Tailoring a Soluble Diiron Monooxygenase for Synthesis of Aromatic N-oxides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Target Amino Acids for Mutagenesis
2.2. The Selection of PML Mutants Based on Chromogenic Screening
2.3. Elucidation of Properties of the Most Prominent Mutant A113G
2.4. Impact of the Active Site Neighboring Amino Acids in PML Mutants
3. Conclusions
4. Materials and Methods
4.1. DNA Primers Used in this Study
4.2. Plasmids and Strains Used in This Study
4.3. Site-Directed and Saturation Mutagenesis
4.4. Chromogenic Screening Assay on Agar Plates with Indole
4.5. Conditions for biomass growth and protein biosynthesis
4.6. Whole Cell Bioconversions using PML Mutants
4.7. Calculation of Bioconversion Parameters
4.8. Isolation of the bioconversion products
4.9. HPLC-MS Analysis
4.10. 1H and 13C NMR Data of Isolated Products
4.11. PML Protein 3D Modelling
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Badenhorst, C.P.S.; Bornscheuer, U.T. Getting momentum: From biocatalysis to advanced synthetic biology. Trends Biochem. Sci. 2018, 43, 180–198. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.; Lewis, J.C. Introduction: Biocatalysis in Industry. Chem. Rev. 2018, 118, 1–3. [Google Scholar] [CrossRef]
- Turner, N.J.; Kumar, R. Editorial overview: Biocatalysis and biotransformation: The golden age of biocatalysis. Curr. Opin. Chem. Biol. 2018, 43, A1–A3. [Google Scholar] [CrossRef]
- Holtmann, D.; Fraaije, M.W.; Arends, I.W.; Opperman, D.J.; Hollmann, F. The taming of oxygen: Biocatalytic oxyfunctionalisations. Chem. Commun. 2014, 87, 13180–13200. [Google Scholar] [CrossRef]
- King-Smith, E.; Zwick, C.R., 3rd; Renata, H. Applications of oxygenases in the chemoenzymatic total synthesis of complex natural products. Biochemistry 2018, 57, 403–412. [Google Scholar] [CrossRef]
- Prier, C.K.; Kosjek, B. Recent preparative applications of redox enzymes. Curr. Opin. Chem. Biol. 2018, 49, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Coleman, N.V.; Bui, N.B.; Holmes, A.J. Soluble di-iron monooxygenase gene diversity in soils, sediments and thane enrichments. Environ. Microbiol. 2006, 8, 1228–1239. [Google Scholar] [CrossRef]
- Leahy, J.G.; Batchelor, P.J.; Morcomb, S.M. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 2003, 27, 449–479. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.J. The diversity of doluble di-iron monooxygenases with bioremediation applications. In Advances in Applied Bioremediation; Singh, A., Kuhad, R., Ward, O., Eds.; Springer: Berlin, Germany, 2009; Volume 17. [Google Scholar]
- Notomista, E.; Scognamiglio, R.; Troncone, L.; Donadio, G.; Pezzella, A.; Di Donato, A.; Izzo, V. Tuning the specificity of the recombinant multicomponent toluene o-xylene monooxygenase from Pseudomonas sp. Strain OX1 for the biosynthesis of tyrosol from 2-phenylethanol. Appl. Environ. Microbiol. 2011, 77, 5428–5437. [Google Scholar] [CrossRef] [PubMed]
- Petkevičius, V.; Vaitekūnas, J.; Tauraitė, D.; Stankevičiūtė, J.; Šarlauskas, J.; Čėnas, N.; Meškys, R. A biocatalytic synthesis of heteroaromatic N-oxides by whole cells of Escherichia coli expressing the multicomponent, soluble di-iron monooxygenase (SDIMO) PmlABCDEF. Adv. Synth. Catal. 2019, 361. [Google Scholar] [CrossRef]
- Clayden, J.; Greeves, N.; Warren, S.G. Aromatic heterocycles 1: Reactions. In Organic Chemistry, 2nd ed.; Oxford University Press: New York, NY, USA, 2012; pp. 730–731. [Google Scholar]
- Mfuh, A.M.; Larionov, O.V. Heterocyclic N-oxides—An emerging class of therapeutic agents. Curr. Med. Chem. 2015, 22, 819–857. [Google Scholar] [CrossRef]
- Nichol, T.; Murrell, J.C.; Smith, T.J. Controlling the activities of the diiron centre in bacterial monooxygenases: Lessons from mutagenesis and biodiversity. Eur. J. Inorg. Chem. 2015, 2015, 3419–3431. [Google Scholar] [CrossRef]
