Facile Synthesis and Characterization of Two Dimensional SnO2-Decorated Graphene Oxide as an Effective Counter Electrode in the DSSC
Abstract
:1. Introduction
- The sensitized dye
- The material of the photoanode
- The redox couple electrolyte and
- The non-precious counter electrode
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Preparation
3.2. The DSSC Fabrication
3.3. Characterization and Application
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Fu, Y.; Tian, H. Improvement of dye-sensitized solar cells: What we know and what we need to know. Energy Environ. Sci. 2010, 3, 1170–1181. [Google Scholar] [CrossRef]
- Lee, C.-P.; Li, C.-T.; Ho, K.-C. Use of organic materials in dye-sensitized solar cells. Mater. Today 2017, 20, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. [Google Scholar] [CrossRef]
- Sharma, S.; Siwach, B.; Ghoshal, S.; Mohan, D. Dye sensitized solar cells: From genesis to recent drifts. Renew. Sustain. Energy. Rev. 2017, 70, 529–537. [Google Scholar] [CrossRef]
- Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155–162. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115, 2136–2173. [Google Scholar] [CrossRef]
- Mahmoud, M.S.; Akhtar, M.S.; Mohamed, I.M.; Hamdan, R.; Dakka, Y.A.; Barakat, N.A. Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC. Mater. Lett. 2018, 225, 77–81. [Google Scholar] [CrossRef]
- Joshi, P.; Zhang, L.; Davoux, D.; Zhu, Z.; Galipeau, D.; Fong, H.; Qiao, Q. Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy Environ. Sci. 2010, 3, 1507–1510. [Google Scholar] [CrossRef]
- Manthina, V.; Baena, J.P.C.; Liu, G.; Agrios, A.G. ZnO–TiO2 Nanocomposite Films for High Light Harvesting Efficiency and Fast Electron Transport in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 23864–23870. [Google Scholar] [CrossRef]
- Yang, M.; Dong, B.; Yang, X.; Xiang, W.; Ye, Z.; Wang, E.; Wan, L.; Zhao, L.; Wang, S. TiO2 nanoparticle/nanofiber—ZnO photoanode for the enhancement of the efficiency of dye-sensitized solar cells. RSC Adv. 2017, 7, 41738–41744. [Google Scholar] [CrossRef]
- Basu, K.; Benetti, D.; Zhao, H.; Jin, L.; Vetrone, F.; Vomiero, A.; Rosei, F. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes. Sci. Rep. 2016, 6, 23312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, T.; Wang, Q.; Zhang, Y.; Wang, D.; Zheng, W. Preparation of SnO2/rGO Photoanode and Its Effect on the Property of Dye-Sensitized Solar Cells. IEEE J. Photovolt. 2017, 7, 399–403. [Google Scholar] [CrossRef]
- Bykkam, S.; Kalagadda, B.; Kalagadda, V.R.; Ahmadipour, M.; Chakra, C.S.; Rajendar, V. Effect of Few-Layered Graphene-Based CdO Nanocomposite-Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cell. J. Electron. Mater. 2018, 47, 620–626. [Google Scholar] [CrossRef]
- Thomas, S.; Deepak, T.; Anjusree, G.; Arun, T.; Nair, S.V.; Nair, A.S. A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 4474–4490. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Tang, Q.; Yue, G.; Lin, J.; Huang, M.; Meng, L. Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci. Rep. 2014, 4, 4028. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasetio, A.; Subagio, A.; Purwanto, A.; Widiyandari, H. Dye-sensitized solar cell based carbon nanotube as counter electrode. AIP Conf. Proc. 2016, 1710, 030054. [Google Scholar]
- Hung, K.-H.; Li, Y.-S.; Wang, H.-W. Dye-sensitized solar cells using graphene-based counter electrode. In Proceedings of the 12th IEEE Conference on Nanotechnology (IEEE-NANO), Birmingham, UK, 20–23 August 2012; pp. 1–12. [Google Scholar]
- Motlak, M.; Barakat, N.A.; Akhtar, M.S.; Hamza, A.; Kim, B.-S.; Kim, C.S.; Khalil, K.A.; Almajid, A.A. High performance of NiCo nanoparticles-doped carbon nanofibers as counter electrode for dye-sensitized solar cells. Electrochim. Acta 2015, 160, 1–6. [Google Scholar] [CrossRef]
- Lee, W.J.; Ramasamy, E.; Lee, D.Y.; Song, J.S. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Int. 2009, 1, 1145–1149. [Google Scholar] [CrossRef]
- Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Marcaccio, M.; Paolucci, F. Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes; Springer: Berlin, Germany, 2014. [Google Scholar]
