Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of 2-Melm on PLA1/MSNC Activity
2.2. Characterization of 2-Melm@PLA1/MSNC
2.3. Enzymatic Activities of 2-Melm@PLA1/MSNC
3. Materials and Methods
3.1. Materials
3.2. PLA1/MSNC,2-Melm@MSNC, and 2-Melm@PLA1/MSNCSynthesis
3.3. Protein Encapsulation Ratio
3.4. Characterization
3.5. PLA1-Catalyzed Synthesis of L-α-GPC
3.6. High-Performance Liquid Chromatography (HPLC) Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Lee, S.H.; Choi, B.Y.; Kim, J.H.; Kho, A.R.; Sohn, M.; Song, H.K.; Choi, H.C.; Suh, S.W. Late treatment with choline alfoscerate (L-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain Res. 2017, 1654, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Tayebati, S.K. Phospholipid and lipid derivatives as potential neuroprotective compounds. Molecules 2018, 23, 2257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, X.; Liu, Y. Aqueous medium enzymatic preparation of L-alpha glycerylphosphorylcholine optimized by response surface methodology. Eur. Food Res. Technol. 2012, 234, 485–491. [Google Scholar] [CrossRef]
- Bang, H.; Kim, I.; Kim, B. Phospholipase A(1)-catalyzed hydrolysis of soy phosphatidylcholine to prepare L-alpha-glycerylphosphorylcholine in organic-aqueous media. Food Chem. 2016, 190, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, Y.; Wang, X. Enzymatic preparation of L-alpha-glycerylphosphorylcholine in an aqueous medium. Eur. J. Lipid Sci. Technol. 2012, 114, 1254–1260. [Google Scholar] [CrossRef]
- Lim, C.W.; Kim, B.H.; Kim, I.H.; Lee, M.W. Modeling and optimization of phospholipase A(1)-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production. Biotechnol. Prog. 2015, 31, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kielbowicz, G.; Smuga, D.; Gladkowski, W.; Chojnacka, A.; Wawrzenczyk, C. An LC method for the analysis of phosphatidylcholine hydrolysis products and its application to the monitoring of the acyl migration process. Talanta 2012, 94, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; Pereira, P.C. Biocatalysis engineering: The big picture. Chem. Soc. Rev. 2017, 46, 2678–2691. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N.; Guo, S.; Hu, H.; Wang, W.; Zhang, X. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point. Int. J. Biol. Macromol. 2018, 108, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Cargill, A.A.; Medintz, I.L.; Claussen, J.C. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol. 2015, 34, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, A.S.; Dong, C.; Meng, F.; Hardinger, J.; Perhinschi, G.; Wu, N.; Dinu, C.Z. Enzyme catalytic efficiency: A function of bio-nano interface reactions. ACS Appl. Mater. Interfaces 2014, 6, 5393–5403. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; He, R.; Zhuang, A.; Wang, X.; Zeng, J.; Hou, J.G. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J. Am. Chem. Soc. 2013, 135, 1272–1275. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem. Commun. 2015, 51, 13408–13411. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761–5765. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Sun, S.; Zhou, Z.; Yuan, Q.; Liu, Y.; Liang, H. Thermostable enzyme-immobilized magnetic responsive Ni-based metal-organic framework nanorods as recyclable biocatalysts for efficient biosynthesis of S-adenosylmethionine. Dalton Trans. 2019, 48, 2077–2085. [Google Scholar] [CrossRef] [PubMed]
- Nowroozi-Nejad, Z.; Bahramian, B.; Saman Hosseinkhani, S. Efficient immobilization of firefly luciferase in a metal organic framework: Fe-MIL-88(NH2) as a mighty support for this purpose. Enzym. Microb. Technol. 2019, 121, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, N.; Zhang, E.; Han, Y.; Qi, Z.; Ansorge-Schumacher, M.B.; Ge, Y.; Wu, C. Heterogeneous metal-organic-framework-based biohybrid catalysts for cascade reactions in organic solvent. Chem. Eur. J. 2019, 25, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, W.; Lian, M.; Chen, X.; Lu, Y.; Yang, W. Enzyme immobilization on ZIF-67/MWCNT composite engenders highsensitivity electrochemical sensing. J. Electroanal. Chem. 2019, 833, 505–511. [Google Scholar] [CrossRef]
- Zare, A.; Bordbar, A.; Razmjou, A.; Jafarian, F. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane. J. Biotechnol. 2019, 289, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Rathod, V.K. Magnetic-metal organic framework (magnetic-MOF): A novel platform for enzyme immobilization and nanozyme applications. Int. J. Biol. Macromol. 2018, 120, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Ling, P.; Qian, C.; Gao, F.; Lei, J. Enzyme-immobilized metal-organic framework nanosheets as tandem catalysts for the generation of nitric oxide. Chem. Commun. 2018, 54, 11176–11179. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Ren, S.; Sun, B.; Jia, S. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coord. Chem. Rev. 2018, 370, 22–41. [Google Scholar] [CrossRef]
- Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386–3401. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.B.; Howarth, A.J.; Li, P.; Wasielewski, M.R.; Hupp, J.T.; Farha, O.K. Enzyme encapsulation in metal-organic frameworks for applications in catalysis. CrystEngComm 2017, 19, 4082–4091. [Google Scholar] [CrossRef]
- Wu, X.; Yang, C.; Ge, J. Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresour. Bioprocess. 2017, 4, 24–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, W.; Lv, H.; Li, H.; Wang, Y.; Wang, P. Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chem. Eng. J. 2018, 350, 949–959. [Google Scholar] [CrossRef]
- Wu, L.; Wu, S.; Xu, Z.; Qiu, Y.; Li, S.; Xu, H. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosens. Bioelectron. 2016, 80, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Zhang, X.; Yang, C.; Naseer, S.; Zhang, X.; Ouyang, J.; Li, D.; Yang, J. The effects of NaCl on enzyme encapsulation by zeolitic imidazolate frameworks-8. Enzym. Microb. Technol. 2019, 122, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Adeel, M.; Rasheed, T.; Iqbal, H.M.N. Multifunctional metal–organic frameworks-based biocatalytic platforms: Recent developments and future prospects. J. Mater. Res. Technol. 2018. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Noreen, S.; Shah, S.Z.H.; Bharagava, R.N.; Iqbal, H.M.N. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatal. Biotransform. 2019. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N.; Cui, J. “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int. J. Biol. Macromol. 2018, 119, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Asgher, M.; Cheng, H.; Yan, Y.; Iqbal, H.M.N. Multi-point enzyme immobilization, surface chemistry, and novel platforms: A paradigm shift in biocatalyst design. Crit. Rev. Biotechnol. 2019, 39, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ni, Y.; Zhang, A.; Xu, S.; Chen, K.; Ouyang, P. Encapsulation of enzymes in metal ion-surfactant nanocomposites for catalysis in highly polar solvents. Chem. Commun. 2017, 53, 3134–3137. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ni, Y.; Cao, X.; He, X.; Li, G.; Chen, K.; Ouyang, P.; Yang, J.; Tan, W. Highly active nanobiocatalysis in deep eutectic solvents via metal-driven enzyme-surfactant nanocomposite. J. Biotechnol. 2019, 292, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pang, Y.; Wang, X.; Cao, X.; He, X.; Chen, K.; Li, G.; Ouyang, P.; Tan, W. Phospholipase D encapsulated into metalsurfactant nanocapsules for enhancing biocatalysisin a two-phase system. RSC Adv. 2019, 9, 6548–6555. [Google Scholar] [CrossRef]
- Mashimo, Y.; Mie, M.; Kobatake, E. A DNA-scaffold platform enhances a multi-enzymatic cycling reaction. Biotechnol. Lett. 2018, 40, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Lan, G.; Fan, Y.; Veroneau, S.S.; Song, Y.; Micheroni, D.; Lin, W. Merging photoredox and organometallic catalysts in a metal-organic framework significantly boosts photocatalytic activities. Angew. Chem. Int. Ed. 2018, 57, 14090–14094. [Google Scholar] [CrossRef] [PubMed]
- Denis, J.D.S.; Liew, S.K.; Scully, C.C.G.; Yudin, A.K. Activation of alkynylzinc reagents by a hemiaminal-driven catalytic microenvironment. Eur. J. Org. Chem. 2017, 2, 419–423. [Google Scholar] [CrossRef]
- Chai, Y.; Liu, S.; Zhao, Z.J.; Gong, J.; Dai, W.; Wu, G.; Guan, N.; Li, L. Selectivity modulation of encapsulated palladium nanoparticles by zeolite microenvironment for biomass catalytic upgrading. ACS Catal. 2018, 8, 8578–8589. [Google Scholar] [CrossRef]
- Pavlovic, M.; Rouster, P.; Szilagyi, I. Synthesis and formulation of functional bionanomaterials with superoxide dismutase activity. Nanoscale 2017, 9, 369–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Gao, X.; Ai, L.; Jiang, J. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 2015, 274, 238–246. [Google Scholar] [CrossRef]
- Wu, X.; Yang, C.; Ge, J.; Liu, Z. Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale 2015, 7, 18883–18886. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gao, Y.; Deng, S.; Cheng, S.; Zhang, S.; Hu, H.; Zhuang, G.; Zhong, X.; Wang, J. Improved oxygen reduction reaction performance of Co confined in ordered N-doped porous carbon derived from ZIF-67@PILs. Ind. Eng. Chem. Res. 2017, 56, 11100–11110. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, S.; Zhao, Q.; Lu, R.; Hang, C.; Chen, Z.; Zheng, H. Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J. 2018, 333, 49–57. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Zhang, L.; Zhou, N.; Weng, S.; Wu, J. The Interaction of Co2+ ions and sodium deoxycholate micelles. J. Mol. Struct. 2003, 655, 321–330. [Google Scholar] [CrossRef]
- Zhang, B.; Li, P.; Zhang, H.; Wang, H.; Li, X.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 2016, 291, 287–297. [Google Scholar] [CrossRef]
- Xia, T.T.; Lin, W.; Liu, C.Z.; Guo, C. Improving catalytic activity of laccase immobilized on the branched polymer chains of magnetic nanoparticles under alternating magnetic field. J. Chem. Technol. Biotechnol. 2018, 93, 88–93. [Google Scholar] [CrossRef]
- Madhu, H.C.; Kumar, P.A.; Perugu, C.S.; Kailas, S.V. Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite. J. Mater. Eng. Perform. 2018, 27, 1318–1326. [Google Scholar] [CrossRef]
- Cheng, H.P.; Hu, M.C.; Zhai, Q.G.; Li, S.N.; Jiang, Y.C. Polydopamine tethered CPO/HRP-TiO2 nano-composites with high bio-catalytic activity, stability and reusability: Enzyme-photo bifunctional synergistic catalysis in water treatment. Chem. Eng. J. 2018, 347, 703–710. [Google Scholar] [CrossRef]
- Cohen, J.L.; Karav, S.; Barile, D.; Bell, J.M.L.N.D. Immobilization of an endo-beta-N-acetylglucosaminidase for the release of bioactive N-glycans. Catalysts 2018, 8, 278. [Google Scholar] [CrossRef]
Solvent | Log P | Yield (μmolL−1) | |
---|---|---|---|
Free PLA1 | 2-Melm@PLA1/MSNC | ||
Isooctane | 4.5 | 0 | 341.02 ± 11.21 |
Heptane | 4.0 | 0 | 559.84 ± 16.82 |
Hexane | 3.5 | 0 | 919.96 ± 35.68 |
1-Hexanol | 1.8 | 0 | 239.73 ± 15.79 |
Butanol | 0.8 | 0 | 0 |
Sample | BET Surface Area(m2g−1) | Average Pore Volume(cm3g−1) | Average Pore Width(nm) |
---|---|---|---|
2-Melm@MSNC | 48.76 | 0.22 | 25.23 |
2-Melm@PLA1/MSNC | 81.08 | 0.69 | 28.69 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Cao, X.; Lu, Y.; Ni, Y.; Wang, X.; Lu, Q.; Li, G.; Chen, K.; Ouyang, P.; Tan, W. Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine. Catalysts 2019, 9, 237. https://doi.org/10.3390/catal9030237
Li H, Cao X, Lu Y, Ni Y, Wang X, Lu Q, Li G, Chen K, Ouyang P, Tan W. Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine. Catalysts. 2019; 9(3):237. https://doi.org/10.3390/catal9030237
Chicago/Turabian StyleLi, Hui, Xun Cao, Yuanyuan Lu, Yan Ni, Xin Wang, Qiuhao Lu, Ganlu Li, Kequan Chen, Pingkai Ouyang, and Weimin Tan. 2019. "Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine" Catalysts 9, no. 3: 237. https://doi.org/10.3390/catal9030237
APA StyleLi, H., Cao, X., Lu, Y., Ni, Y., Wang, X., Lu, Q., Li, G., Chen, K., Ouyang, P., & Tan, W. (2019). Alkaline Modification of a Metal–Enzyme–Surfactant Nanocomposite to Enhance the Production of L-α-glycerylphosphorylcholine. Catalysts, 9(3), 237. https://doi.org/10.3390/catal9030237