- Notomista, E.; Cafaro, V.; Bozza, G.; Di Donato, A. Molecular determinants of the regioselectivity of toluene/o-xylene monooxygenase from Pseudomonas sp. Strain OX1. Appl. Environ. Microbiol. 2009, 75, 823–836. [Google Scholar] [CrossRef]
- Chan Kwo Chion, C.K.; Askew, S.E.; Leak, D.J. Cloning, expression, and site-directed mutagenesis of the propene monooxygenase genes from Mycobacterium sp. Strain M156. Appl. Environ. Microbiol. 2005, 71, 1909–1914. [Google Scholar] [CrossRef]
- Sönmez, B.; Yanık-Yıldırım, K.C.; Wood, T.K.; Vardar-Schara, G. The role of substrate binding pocket residues phenylalanine 176 and phenylalanine 196 on Pseudomonas sp. OX1 toluene o-xylene monooxygenase activity and regiospecificity. Biotechnol. Bioeng. 2014, 111, 1506–1512. [Google Scholar] [CrossRef]
- Fishman, A.; Tao, Y.; Rui, L.; Wood, T.K. Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1. J. Biol. Chem. 2005, 280, 506–514. [Google Scholar] [CrossRef]
- Vardar, G.; Wood, T.K. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for synthesizing 4-methylresorcinol, methylhydroquinone, and pyrogallol. Appl. Environ. Microbiol. 2004, 70, 3253–3262. [Google Scholar] [CrossRef]
- Pikus, J.D.; Studts, J.M.; McClay, K.; Steffan, R.J.; Fox, B.G. Changes in the regiospecificity of aromatic hydroxylation produced by active site engineering in the diiron enzyme toluene 4-monooxygenase. Biochemistry 1997, 36, 9283–9289. [Google Scholar] [CrossRef]
- Halsey, K.H.; Sayavedra-Soto, L.A.; Bottomley, P.J.; Arp, D.J. Site-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora: Implications for substrates knocking at the gate. J. Bacteriol. 2006, 188, 4962–4969. [Google Scholar] [CrossRef]
- Borodina, E.; Nichol, T.; Dumont, M.G.; Smith, T.J.; Murrell, J.C. Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl. Environ. Microbiol. 2007, 73, 6460–6467. [Google Scholar] [CrossRef]
- Rui, L.; Kwon, Y.M.; Fishman, A.; Reardon, K.F.; Wood, T.K. Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for Enhanced 1-naphthol synthesis and chloroform degradation. Appl. Environ. Microbiol. 2004, 70, 3246–3252. [Google Scholar] [CrossRef]
- Canada, K.A.; Iwashita, S.; Shim, H.; Wood, T.K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethane degradation. J. Bacteriol. 2002, 184, 344–349. [Google Scholar] [CrossRef]
- Petkevičius, V.; Vaitekūnas, J.; Stankevičiūtė, J.; Gasparavičiūtė, R.; Meškys, R. Catabolism of 2-hydroxypyridine by Burkholderia sp. Strain MAK1: A 2-hydroxypyridine 5-monooxygenase encoded by hpdABCDE catalyzes the first step of biodegradation. Appl. Environ. Microbiol. 2018, 84, e00387-18. [Google Scholar] [CrossRef]
- Steffan, R.J.; McClay, K.R. Preparation of Enantio-Specific Epoxides; Shaw Environmental & Infrastructure, Inc.: Washington, DC, USA, 2000. [Google Scholar]
- Tao, Y.; Fishman, A.; Bentley, W.E.; Wood, T.K. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. J. Bacteriol. 2004, 186, 4705–4713. [Google Scholar] [CrossRef]
- Carlin, D.A.; Bertolani, S.J.; Siegel, J.B. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase. Chem. Commun. 2015, 51, 2283–2285. [Google Scholar] [CrossRef]
- Mitchell, K.H.; Studts, J.M.; Fox, B.G. Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity. Biochemistry 2002, 41, 3176–3388. [Google Scholar] [CrossRef]
- McClay, K.; Boss, C.; Keresztes, I.; Steffan, R.J. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl. Environ. Microbiol. 2005, 71, 5476–5483. [Google Scholar] [CrossRef]
- Rui, L.; Reardon, K.F.; Wood, T.K. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol. 2005, 66, 422–429. [Google Scholar] [CrossRef]
- Stankevičiūtė, J.; Vaitekūnas, J.; Petkevičius, V.; Gasparavičiūtė, R.; Tauraitė, D.; Meškys, R. Oxyfunctionalization of pyridine derivatives using whole cells of Burkholderia sp. MAK1. Sci. Rep. 2016, 6, 39129. [Google Scholar] [CrossRef]
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
1-N → O | 1,4-N → O | 1-N → O | 1,4-N → O | 1-N → O | 3-N → O | 1-N → O | 1,4-N → O | 1-N → O | |
