Analysis of Mass Transport through Anisotropic, Catalytic/Bio-Catalytic Membrane Reactors
Abstract
:1. Introduction
2. Diffusive (Plus Convective) Mass Transport through a Flat-Sheet Membrane, without Chemical/Biochemical Reactions
2.1. Concentration Distribution with Varying Diffusion Coefficient
2.2. Mass Transport with Varying Diffusion and Solubility Coefficients
2.3. Diffusive Plus Convective Mass Transport with a Variable Peclet Number
- Variation of the diffusion coefficient; and/or by
- Variation of the convective velocity.
3. Diffusive (Plus Convective) Mass Transport with Chemical/Biochemical Reactions through a Flat-Sheet Membrane, Applying the Two Operation Modes
3.1. Mass Transport without a Sweep Phase
3.2. Mass Transport with a Sweep Phase
3.3. Mass Transport with Variable Mass Transport Parameters
4. Results and Discussion
4.1. Mass Transport without Chemical/Biochemical Reaction
4.1.1. Mass Transport with a Variable Diffusion Coefficient in Diffusive Mass Transport
4.1.2. The Effect of a Variable Pe-Number on the Concentration Distribution
4.2. Mass Transport with a Chemical Reaction in the Case of Variable Mass Transport Parameters in the Presence of Convective Flow
4.2.1. Mass Transport with Constant Transport Coefficients Accompanied by a First-Order Reaction
4.2.2. Mass Transport with Constant Transport Coefficients Accompanied by a Zero-Order Reaction
4.3. Mass Transport with Variable Mass Transport Parameters
4.4. Complementary Remarks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Notation
C | fluid solute concentration, kg/m3, g/L |
D | diffusion coefficient, m2/s |
Do | diffusive mass transfer coefficient at the membrane enters, m/s |
H | solubility coefficient |
J° | solute inlet transfer rate, kg/m2s |
J | inlet mass transfer rate with reaction, kg/m2s |
J1 | inlet mass transfer rate with first-order reaction, kg/m2s |
J0 | inlet mass transfer rate with zero-order reaction, kg/m2s |
k | reaction rate constant, [k1: 1/s; k0: kg/m3s] |
ko | diffusive mass transfer coefficient for the membrane, m/s |
N | number of sublayers |
Pe | membrane Peclet number |
Q | reaction rate, kg/m2s |
y | space coordinate perpendicular to the membrane interface, m |
Y | membrane thickness, = y/δ |
vmax | maximum reaction rate, kg/m3s |
Greek | |
β° | physical mass transfer coefficient, m/s |
β | mass transfer coefficient with chemical reaction, m/s |
δ | thickness of the transport or membrane layer, m |
convective velocity, m/s | |
concentration in the membrane layer, kg/m3 | |
Inlet concentration, kg/m3 | |
Normalized concentration | |
reaction rate modulus | |
Subscript | |
0 | zero-order |
1 | first-order or feed fluid phase |
ov | overall |
δ | permeate side |
0 | zero-order |
1 | first-order or feed fluid phase |
ov | overall |
δ | permeate side |
Upper script | |
* | feed side or permeate side surface |
o | bulk phase |
Appendix A
Appendix A.1. Mass Transport without a Sweep Phase
Appendix A.1.1. First-Order Chemical/Biochemical Reaction
Appendix A.1.2. Zero-Order Reaction
Appendix A.2. Mass Transport with Sweep Phase
Appendix A.2.1. First-Order Biochemical Reaction
Appendix A.2.2. Zero-Order Biochemical Reaction
References
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; ISBN 0-19-853344-6. [Google Scholar]
- Cussler, E.L. Diffusion Mass Transfer in Fluid Systems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-521-87121. [Google Scholar]
