Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Benchmark
2.2. Separate Encapsulation
2.3. Co-Encapsulation
3. Materials and Methods
3.1. General
3.2. Encapsulation Procedures
3.2.1. Preparation of Octyl-Grafted Alginate Amide Beads containing Catalyst/s
3.2.2. Preparation of Chitosan-Coated Calcium Alginate Beads containing Catalyst/s
3.2.3. Preparation of Multicompartment Beads made of Chitosan and Alginate Amide containing Pig Liver Esterase and Grubbs’ Catalyst
3.3. Reaction Procedures
3.3.1. Enzymatic Ester Hydrolysis Reaction Procedure
3.3.2. Tandem Chemoenzymatic Reaction Sequence Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Anastas, P.T. Beyond reductionist thinking in chemistry for sustainability. Trends Chem. 2019, 1, 145–148. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Zimmerman, J.B.; de Winter, T.M.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.W.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961. [Google Scholar] [CrossRef]
- Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev. 2018, 118, 679–746. [Google Scholar] [CrossRef] [PubMed]
- Shende, V.S.; Saptal, V.B.; Bhanage, B.M. Recent advances utilized in the recycling of homogeneous catalysis. Chem. Rec. 2019. [Google Scholar] [CrossRef]
- Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev. 2012, 41, 1437–1451. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; Woodley, J.M. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef] [PubMed]
- Drauz, K.; Gröger, H.; May, O. Enzyme Catalysis in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; ISBN 9783527639861. [Google Scholar]
- Gandomkar, S.; Żądło-Dobrowolska, A.; Kroutil, W. Extending designed linear biocatalytic cascades for organic synthesis. ChemCatChem 2018, 11, 225–243. [Google Scholar] [CrossRef]
- Rudroff, F.; Mihovilovic, M.D.; Gröger, H.; Snajdrova, R.; Iding, H.; Bornscheuer, U.T. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 2018, 1, 12–22. [Google Scholar] [CrossRef]
- Schmidt, S.; Castiglione, K.; Kourist, R. Overcoming the incompatibility challenge in chemoenzymatic and multi-catalytic cascade reactions. Chem. Eur. J. 2018, 24, 1755–1768. [Google Scholar] [CrossRef] [PubMed]
- Gröger, H.; Hummel, W. Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr. Opin. Chem. Biol. 2014, 19, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, H. Tandem reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. Catalysts 2016, 6, 194. [Google Scholar] [CrossRef]
- Denard, C.A.; Hartwig, J.F.; Zhao, H. Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal. 2013, 3, 2856–2864. [Google Scholar] [CrossRef]
- Ríos-Lombardía, N.; García-Álvarez, J.; González-Sabín, J. One-pot combination of metal- and bio-catalysis in water for the synthesis of chiral molecules. Catalysts 2018, 8, 75. [Google Scholar] [CrossRef]
- Koszelewski, D.; Borys, F.; Brodzka, A.; Ostaszewski, R. Synthesis of enantiomerically pure 5,6-dihydropyran-2-ones via chemoenzymatic sequential DKR-RCM reaction. Eur. J. Org. Chem. 2019, 2019, 1653–1658. [Google Scholar] [CrossRef]
- Makkee, M.; Kieboom, A.P.G.; van Bekkum, H.; Roels, J.A. Combined action of enzyme and metal catalyst, applied to the preparation of D-mannitol. J. Chem. Soc. Chem. Commun. 1980, 930. [Google Scholar] [CrossRef]
- Gomez Baraibar, A.; Reichert, D.; Mugge, C.; Seger, S.; Gröger, H.; Kourist, R. A one-pot cascade reaction combining an encapsulated decarboxylase with a metathesis catalyst for the synthesis of bio-based antioxidants. Angew. Chem. Int. Ed. 2016, 55, 14823–14827. [Google Scholar] [CrossRef] [PubMed]
- Denard, C.A.; Bartlett, M.J.; Wang, Y.; Lu, L.; Hartwig, J.F.; Zhao, H. Development of a one-pot tandem reaction combining ruthenium-catalyzed alkene metathesis and enantioselective enzymatic oxidation to produce aryl epoxides. ACS Catal. 2015, 5, 3817–3822. [Google Scholar] [CrossRef]
- Heidlindemann, M.; Rulli, G.; Berkessel, A.; Hummel, W.; Gröger, H. Combination of asymmetric organo- and biocatalytic reactions in organic media using immobilized catalysts in different compartments. ACS Catal. 2014, 4, 1099–1103. [Google Scholar] [CrossRef]
- Suljić, S.; Pietruszka, J.; Worgull, D. Asymmetric bio- and organocatalytic cascade reaction - laccase and secondary amine-catalyzed α-arylation of aldehydes. Adv. Synth. Catal. 2015, 357, 1822–1830. [Google Scholar] [CrossRef]
- Simon, R.C.; Busto, E.; Schrittwieser, J.H.; Sattler, J.H.; Pietruszka, J.; Faber, K.; Kroutil, W. Stereoselective synthesis of γ-hydroxynorvaline through combination of organo- and biocatalysis. Chem. Commun. 2014, 50, 15669–15672. [Google Scholar] [CrossRef]
- Paris, J.; Ríos-Lombardía, N.; Morís, F.; Gröger, H.; González-Sabín, J. Novel insights into the combination of metal- and biocatalysis: Cascade one-pot synthesis of enantiomerically pure biaryl alcohols in deep eutectic solvents. ChemCatChem 2018, 10, 4417–4423. [Google Scholar] [CrossRef]
- Bäckvall, J.-E.; Gustafson, K.; Görbe, T.; de Gonzalo, G.; Yang, N.; Schreiber, C.; Shchukarev, A.; Tai, C.-W.; Persson, I.; Zou, X. Chemoenzymatic dynamic kinetic resolution of primary benzylic amines using Pd(0)-CalB CLEA as a biohybrid catalyst. Chemistry 2019. [Google Scholar] [CrossRef] [PubMed]
- Gimbernat, A.; Guehl, M.; Lopes Ferreira, N.; Heuson, E.; Dhulster, P.; Capron, M.; Dumeignil, F.; Delcroix, D.; Girardon, J.; Froidevaux, R. From a sequential chemo-enzymatic approach to a continuous process for HMF production from glucose. Catalysts 2018, 8, 335. [Google Scholar] [CrossRef]
- Ríos-Lombardía, N.; Vidal, C.; Liardo, E.; Morís, F.; García-Álvarez, J.; González-Sabín, J. From a sequential to a concurrent reaction in aqueous medium: Ruthenium-catalyzed allylic alcohol isomerization and asymmetric bioreduction. Angew. Chem. Int. Ed. 2016, 55, 8691–8695. [Google Scholar] [CrossRef] [PubMed]
- Scalacci, N.; Black, G.W.; Mattedi, G.; Brown, N.L.; Turner, N.J.; Castagnolo, D. Unveiling the biocatalytic aromatizing activity of monoamine oxidases MAO-N and 6-HDNO: Development of chemoenzymatic cascades for the synthesis of pyrroles. ACS Catal. 2017, 7, 1295–1300. [Google Scholar] [CrossRef]
- Simons, C.; Hanefeld, U.; Arends, I.W.C.E.; Maschmeyer, T.; Sheldon, R.A. Towards catalytic cascade reactions: Asymmetric synthesis using combined chemo-enzymatic catalysts. Top. Catal. 2006, 40, 35–44. [Google Scholar] [CrossRef]
- Sperl, J.M.; Carsten, J.M.; Guterl, J.-K.; Lommes, P.; Sieber, V. Reaction design for the compartmented combination of heterogeneous and enzyme catalysis. ACS Catal. 2016, 6, 6329–6334. [Google Scholar] [CrossRef]
- Edwards, E.; Roychoudhury, R.; Schwarz, B.; Jordan, P.; Lisher, J.; Uchida, M.; Douglas, T. Co-localization of catalysts within a protein cage leads to efficient photochemical NADH and/or hydrogen production. J. Mater. Chem. B 2016, 4, 5375–5384. [Google Scholar] [CrossRef]
- Patterson, D.; Edwards, E.; Douglas, T. Hybrid nanoreactors: Coupling enzymes and small-molecule catalysts within virus-like particles. Isr. J. Chem. 2015, 55, 96–101. [Google Scholar] [CrossRef]
- Rulli, G.; Heidlindemann, M.; Berkessel, A.; Hummel, W.; Gröger, H. Towards catalyst compartimentation in combined chemo- and biocatalytic processes: Immobilization of alcohol dehydrogenases for the diastereoselective reduction of a β-hydroxy ketone obtained from an organocatalytic aldol reaction. J. Biotechnol. 2013, 168, 271–276. [Google Scholar] [CrossRef]
- Tosa, T.; Mori, T.; Fuse, N.; Chibata, I. Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 1966, 31, 214–224. [Google Scholar]
- Cacicedo, M.L.; Manzo, R.M.; Municoy, S.; Bonazza, H.L.; Islan, G.A.; Desimone, M.; Bellino, M.; Mammarella, E.J.; Castro, G.R. Immobilized enzymes and their applications. In Advances in Enzyme Technology, 1st ed.; Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 169–200. ISBN 9780444641144. [Google Scholar]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Kierstan, M.; Bucke, C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng. 1977, 19, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Von Langermann, J.; Wapenhensch, S. hydroxynitrile lyase-catalyzed synthesis of enantiopure cyanohydrins in Biocatalytic Active Static Emulsions (BASE) with suppression of the non-enzymatic side reaction. Adv. Synth. Catal. 2014, 356, 2989–2997. [Google Scholar] [CrossRef]
- Haque, R.U.; Paradisi, F.; Allers, T. Haloferax volcanii as immobilised whole cell biocatalyst: New applications for halophilic systems. Appl. Microbiol. Biot. 2019, 103, 3807–3817. [Google Scholar] [CrossRef] [PubMed]
- Planchestainer, M.; Roura Padrosa, D.; Contente, M.L.; Paradisi, F. Genetically fused T4L acts as a shield in covalent enzyme immobilisation enhancing the rescued activity. Catalysts 2018, 8, 40. [Google Scholar] [CrossRef]
- De Andrades, D.; Graebin, N.G.; Kadowaki, M.K.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; Rodrigues, R.C. Immobilization and stabilization of different β-glucosidases using the glutaraldehyde chemistry: Optimal protocol depends on the enzyme. Int. J. Biol. Macromol. 2019, 129, 672–678. [Google Scholar] [CrossRef]
- Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2010, 26, 2885–2893. [Google Scholar] [CrossRef]
- Primo, A.; Liebel, M.; Quignard, F. Palladium coordination biopolymer: A versatile access to highly porous dispersed catalyst for suzuki reaction. Chem. Mater. 2009, 21, 621–627. [Google Scholar] [CrossRef]
- Harrad, M.A.; Boualy, B.; El Firdoussi, L.; Mehdi, A.; Santi, C.; Giovagnoli, S.; Nocchetti, M.; Ait Ali, M. Colloidal nickel(0)-carboxymethyl cellulose particles: A biopolymer-inorganic catalyst for hydrogenation of nitro-aromatics and carbonyl compounds. Catal. Commun. 2013, 32, 92–100. [Google Scholar] [CrossRef]
- Veisi, H. Efficient cyanation of aryl halides with K4[Fe(CN)6] catalyzed by encapsulated palladium nanoparticles in biguanidine–chitosan matrix as core–shell recyclable heterogeneous nanocatalyst. Polyhedron 2019, 159, 212–216. [Google Scholar] [CrossRef]
- Anku, W.W.; Oppong, S.O.-B.; Shukla, S.K.; Agorku, E.S.; Govender, P.P. Chitosan–sodium alginate encapsulated Co-doped ZrO2–MWCNTs nanocomposites for photocatalytic decolorization of organic dyes. Res. Chem. Intermed. 2016, 42, 7231–7245. [Google Scholar] [CrossRef]
- Pauly, J.; Gröger, H.; Patel, A.V. Catalysts encapsulated in biopolymer hydrogels for chemoenzymatic one-pot processes in aqueous media. ChemCatChem 2019, 11, 1504–1510. [Google Scholar] [CrossRef]
- Tenbrink, K.; Seßler, M.; Schatz, J.; Gröger, H. