Solar-Driven Removal of 1,4-Dioxane Using WO3/nγ-Al2O3 Nano-catalyst in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalyst
2.2. Solar-Driven Removal of 1,4-D
2.3. Oxidation State and Formation of Short-Chain Acids
2.4. Reusability of the Catalyst
2.5. Postulation of Photocatalytic Mechanisms
3. Materials and Methods
3.1. Materials
3.2. Characterization of the Catalyst
3.3. Solar-Driven Photocatalytic Processes
3.4. Analytical Methods
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Patton, S.; Romano, M.; Naddeo, V.; Ishida, K.P.; Liu, H. Photolysis of mono- and dichloramines in UV/Hydrogen peroxide: Effects on 1,4-Dioxane removal and relevance in water reuse. Environ. Sci. Technol. 2018, 52, 11720–11727. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wu, Q.Y.; Lv, X.T.; Ye, B.; Zhan, X.M.; Lu, Y.; Hu, H.Y. Electron donating capacity reduction of dissolved organic matter by solar irradiation reduces the cytotoxicity formation potential during wastewater chlorination. Water Res. 2018, 145, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Che, H.; Smith, K.; Lei, M.; Li, R. Performance evaluation for three pollution detection methods using data from a real contamination accident. J. Environ. Manage. 2015, 161, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, Y.; Liu, S.; Li, J.; Guo, G.; Smith, K. Real-time detection of potable-reclaimed water pipe cross-connection events by conventional water quality sensors using machine learning methods. J. Environ. Manag. 2019, 238, 201–209. [Google Scholar] [CrossRef]
- Li, W.; Patton, S.; Gleason, J.M.; Mezyk, S.P.; Ishida, K.P.; Liu, H. UV Photolysis of chloramine and persulfate for 1,4-Dioxane removal in reverse-osmosis permeate for potable water reuse. Environ. Sci. Technol. 2018, 52, 6417–6425. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Liu, Y.; Zhang, C.; Wan, J.; Hu, L.; Zhou, C.; Xiong, W. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system. Water Res. 2018, 138, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Y.; Hu, H.Y.; Wu, Y.H.; Zhuang, L.L.; Xu, X.Q.; Wang, X.X.; Dao, G.H. Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew. Sust. Energ. Rev. 2016, 60, 1602–1614. [Google Scholar] [CrossRef]
- Cheng, M.; Lai, C.; Liu, Y.; Zeng, G.; Huang, D.; Zhang, C.; Qin, L.; Hu, L.; Zhou, C.; Xiong, W. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coordin. Chem. Rev. 2018, 368, 80–92. [Google Scholar]
- Chen, A.; Shang, C.; Shao, J.; Lin, Y.; Luo, S.; Zhang, J.; Huang, H.; Lei, M.; Zeng, Q. Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III): A novel adsorbent for simultaneous removal of tetracycline and cadmium. Carbohyd. Polym. 2017, 155, 19–27. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Poly. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef] [Green Version]
- Tahara, M.; Obama, T.; Ikarashi, Y. Development of analytical method for determination of 1,4-dioxane in cleansing products. Int. J. Cosmetic Sci. 2013, 35, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.-y. Determination of dioxane in toiletries by headspace gas chromatography-mass spectrometry. Deter. Cosm. 2013, 36, 20–22. [Google Scholar]
- Guo, W.Q.; Brodowsky, H. Determination of the trace 1,4-dioxane. Microchem. J. 2000, 64, 173–179. [Google Scholar] [CrossRef]
- Nannelli, A.; De Rubertis, A.; Longo, V.; Gervasi, P. Effects of dioxane on cytochrome P450 enzymes in liver, kidney, lung and nasal mucosa of rat. Arch. Toxicol. 2005, 79, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Stickney, J.A.; Sager, S.L.; Clarkson, J.R.; Smith, L.A.; Locey, B.J.; Bock, M.J.; Hartung, R.; Olp, S.F. An updated evaluation of the carcinogenic potential of 1,4-dioxane. Regul. Toxicol. Pharm. 2003, 38, 183–195. [Google Scholar] [CrossRef]
- Xu, X.; Pliego, G.; Garcia-Costa, A.L.; Zazo, J.A.; Liu, S.; Casas, J.A.; Rodriguez, J.J. Cyclohexanoic acid breakdown by two-step persulfate and heterogeneous Fenton-like oxidation. Appl. Catal. B-Environ. 2018, 232, 429–435. [Google Scholar] [CrossRef]
- Xu, X.; Pliego, G.; Zazo, J.A.; Sun, S.; García-Muñoz, P.; He, L.; Casas, J.A.; Rodriguez, J.J. An overview on the application of advanced oxidation processes for the removal of naphthenic acids from water. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1337–1370. [Google Scholar] [CrossRef]
- Munoz, M.; Mora, F.J.; Pedro, Z.M.D.; Alvarez-Torrellas, S.; Casas, J.A.; Rodriguez, J.J. Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst. J. Hazard. Mater. 2017, 331, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation–a review. Appl. Catal. B-Environ. 2015, 176, 249–265. [Google Scholar] [CrossRef]
- Quintanilla, A.; Casas, J.; Rodriguez, J. Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Appl. Catal. B-Environ. 2010, 93, 339–345. [Google Scholar] [CrossRef]
- Quintanilla, A.; Fraile, A.; Casas, J.; Rodríguez, J. Phenol oxidation by a sequential CWPO–CWAO treatment with a Fe/AC catalyst. J. Hazard. Mater. 2007, 146, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Dionysiou, D.D.; Gonzalez, M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. Technol. 2006, 40, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Xu, X.; Pliego, G.; Zazo, J.A.; Casas, J.A.; Rodriguez, J.J. Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen. J. Hazard. Mater. 2016, 318, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Pliego, G.; Zazo, J.A.; Garcia-Muñoz, P.; Munoz, M.; Casas, J.A.; Rodriguez, J.J. Trends in the intensification of the Fenton process for wastewater treatment: An overview. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2611–2692. [Google Scholar] [CrossRef]
- García-Muñoz, P.; Pliego, G.; Zazo, J.; Barbero, B.; Bahamonde, A.; Casas, J. Modified ilmenite as catalyst for CWPO-Photoassisted process under LED Light. Chem. Eng. J. 2017, 318, 89–94. [Google Scholar]
- Wols, B.A.; Hofman-Caris, C.H.M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 2012, 46, 2815–2827. [Google Scholar] [CrossRef] [PubMed]
- Barndok, H.; Hermosilla, D.; Negro, C.; Blanco, A. Comparison and Predesign Cost Assessment of different advanced oxidation processes for the treatment of 1,4-Dioxane-containing wastewater from the chemical industry. ACS Sustain. Chem. Eng. 2018, 6, 5888–5894. [Google Scholar] [CrossRef]
- Barndok, H.; Merayo, N.; Blanco, L.; Hermosilla, D.; Blanco, A. Application of on-line FTIR methodology to study the mechanisms of heterogeneous advanced oxidation processes. Appl. Catal. B-Environ. 2016, 185, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Aviles, A.; Penas-Garzon, M.; Bedia, J.; Rodriguez, J.J.; Belver, C. C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen. Chem. Eng. J. 2019, 358, 1574–1582. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Rodriguez, J.J. Titania-clay heterostructures with solar photocatalytic applications. Appl. Catal. B-Environ. 2015, 176–177, 278–287. [Google Scholar] [CrossRef]
- Belver, C.; Han, C.; Rodriguez, J.J.; Dionysiou, D.D. Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catal. Today 2017, 280, 21–28. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere 2019, 214, 462–479. [Google Scholar] [CrossRef] [PubMed]
- Mazierski, P.; Mikolajczyk, A.; Bajorowicz, B.; Malankowska, A.; Zaleska-Medynska, A.; Nadolna, J. The role of lanthanides in TiO2-based photocatalysis: A review. Appl. Catal. B-Environ. 2018, 233, 301–317. [Google Scholar] [CrossRef]
- Hill, R.R.; Jeffs, G.E.; Roberts, D.R. Photocatalytic degradation of 1,4-Dioxane in aqueous solution. J. Photoch. Photobio. A 1997, 108, 55–58. [Google Scholar] [CrossRef]
- Barndok, H.; Blanco, L.; Hermosilla, D.; Blanco, A. Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-Dioxane. Chem. Eng. J. 2016, 284, 112–121. [Google Scholar] [CrossRef]
- Lee, K.-C.; Beak, H.-J.; Choo, K.-H. Membrane photoreactor treatment of 1,4-Dioxane-containing textile wastewater effluent: Performance, modeling, and fouling control. Water Res. 2015, 86, 58–65. [Google Scholar] [CrossRef]
