Study on the Photocathodic Protection of Q235 Steel by CdIn2S4 Sensitized TiO2 Composite in Splash Zone
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results Analysis
2.1.1. XRD Analysis
2.1.2. SEM Analysis
2.1.3. XPS Analysis
2.1.4. TEM and HRTEM Analysis
2.1.5. UV–Vis Diffuse Reflectance Spectra Analysis
2.1.6. Photoluminescence (PL) Spectra Analysis
2.1.7. Photochemical Analysis
3. Experiment
3.1. Materials
3.2. Preparation of TiO2 NTA and CdIn2S4/TiO2 NTA Composites
3.3. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qian, B.; Hou, B.; Zheng, M. The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions. Corros. Sci. 2013, 72, 1–9. [Google Scholar] [CrossRef]
- Liu, F.G.; Du, M.; Zhang, J.; Qiu, M. Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor. Corros. Sci. 2009, 51, 102–109. [Google Scholar] [CrossRef]
- Qu, D.R.; Zheng, Y.G.; Jing, H.M.; Yao, Z.M.; Ke, W. High temperature naphthenic acid corrosion and sulphidic corrosion of Q235 and 5Cr1/2Mo steels in synthetic refining media. Corros. Sci. 2006, 48, 1960–1985. [Google Scholar] [CrossRef]
- Wang, B.; Du, M.; Zhang, J.; Gao, C.J. Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion. Corros. Sci. 2011, 53, 353–361. [Google Scholar] [CrossRef]
- Al-Fozan, S.A.; Malik, A.U. Effect of seawater level on corrosion behavior of different alloys. Desalination 2008, 228, 61–67. [Google Scholar] [CrossRef]
- Balabanić, G.; Bićanić, N.; Dureković, A. Mathematical Modeling of Electrochemical Steel Corrosion in Concrete. J. Eng. Mech. 1996, 122, 1113–1122. [Google Scholar] [CrossRef]
- Melchers, R.E. Probabilistic Model for Marine Corrosion of Steel for Structural Reliability Assessment. J. Struct. Eng. 2003, 129, 1484–1493. [Google Scholar] [CrossRef]
- Zen, K. Corrosion and life cycle management of port structures. Corros. Sci. 2005, 47, 2353–2360. [Google Scholar] [CrossRef]
- Zhao, W.-M.; Wang, Y.; Liu, C.; Dong, L.-X.; Yu, H.-H.; Ai, H. Erosion–corrosion of thermally sprayed coatings in simulated splash zone. Surf. Coat. Technol. 2010, 205, 2267–2272. [Google Scholar] [CrossRef]
- Breslin, C.B.; Macdonald, D.D.; Sikora, E.; Sikora, J. Photo-inhibition of pitting corrosion on types 304 and 316 stainless steels in chloride-containing solutions. Electrochim. Acta 1997, 42, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Moussa, S.O.; Hocking, M.G. The photo-inhibition of localized corrosion of 304 stainless steel in sodium chloride environment. Corros. Sci. 2001, 43, 2037–2047. [Google Scholar] [CrossRef]
- Song, L.; Chen, Z. The role of UV illumination on the NaCl-induced atmospheric corrosion of Q235 carbon steel. Corros. Sci. 2014, 86, 318–325. [Google Scholar] [CrossRef]
- Fujisawa, R.; Tsujikawa, S. Photo-Protection of 304 Stainless Steel with TiO2 Coating. Mater. Sci. Forum 1995, 185–188, 1075. [Google Scholar] [CrossRef]
- Ohko, Y.; Saitoh, S.; Tatsuma, T.; Fujishima, A. Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel. J. Electrochem. Soc. 2001, 148. [Google Scholar] [CrossRef]
- Yuan, J.; Tsujikawa, S. Photo-Effects of Sol-Gel Derived TiO2 Coating on Carbon Steel in Alkaline Solution. Zairyo-to-Kankyo 1995, 44, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.; Sun, M.; Chen, Z.; Li, J.; Xu, F.; Xu, L. Enhanced Photoelectrochemical Cathodic Protection Performance of the Secondary Reduced Graphene Oxide Modified Graphitic Carbon Nitride. J. Electrochem. Soc. 2017, 164, C822–C830. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Ning, X.; Lei, J.; Shao, J.; Wang, W.; Huang, Y.; Hou, B. Sb2S3/Sb2O3 modified TiO2 photoanode for photocathodic protection of 304 stainless steel under visible light. Appl. Surf. Sci. 2018, 462, 155–163. [Google Scholar] [CrossRef]
- Wang, X.T.; Ning, X.B.; Shao, Q.; Ge, S.S.; Fei, Z.Y.; Lei, J.; Hou, B.R. ZnFeAl-layered double hydroxides/TiO2 composites as photoanodes for photocathodic protection of 304 stainless steel. Sci. Rep. 2018, 8, 4116. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Zhang, X.; Su, X.; Gao, W.; Wang, F.; Liu, Z.; Zhan, J.; Liu, B.; Wang, R.; Liu, H.; Sang, Y. Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment. Appl. Phys. A 2018, 124. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts. Appl. Catal. B Environ. 2017, 202, 620–641. [Google Scholar] [CrossRef]
- Guillot-Deudon, C.; Caldes, M.T.; Stoliaroff, A.; Choubrac, L.; Paris, M.; Latouche, C.; Barreau, N.; Lafond, A.; Jobic, S. Crystal Chemistry, Optical-Electronic Properties, and Electronic Structure of Cd1−xIn2+2x/3S4 Compounds (0 </= x </= 1), Potential Buffer in CIGS-Based Thin-Film Solar Cells. Inorg. Chem. 2018, 57, 12624–12631. [Google Scholar] [CrossRef]
- Jiang, Y.; Peng, Z.; Wu, F.; Xiao, Y.; Jing, X.; Wang, L.; Liu, Z.; Zhang, J.; Liu, Y.; Ni, L. A novel 3D/2D CdIn2S4 nano-octahedron/ZnO nanosheet heterostructure: Facile synthesis, synergistic effect and enhanced tetracycline hydrochloride photodegradation mechanism. Dalton Trans 2018, 47, 8724–8737. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Wang, R.; Li, J.; Huang, J.; Zhang, W. Multi-mode photocatalytic performances of CdS QDs modified CdIn2S4/CdWO4 nanocomposites with high electron transfer ability. J. Nanopart. Res. 2018, 20, 319. [Google Scholar] [CrossRef]
- Mahadadalkar, M.A.; Gosavi, S.W.; Kale, B.B. Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel. J. Mater. Chem. A 2018, 6, 16064–16073. [Google Scholar] [CrossRef]
- Thakur, P.; Chadha, R.; Biswas, N.; Sarkar, S.K.; Mukherjee, T.; Joshi, S.S.; Kapoor, S. Synthesis and characterization of CdS doped TiO2 nanocrystalline powder: A spectroscopic study. Mater. Res. Bull. 2012, 47, 1719–1724. [Google Scholar] [CrossRef]
- Ye, X.; Chen, Y.; Ling, C.; Zhang, J.; Meng, S.; Fu, X.; Wang, X.; Chen, S. Chalcogenide photocatalysts for selective oxidation of aromatic alcohols to aldehydes using O2 and visible light: A case study of CdIn2S4, CdS and In2S3. Chem. Eng. J. 2018, 348, 966–977. [Google Scholar] [CrossRef]
- Song, J.P.; Yin, P.F.; Mao, J.; Qiao, S.Z.; Du, X.W. Catalytically active and chemically inert CdIn2S4 coating on a CdS photoanode for efficient and stable water splitting. Nanoscale 2017, 9, 6296–6301. [Google Scholar] [CrossRef]
- Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 2004, 126, 5851–5858. [Google Scholar] [CrossRef] [PubMed]
- Alpuche-Aviles, M.A.; Wu, Y. Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method. J. Am. Chem. Soc. 2009, 131, 3216–3224. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 2006, 128, 15874–15881. [Google Scholar] [CrossRef] [PubMed]