- Danckwerts, P.V. Gas-Liquid Reaction; McGraw Hill: New York, NY, USA, 1970; ISBN 963-10-1251-4. [Google Scholar]
- Westerterp, K.R.; van Swaaij, W.P.M.; Beenackers, A.A.C.M. Chemical Reactor Design and Operation; Wiley and Sons: New York, NY, USA, 1984; ISBN 978-0-471-91730-4. [Google Scholar]
- Baker, R.W. Membrane Technology and Application, 2nd ed.; Wiley: Chichester, UK, 2004; pp. 15–84. ISBN 0-470-85445-6. [Google Scholar]
- Nagy, E. Basic Equation of Mass Transport through a Membrane Layer, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-12-813722-2. [Google Scholar]
- Heintz, A.; Stephan, W. A generalized solution-diffusion model of the pervaporation process through composite membranes. Part II. Concentration polarization, coupled diffusion and the influence of the porous layer. J. Membr. Sci. 1994, 89, 153–169. [Google Scholar] [CrossRef]
- Nagy, E. Nonlinear, coupled mass transfer through a dense membrane layer. Desalination 2004, 163, 345–354. [Google Scholar] [CrossRef]
- Izak, P.; Bartovská, L.; Press, K.; Sipek, M.; Uchytill, P. Description of binary liquid mixtures transport through non-porous membrane by modified Maxwell-Stefan equations. J. Membr. Sci. 2003, 214, 293–309. [Google Scholar] [CrossRef]
- Flory, P. Principles of Polymer Chemistry; Cornell University Press: New York, NY, USA, 1953; ISBN 978-1-4614-2212-9. [Google Scholar]
- Mulder, M. Basic Principles of Membrane Technologies, 2nd ed.; Kluwer Academic Publisher: Amsterdam, The Netherlands, 1996; ISBN 978-94-009-1766-8. [Google Scholar]
- Caro, J. Basic Aspect of Membrane Reactors; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Marcano, J.G.S.; Tsotsis, T.T. Catalytic Membranes and Membrane Reactions; Wiley VCH: Veinheim, Germany, 2002; ISBN 9783527302772. [Google Scholar]
- Seidel-Morgestern, A. Membrane Reactors; Wiley VCH: Veinheim, Germany, 2010; ISBN 3-527-30979-9. [Google Scholar]
- Maria-Grazia, R.-R.; De Angelis, D.; Baschetti, M.G. Models for Facilitated Transport Membranes: A Review. Membranes 2019, 9, 26. [Google Scholar] [CrossRef]
- Cabral, J.M.S.; Best, D.; Boross, L.; Tramper, J. Applied Biocatalysis; CFRC Press: New York, NY, USA, 1994; ISBN 9789058230232. [Google Scholar]
- Drioli, E.; Giorno, L. Biocatalytic Membrane Reactors; Taylor & Francis: London, UK, 1999; ISBN 9780748406548. [Google Scholar]
- Bitter, J.G.A. Transport Mechanisms in Membrane Separation Processes; Shell Laboratory: Amsterdam, The Netherlands, 1991; ISBN 978-1-4615-3682-6. [Google Scholar]
- Schaetzel, P.; Bendjama, Z.; Vaulair, C.; Ngyen, Q.T. Ideal and non-ideal diffusion through polymer: Application to pervaporation. J. Membr. Sci. 2001, 191, 91–102. [Google Scholar] [CrossRef]
- Mason, L.A.; Malinaucas, A.P. Gas Transport in Porous Media: The Dusty Gas Model; Elsevier: Amsterdam, The Netherlands, 1983; ISBN 0444421904. [Google Scholar]
- Matsuyama, H.; Yuasa, M.; Kitamura, Y.; Teramoto, M.; Lloyd, D.R. Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation. J. Membr. Sci. 2000, 179, 91–100. [Google Scholar] [CrossRef]
- Liang, H.Q.; Wu, Q.Y.; Wan, L.S.; Huang, X.J.; Xu, Z.K. Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent. J. Membr. Sci. 2013, 446, 482–491. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Li, W.; Liu, Y.; Wang, J.; Wang, S. High-Performance Multilayer Composite Membranes with Mussel-Inspired Polydopamine as a Versatile Molecular Bridge for CO2 Separation. Appl. Mater. Interfaces 2015, 7, 15481–15493. [Google Scholar] [CrossRef]