- Tian, J.; Sang, Y.; Yu, G.; Jiang, H.; Mu, X.; Liu, H. A Bi2WO6-Based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv. Mater. 2013, 25, 5075–5080. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Ravelli, D.; Protti, S.; Fagnoni, M. Decatungstate anion for photocatalyzed "window ledge" reactions. Accounts Chem. Res. 2016, 49, 2232–2242. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Rashad, M.M. Novel Synthesis of Cobalt Nickel Tungstate Nanopowders and its photocatalytic application. J. Clust. Sci. 2015, 26, 743–757. [Google Scholar] [CrossRef]
- Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef] [PubMed]
- Visa, M.; Bogatu, C.; Duta, A. Tungsten oxide--fly ash oxide composites in adsorption and photocatalysis. J. Hazard. Mater. 2015, 289, 244–256. [Google Scholar] [CrossRef]
- Xu, H.; Yu, T.; Liu, J. Photo-degradation of Acid Yellow 11 in aqueous on nano-ZnO/Bentonite under ultraviolet and visible light irradiation. Mater. Lett. 2014, 117, 263–265. [Google Scholar] [CrossRef]
- Barrault, J.; Boulinguiez, M.; Forquy, C.; Maurel, R. Synthesis of methyl mercaptan from carbon oxides and H2S with tungsten—alumina catalysts. Appl. Catal. 1987, 33, 309–330. [Google Scholar] [CrossRef]
- Halada, G.; Clayton, C. Comparison of Mo–N and W–N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis. J. Vac. Sci. Technol. A 1993, 11, 2342–2347. [Google Scholar] [CrossRef]
- Kerkhof, F.P.J.M.; Moulijn, J.A.; Heeres, A. The XPS spectra of the metathesis catalyst tungsten oxide on silica gel. J. Electron. Spectrosc. 1978, 14, 453–466. [Google Scholar] [CrossRef]
- Carley, A.; Roberts, M. An X-ray photoelectron spectroscopic study of the interaction of oxygen and nitric oxide with aluminium. P. Roy. Soc. Lond. A 1978, 363, 403–424. [Google Scholar] [CrossRef]
- Ealet, B.; Elyakhloufi, M.H.; Gillet, E.; Ricci, M. Electronic and crystallographic structure of γ-alumina thin films, Thin Solid Films, 1994, 250, 92–100. Thin Solid Films 1994, 250, 92–100. [Google Scholar] [CrossRef]
- Vogel, F.; Harf, J.; Hug, A.; von Rohr, P.R. The mean oxidation number of carbon (MOC)—A useful concept for describing oxidation processes. Water Res. 2000, 34, 2689–2702. [Google Scholar] [CrossRef]
- Peng, Y.; Fu, D.; Liu, R.; Zhang, F.; Xue, X.; Xu, Q.; Liang, X. NaNO2/FeCl3 dioxygen recyclable activator: An efficient approach to active oxygen species for degradation of a broad range of organic dye pollutants in water. Appl. Catal. B-Environ. 2008, 79, 163–170. [Google Scholar] [CrossRef]
- Wang, C.; Ao, Y.; Wang, P.; Hou, J.; Qian, J. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres. Appl. Sur. Sci. 2010, 257, 227–231. [Google Scholar] [CrossRef]
- Mehrvar, M.; Anderson, W.A.; Moo-Young, M. Photocatalytic degradation of aqueous tetrahydrofuran, 1,4-dioxane, and their mixture with TiO2. Inter. J. Photoenerg. 2000, 2, 67–80. [Google Scholar] [CrossRef]
- Asghar, A.; Abdul Raman, A.A.; Wan Daud, W.M.A. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef]
Compound | Wt (%) * | Error |
---|---|---|
Al2O3 | 94.15 | 0.12 |
WO3 | 4.73 | 0.11 |
Others | 1.12 | – |
Catalysts Dosage (mg L−1) | kTOC (mg L−1 s−1) | R2 |
---|---|---|
700 | 0.1059 | 0.99 |
500 | 0.0990 | 0.99 |
300 | 0.0971 | 0.98 |
100 | 0.0927 | 0.97 |
300 mg L−1catalyst only | 0.0227 | 0.99 |
Solar light only | 0.0013 | 0.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Liu, S.; Cui, Y.; Wang, X.; Smith, K.; Wang, Y. Solar-Driven Removal of 1,4-Dioxane Using WO3/nγ-Al2O3 Nano-catalyst in Water. Catalysts 2019, 9, 389. https://doi.org/10.3390/catal9040389
Xu X, Liu S, Cui Y, Wang X, Smith K, Wang Y. Solar-Driven Removal of 1,4-Dioxane Using WO3/nγ-Al2O3 Nano-catalyst in Water. Catalysts. 2019; 9(4):389. https://doi.org/10.3390/catal9040389
Chicago/Turabian StyleXu, Xiyan, Shuming Liu, Yong Cui, Xiaoting Wang, Kate Smith, and Yujue Wang. 2019. "Solar-Driven Removal of 1,4-Dioxane Using WO3/nγ-Al2O3 Nano-catalyst in Water" Catalysts 9, no. 4: 389. https://doi.org/10.3390/catal9040389
APA StyleXu, X., Liu, S., Cui, Y., Wang, X., Smith, K., & Wang, Y. (2019). Solar-Driven Removal of 1,4-Dioxane Using WO3/nγ-Al2O3 Nano-catalyst in Water. Catalysts, 9(4), 389. https://doi.org/10.3390/catal9040389