- Gao, W. The chemistry of graphene oxide. In Graphene Oxide; Springer: Berlin, Germany, 2015; pp. 61–95. [Google Scholar]
- Rahal, A.; Benramache, S.; Benhaoua, B. Preparation of n-type semiconductor SnO2 thin films. J. Semicond. 2013, 34, 083002. [Google Scholar] [CrossRef]
- El-Deen, A.G.; Barakat, N.A.; Khalil, K.A.; Kim, H.Y. Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process. J. Mater. Chem. A 2013, 1, 11001–11010. [Google Scholar] [CrossRef]
- Krishna, R.; Titus, E.; Okhay, O.; Gil, J.C.; Ventura, J.; Ramana, E.V.; Gracio, J.J. Rapid electrochemical synthesis of hydrogenated graphene oxide using Ni nanoparticles. Int. J. Electrochem. Sci. 2014, 9, 69. [Google Scholar]
- Wei, A.; Wang, J.; Long, Q.; Liu, X.; Li, X.; Dong, X.; Huang, W. Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide. Mater. Res. Bull. 2011, 46, 2131–2134. [Google Scholar] [CrossRef]
- Katiyar, R.; Dawson, P.; Hargreave, M.; Wilkinson, G. Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2. J. Phys. C Solid Stat. Phys. 1971, 4, 2421. [Google Scholar] [CrossRef]
- Li, Z.; Shen, W.; Zhang, X.; Fang, L.; Zu, X. Controllable growth of SnO2 nanoparticles by citric acid assisted hydrothermal process. Colloid Surf. Physicochem. Eng. Asp. 2008, 327, 17–20. [Google Scholar] [CrossRef]
- Sarker, S.; Ahammad, A.J.S.; Seo, H.W.; Kim, D.M. Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation. Int. J. Photoenergy 2014, 2014, 17. [Google Scholar] [CrossRef]
- Murakami, T.N.; Grätzel, M. Counter electrodes for DSC: Application of functional materials as catalysts. Inorg. Chim. Acta 2008, 361, 572–580. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Teng, I.J.; Hsu, Y.-C.; Huang, W.-C.; Shih, C.-J.; Tsai, C.-H. Covalent bond–grafted soluble poly(o-methoxyaniline)-graphene oxide composite materials fabricated as counter electrodes of dye-sensitised solar cells. Org. Electron. 2017, 42, 209–220. [Google Scholar] [CrossRef]
- Huo, J.; Wu, J.; Zheng, M.; Tu, Y.; Lan, Z. High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells. J. Power Sources 2015, 293, 570–576. [Google Scholar] [CrossRef]
- Demir, E.; Savk, A.; Sen, B.; Sen, F. A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells. Nano-Struct Nano-Obj. 2017, 12, 41–45. [Google Scholar] [CrossRef]
- Jang, H.-S.; Yun, J.-M.; Kim, D.-Y.; Na, S.-I.; Kim, S.-S. Transparent graphene oxide–Pt composite counter electrode fabricated by pulse current electrodeposition-for dye-sensitized solar cells. Surf. Coat. Technol. 2014, 242, 8–13. [Google Scholar] [CrossRef]
- Satoshi, K.; Daiki, A.; Etsuo, S.; Masahiro, M. Copper Sulfide Catalyzed Porous Fluorine-Doped Tin Oxide Counter Electrode for Quantum Dot-Sensitized Solar Cells with High Fill Factor. Int. J. Photoenergy 2017, 2017, 5461030. [Google Scholar]
- Zaaba, N.; Foo, K.; Hashim, U.; Tan, S.; Liu, W.-W.; Voon, C. Synthesis of graphene oxide using modified hummers method: Solvent influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Rao, S.S.; Gopi, C.V.; Kim, S.-K.; Son, M.-K.; Jeong, M.-S.; Savariraj, A.D.; Prabakar, K.; Kim, H.-J. Cobalt sulfide thin film as an efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 2014, 133, 174–179. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.S.; Motlak, M.; Barakat, N.A.M. Facile Synthesis and Characterization of Two Dimensional SnO2-Decorated Graphene Oxide as an Effective Counter Electrode in the DSSC. Catalysts 2019, 9, 139. https://doi.org/10.3390/catal9020139
Mahmoud MS, Motlak M, Barakat NAM. Facile Synthesis and Characterization of Two Dimensional SnO2-Decorated Graphene Oxide as an Effective Counter Electrode in the DSSC. Catalysts. 2019; 9(2):139. https://doi.org/10.3390/catal9020139
Chicago/Turabian StyleMahmoud, Mohamed S., Moaaed Motlak, and Nasser A. M. Barakat. 2019. "Facile Synthesis and Characterization of Two Dimensional SnO2-Decorated Graphene Oxide as an Effective Counter Electrode in the DSSC" Catalysts 9, no. 2: 139. https://doi.org/10.3390/catal9020139
APA StyleMahmoud, M. S., Motlak, M., & Barakat, N. A. M. (2019). Facile Synthesis and Characterization of Two Dimensional SnO2-Decorated Graphene Oxide as an Effective Counter Electrode in the DSSC. Catalysts, 9(2), 139. https://doi.org/10.3390/catal9020139