---|---|---|---|---|---|---|---|---|---|
PML_WT A113G | + + | Yes | + + | - | - | + + | + + | - | + |
+ + | Yes | + + | Yes | + + | - | + + | Yes | + + | |
A113V | + + | Yes | - | - | - | + + | + + | - | - |
A113F | + | - | - | - | - | + | + | - | - |
I106A | + + | - | + + | - | - | + + | + + | - | - |
I106E | + + | - | + + | - | - | + + | + + | - | - |
I106N | + + | Yes | + | - | - | + + | + + | - | - |
I106C | + + | Yes | + + | - | - | + + | + + | - | - |
G109M | + + | Yes | + + | - | - | + + | + + | - | - |
G109L | + + | - | + + | - | - | + + | + + | - | + + |
G109K | + + | - | + + | - | - | + + | + + | - | - |
G109T | + + | - | + + | - | - | + + | + + | - | - |
G109Q | + + | Yes | + + | - | - | + + | + + | - | - |
G109H | + + | - | + + | - | - | + + | + + | - | - |
F181A | - | - | - | - | - | - | - | - | - |
F200A | + + | - | + | - | - | + + | + + | - | - |
F209A | + + | - | + | - | - | + + | + + | - | - |
F181A/F200A | - | - | - | - | - | - | - | - | - |
F181A/F209A | - | - | - | - | - | - | - | - | - |
F200A/F209A | - | - | - | - | - | - | - | - | - |
Primer Name | Primer Sequence (5′ → 3′ Direction) | Use |
---|---|---|
PheP1_Sal_F | acgcatcgtcgacgacctctttgcc | Cloning |
PheP3_Nhe_R | gtacagggctagcatgaactggtgg | Cloning |
PheP3_I106A | aagatctttctgcaggccgccagccctggcgaatattc | Transforming I106 to A106 |
PheP3_I106A_R | gaatattcgccagggctggcggcctgcagaaagatctt | Transforming I106 to A106 |
PheP3_ I106_SM | aagatctttctgcaggccNNNagccctggcgaatattc | Saturation mutagenesis of I106 |
PheP3_ I106_SM_R | gaatattcgccagggctNNNggcctgcagaaagatctt | Saturation mutagenesis of I106 |
PheP3_G109_SM | gccatcagccctNNNgaatattccgcg | Saturation mutagenesis of G109 |
PheP3_G109_SM_R | cgcggaatattcNNNagggctgatggc | Saturation mutagenesis of G109 |
PheP3_ A113_SM | cctggcgaatattccNNNcacaagggctttg | Saturation mutagenesis of A113 |
PheP3_ A113_SM_R | caaagcccttgtgNNNggaatattcgccagg | Saturation mutagenesis of A113 |
PheP3_F181A_F | gtggcccgctcgttcgccgacgatgccatgag | Transforming F181 to A181 |
PheP3_F181A_R | ctcatggcatcgtcggcgaacgagcgggccac | Transforming F181 to A181 |
PheP3_F200A_F | ggcgatcggcttctccgccgaatatgtcctgacc | Transforming F200 to A200 |
PheP3_F200A_R | ggtcaggacatattcggcggagaagccgatcgcc | Transforming F200 to A200 |
PheP3_F209A_F | cctgaccaacctgctggctgtgcccttcatgtcc | Transforming F209 to A209 |
PheP3_F209A_R | ggacatgaagggcacagccagcaggttggtcagg | Transforming F209 to A209 |
Plasmid Or Strain | Relevant Characteristics | Source Or Reference |
---|---|---|
Plasmid | ||
p577A | pUC19/HindIII + 9 kb metagenomic DNA insert containing pmlABCDEF gene | [11] |
pET_pmlABCDEF | Recombinant pET-28b containing pmlABCDEF gene | [11] |
Strain | ||
E. coli DH5α | F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK–mK+), λ− | Thermo Fischer Scientific, Vilnius, Lithuania |
E. coli BL21 (DE3) | F– ompT gal dcm lon hsdSB(rB–mB–) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS) | Novagen, Darmstadt, Germany |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkevičius, V.; Vaitekūnas, J.; Vaitkus, D.; Čėnas, N.; Meškys, R. Tailoring a Soluble Diiron Monooxygenase for Synthesis of Aromatic N-oxides. Catalysts 2019, 9, 356. https://doi.org/10.3390/catal9040356
Petkevičius V, Vaitekūnas J, Vaitkus D, Čėnas N, Meškys R. Tailoring a Soluble Diiron Monooxygenase for Synthesis of Aromatic N-oxides. Catalysts. 2019; 9(4):356. https://doi.org/10.3390/catal9040356
Chicago/Turabian StylePetkevičius, Vytautas, Justas Vaitekūnas, Dovydas Vaitkus, Narimantas Čėnas, and Rolandas Meškys. 2019. "Tailoring a Soluble Diiron Monooxygenase for Synthesis of Aromatic N-oxides" Catalysts 9, no. 4: 356. https://doi.org/10.3390/catal9040356
APA StylePetkevičius, V., Vaitekūnas, J., Vaitkus, D., Čėnas, N., & Meškys, R. (2019). Tailoring a Soluble Diiron Monooxygenase for Synthesis of Aromatic N-oxides. Catalysts, 9(4), 356. https://doi.org/10.3390/catal9040356