- Park, Y.H.; Song, M.A.; Park, C.H.; Nam, S.Y. Fabrication of Multi-Layer Composite Membranes with Excellent CO2 Permeability and Selectivity for Gas Separation Process. J. Nanosci. Nanotechnol. 2017, 17, 7735–7742. [Google Scholar] [CrossRef]
- Calabro, V.; Curcio, S.; Iorio, G. A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalyst. J. Membr. Sci. 2002, 206, 217–241. [Google Scholar] [CrossRef]
- Godongawa, B. Effectiveness factor and conversion in a biocatalytic membrane reactor. PLoS ONE 2016, 11, e0153000. [Google Scholar] [CrossRef]
- Nagy, E.; Dudas, J.; Mazzei, R.; Giorno, L. Description of the diffusive-convective mass transport in a hollow-fiber biphasic biocatalytic membrane reactor. J. Membr. Sci. 2015, 482, 144–157. [Google Scholar] [CrossRef]
- Nagy, E.; Borbély, G. Mass transport through anisotropic membrane layer. Desalination 2009, 240, 54–63. [Google Scholar] [CrossRef]
- Nagy, E.; Kulcsár, E. Mass transport through biocatalytic membrane reactor. Desalination 2009, 245, 422–436. [Google Scholar] [CrossRef]
- Nagy, E. Mass transfer through a convection flow catalytic membrane layer with dispersed nanometer sized catalyst. Ind. Eng. Chem. Res. 2010, 49, 1057–1062. [Google Scholar] [CrossRef]
- Nagy, E. Basic equations of mass transfer through biocatalytic membrane layer, Asia-Pac. J. Chem. Eng. 2009, 4, 270–278. [Google Scholar] [CrossRef]
- Nagy, E.; Lepossa, A.; Prettl, Z. Mass transfer through a biocatalytic membrane reactor. Ind. Eng. Chem. Res. 2012, 51, 1635–1646. [Google Scholar] [CrossRef]
- Kulishova, L.M.; Zharkov, D.O. Solid/Gas Biocatalysis. Biochemistry (Moscow) 2017, 82, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Hus, M.; Kopac, D.; Stefancic, N.S.; Jurkovic, D.L.; Dasireddy, D.D.B.C.; Likozar, B. Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments. Catal. Sci. Technol. 2017, 7, 5900–5913. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Jiang, X.; Liu, Z.; Guo, X.; Song, C. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 2018, 8, 7651–7669. [Google Scholar] [CrossRef]
- Pavlisic, A.; Ceglar, R.; Pohar, A.; Likozar, B. Comparison of computational dynamics (CFD) and pressure drop correlations in laminar flow regime for packed bed reactors and columns. Power Technol. 2018, 328, 130–139. [Google Scholar] [CrossRef]
- Suhadolnik, L.; Pohar, A.; Novak, U.; Likozar, B.; Mihelic, A.; Ceh, M. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: Batch, microreactor and scaled-up operation. J. Ind. Eng. Chem. 2019, 72, 172–188. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, E.; Vitai, M. Analysis of Mass Transport through Anisotropic, Catalytic/Bio-Catalytic Membrane Reactors. Catalysts 2019, 9, 358. https://doi.org/10.3390/catal9040358
Nagy E, Vitai M. Analysis of Mass Transport through Anisotropic, Catalytic/Bio-Catalytic Membrane Reactors. Catalysts. 2019; 9(4):358. https://doi.org/10.3390/catal9040358
Chicago/Turabian StyleNagy, Endre, and Márta Vitai. 2019. "Analysis of Mass Transport through Anisotropic, Catalytic/Bio-Catalytic Membrane Reactors" Catalysts 9, no. 4: 358. https://doi.org/10.3390/catal9040358
APA StyleNagy, E., & Vitai, M. (2019). Analysis of Mass Transport through Anisotropic, Catalytic/Bio-Catalytic Membrane Reactors. Catalysts, 9(4), 358. https://doi.org/10.3390/catal9040358