- Chun, W.-J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J.N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K. Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5by UPS and Electrochemical Methods. J. Phys. Chem. B 2003, 107, 1798–1803. [Google Scholar] [CrossRef]
- Barchiche, C.; Deslouis, C.; Festy, D.; Gil, O.; Refait, P.; Touzain, S.; Tribollet, B. Characterization of calcareous deposits in artificial seawater by impedance techniques 3—Deposit of CaCO3 in the presence of Mg(II). Electrochim. Acta 2003, 48, 1645–1654. [Google Scholar] [CrossRef]
- Rendón Belmonte, M.; Trinidad Pérez Quiroz, J.; Valdez Salas, B.; Martínez Madrid, M.; Torres Acosta, A.; Porcayo Calderón, J.; Schorr Wiener, M. Characterization of steel surface under cathodic protection in seawater. Anti-Corros. Methods Mater. 2013, 60, 160–167. [Google Scholar] [CrossRef]
- Tsuru, T.; Dae-Hi, J.; Haruyama, S. Impedance Characteristics of the Metals under Cathodic Protection and Determination of an Optimum Protection Potential. Corros. Eng. 1985, 34, 36–41. [Google Scholar] [CrossRef]
- Elbeik, S.; Tseung, A.C.C.; Mackay, A.L. The formation of calcareous deposits during the corrosion of mild steel in sea water. Corros. Sci. 1986, 26, 669–680. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Wang, M.; Niu, Z.; Wang, X.; Hou, B. Preparation and photocathodic protection property of ZnIn2S4/RGO/TiO2 composites for Q235 carbon steel under visible light. Nanotechnology 2018, 29, 435706. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.H.; Wang, X.T.; Hou, B.R. 3D ZnIn2S4 nanosheets/TiO2 nanotubes as photoanodes for photocathodic protection of Q235 CS with high efficiency under visible light. J. Alloys Compd. 2019, 771, 892–899. [Google Scholar] [CrossRef]
- Ren, J.; Qian, B.; Li, J.; Song, Z.; Hao, L.; Shi, J. Highly efficient polypyrrole sensitized TiO2 nanotube films for photocathodic protection of Q235 carbon steel. Corros. Sci. 2016, 111, 596–601. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L. Continuous Fabrication of Free-Standing TiO2Nanotube Array Membranes with Controllable Morphology for Depositing Interdigitated Heterojunctions. Chem. Mater. 2010, 22, 6656–6664. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Yu, B.; Zhou, F.; Liu, W. TiO2Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chem. Mater. 2009, 21, 1198–1206. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Ma, X.; Wang, X.; Liu, N.; Liu, X.; Hou, B. Study on the Photocathodic Protection of Q235 Steel by CdIn2S4 Sensitized TiO2 Composite in Splash Zone. Catalysts 2019, 9, 1067. https://doi.org/10.3390/catal9121067
Ma Z, Ma X, Wang X, Liu N, Liu X, Hou B. Study on the Photocathodic Protection of Q235 Steel by CdIn2S4 Sensitized TiO2 Composite in Splash Zone. Catalysts. 2019; 9(12):1067. https://doi.org/10.3390/catal9121067
Chicago/Turabian StyleMa, Zheng, Xiumin Ma, Xiutong Wang, Nazhen Liu, Xuehui Liu, and Baorong Hou. 2019. "Study on the Photocathodic Protection of Q235 Steel by CdIn2S4 Sensitized TiO2 Composite in Splash Zone" Catalysts 9, no. 12: 1067. https://doi.org/10.3390/catal9121067
APA StyleMa, Z., Ma, X., Wang, X., Liu, N., Liu, X., & Hou, B. (2019). Study on the Photocathodic Protection of Q235 Steel by CdIn2S4 Sensitized TiO2 Composite in Splash Zone. Catalysts, 9(12), 1067. https://doi.org/10.3390/catal9121067