Study on Nanofibrous Catalysts Prepared by Electrospinning for Methane Partial Oxidation
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Preparation
2.2. Catalyst Characterisation
2.3. Catalytic Reaction
3. Results and Discussions
3.1. Effect of Solvent
3.1.1. XRD
3.1.2. SEM
3.1.3. TPR and CO-Chemisorption
3.1.4. Catalytic Performance
3.2. Effect of Metal Ion Content
3.2.1. XRD
3.2.2. TPR and CO-Chemisorption
3.2.3. SEM
3.2.4. Catalytic Performance
3.3. Effect of Calcination Temperature
3.4. Effect of Reaction Temperature and Gas Flow Rate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Cheng, Y.; Shao, X.; Veder, J.P.; Hu, X.; Ma, Y.; Wang, J.; Xie, K.; Dong, D.; Jiang, S.P.; et al. Nanocatalysts anchored on nanofiber support for high syngas production via methane partial oxidation. Appl. Catal. A 2018, 565, 119–126. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, W.; Formo, E.; Sun, Y.; Xia, Y. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 2011, 22, 326–338. [Google Scholar] [CrossRef]
- Lasprilla-Botero, J.; Álvarez-Láinez, M.; Lagaron, J.M. The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Materi. Today Commun. 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 2008, 1, 205–221. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, X.; Dong, D.; Parkinson, G.; Li, C.Z. Effects of calcination temperature of electrospun fibrous Ni/Al2O3 catalysts on the dry reforming of methane. Fuel Process. Technol. 2017, 155, 246–251. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Guo, Y.; Wang, B.; Rukundo, P.; Wen, S.; Wang, Z.-J. Synthesis of a highly dispersed Ni/Al2O3 catalyst with enhanced catalytic performance for CO2 reforming of methane by an electrospinning method. Int. J. Hydrog. Energy 2016, 41, 17361–17369. [Google Scholar] [CrossRef]
- Goetsch, D.A.; Schmidt, L.D. Microsecond catalytic partial oxidation of alkanes. Science 1996, 271, 1560–1562. [Google Scholar] [CrossRef]
- Hickman, D.A.; Schmidt, L.D. Production of syngas by direct catalytic-oxidation of methane. Science 1993, 259, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, E.; Heddrich, M.P.; Jahn, M.; Michaelis, A. Fiber based structured materials for catalytic applications. Appl. Catal. A 2014, 476, 78–90. [Google Scholar] [CrossRef]
- Sahli, N.; Petit, C.; Roger, A.C.; Kiennemann, A.; Libs, S.; Bettahar, M. Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal. Today 2006, 113, 187–193. [Google Scholar] [CrossRef]
- Jiménez-González, C.; Boukha, Z.; De Rivas, B.; Delgado, J.J.; Cauqui, M.Á.; González-Velasco, J.R.; Gutiérrez-Ortiz, J.I.; López-Fonseca, R. Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Appl. Catal. A 2013, 466, 9–20. [Google Scholar] [CrossRef]
- Li, C.; Chen, Y.W. Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: Effects of the preparation method. Thermochim. Acta 1995, 256, 457–465. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.; Zhao, Z.; Hu, X.; Ye, Z.; Yao, J.; Buckley, C.E.; Dong, D. Comparison of fibrous catalysts and monolithic catalysts for catalytic methane partial oxidation. Renew. Energy 2019, 138, 1010–1017. [Google Scholar] [CrossRef]
Solvent (8 g/2 g) | Ni(NO3)2·6H2O (g) | Al(NO3)3·9H2O (g) |
---|---|---|
DMF/C2H5OH | 24.5 | 18.5 |
H2O/C2H5OH | 35.5 | 19.5 |
Sample | Peak Area | Reducibility (%) | Ni dispersion (%) |
---|---|---|---|
DMF/C2H5OH | 48.3 | 76.6 | 0.05 |
H2O/C2H5OH | 51.6 | 83.4 | 0.27 |
Sample | Peak Area | Reducibility (%) | Ni Dispersion (%) |
---|---|---|---|
C10 | 50.8 | 81.7 | 0.17 |
C20 | 51.6 | 83.4 | 0.27 |
C30 | 52.7 | 85.7 | 0.60 |
C40 | 57.4 | 95.4 | 0.39 |
Temperature (°C) | Peak Area | Reducibility (%) | Ni Dispersion (%) |
---|---|---|---|
700 | 50.8 | 81.7 | 0.63 |
800 | 52.7 | 85.7 | 0.60 |
900 | 55.5 | 91.5 | 0.38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Ma, Y.; Liu, M.; Chen, Y.; Hu, X.; Ye, Z.; Dong, D. Study on Nanofibrous Catalysts Prepared by Electrospinning for Methane Partial Oxidation. Catalysts 2019, 9, 479. https://doi.org/10.3390/catal9050479
Ma Y, Ma Y, Liu M, Chen Y, Hu X, Ye Z, Dong D. Study on Nanofibrous Catalysts Prepared by Electrospinning for Methane Partial Oxidation. Catalysts. 2019; 9(5):479. https://doi.org/10.3390/catal9050479
Chicago/Turabian StyleMa, Yuyao, Yuxia Ma, Min Liu, Yang Chen, Xun Hu, Zhengmao Ye, and Dehua Dong. 2019. "Study on Nanofibrous Catalysts Prepared by Electrospinning for Methane Partial Oxidation" Catalysts 9, no. 5: 479. https://doi.org/10.3390/catal9050479
APA StyleMa, Y., Ma, Y., Liu, M., Chen, Y., Hu, X., Ye, Z., & Dong, D. (2019). Study on Nanofibrous Catalysts Prepared by Electrospinning for Methane Partial Oxidation. Catalysts, 9(5), 479. https://doi.org/10.3390/catal9050479