. CO2 reforming of glycerol over La-Ni/Al2O3 catalyst: A longevity evaluative study. J. Energy Chem. 2015, 24, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Mohd Arif, N.N.; Abidin, S.Z.; Osazuwa, O.U.; Vo, D.-V.N.; Azizan, M.T.; Taufiq-Yap, Y.H. Hydrogen production via CO2 dry reforming of glycerol over ReNi/CaO catalysts. Int. J. Hydrog. Energy 2019, 44, 20857–20871. [Google Scholar] [CrossRef]
- Harun, N.; Abidin, S.Z.; Osazuwa, O.U.; Yun, T.Y.; Azizan, M.T. Hydrogen production from glycerol dry reforming over Ag-promoted Ni/Al2O3. Int. J. Hydrog. Energy 2019, 44, 213–225. [Google Scholar] [CrossRef]
- Qu, F.; Wei, Y.; Cai, W.; Yu, H.; Li, Y.; Zhang, S.; Li, C. Syngas production from carbon dioxide reforming of ethanol over Ir/Ce0.75Zr0.25O2 catalyst: Effect of calcination temperatures. Energy Fuels 2018, 32, 2104–2116. [Google Scholar] [CrossRef]
- Harun, N.; Gimbun, J.; Azizan, M.T.; Abidin, S.Z. Characterization of Ag-promoted Ni/SiO2 catalysts for syngas production via carbon dioxide (CO2) dry reforming of glycerol. Bull. Chem. React. Eng. Catal. 2016, 11, 220–229. [Google Scholar] [CrossRef] [Green Version]
- German, K.; Von, L.J. Process for Obtaining Carbon Monoxide. German Patent No. DE3617280A1, 23 May 1986. [Google Scholar]
Active Metals | Supports | Promoters | Sample | Comments |
---|---|---|---|---|
Ni | SiO2 | Ethanol | Clustering of Ni may occur at high Ni loading [26]. | |
SiO2, KIT-6 | Stronger interaction of Ni-support inhibited the sintering of Ni [27]. | |||
Y2O3–ZrO2 | Stronger interaction between Ni and oxygen vacancies of support accelerated the activity. | |||
Al2O3, CeO2, MgO and ZrO2 | Ni-CeO2 catalyst showed the best performance. Redox property of CeO2 can promote the selectivity for H2 and inhibit the unfavored side reactions [10]. | |||
Al2O3 | Ce | Ce-promoted catalyst can inhibit the formation of carbon due to its oxygen mobility of CeO2 [28]. | ||
Al2O3 | La | La can enhance the dispersion of Ni particle and hinder the sintering of metal oxides [29]. | ||
Co | Al2O3 | Ce, La | La and Ce can increase the number of Co active sites by accelerating the reduction of Co3O4 [30,31,32]. | |
Cu | CeO2, ZrO2 | Ce | CuCeZr catalyst showed the best activity and stability due to higher Cu dispersion, strong metal support interaction and more oxygen vacancies [33,34,35,36]. | |
Rh | SBA-15 | Ce | The interaction between Rh and CeO2 and strong redox capacity of CeO2 can accelerate of CO2 activation and prevent carbon deposition [40]. | |
Al2O3, MgO–Al2O3, ZrO2–Al2O3 | Ce, La | The superior performance of Rh/NiO–Al2O3 is due to the presence of NiAl2O4 spinel phase, and high dispersion of Rh [41]. | ||
Ir | Ce0.75Zr0.25O2 | The dispersion, reducibility of Ir, oxygen vacancies of supports and interaction between Ir andsupport decreased with the calcination temperature increasing. IrCeZr550 catalyst (calcination at 823 K) exhibited a satisfactory performance with high activity and stability. Increasing calcination temperature up to 850 °C decreased markedly the interaction between Ir and support, dispersion and reducibility of Ir, and the dissociation capacity of the C–C bond [56]. | ||
Ni | Al2O3 | Glycerol | The glycerol conversion increased for Ni from 5 to 15%, while decreased at higher Ni, which may be related to lower Ni dispersion at higher content of Ni [12]. | |
Al2O3 | La | Glycerol conversion and H2 generation rate reached a peak at CO2/glycerol ratio of 1.67 [13]. | ||
Al2O3 | La | Ni metal can be better dispersed by La [48]. | ||
Al2O3 | Ag | The best glycerol conversion (40.7%) and high yield of H2 (32%) were observed for Ag-Ni/Al2O3. This result can ascribed to the smaller crystallite size of Ag in Ag-Ni/Al2O3, which was beneficial for metal dispersion [57]. | ||
Al2O3 | Re | Approximately 61% and 56% of glycerol conversion and hydrogen yield were observed for 5% Re-Ni/CaO, respectively. For 15% Ni/CaO, the conversion of glycerol and H2 yield are lower, being 35 and 30%, respectively. The addition of Re increases the acidic sites of the catalyst and promoted the adsorption of OH group of the glycerol onto the surface of catalyst [54]. | ||
Rh, Ni and Co | ZrO2-TiO2 | Rh showed the highest activity, while the activity of Co was the lowest [4]. | ||
Rh, Ru, Ir, Pd, Pt | MgO–Al2O3 | The catalytic activity followed the order: Rh > Ru > Ir > Pd > Pt [49]. | ||
Rh | CeO2, and ZrO2 | Rh/ZrO2 deactivated faster than Rh/CeO2, due to the sintering of Rh metals and coke formation [15]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Odriozola, J.A.; Reina, T.R. Dry Reforming of Ethanol and Glycerol: Mini-Review. Catalysts 2019, 9, 1015. https://doi.org/10.3390/catal9121015
Yu J, Odriozola JA, Reina TR. Dry Reforming of Ethanol and Glycerol: Mini-Review. Catalysts. 2019; 9(12):1015. https://doi.org/10.3390/catal9121015
Chicago/Turabian StyleYu, Jie, José A. Odriozola, and Tomas R. Reina. 2019. "Dry Reforming of Ethanol and Glycerol: Mini-Review" Catalysts 9, no. 12: 1015. https://doi.org/10.3390/catal9121015
APA StyleYu, J., Odriozola, J. A., & Reina, T. R. (2019). Dry Reforming of Ethanol and Glycerol: Mini-Review. Catalysts, 9(12), 1015. https://doi.org/10.3390/catal9121015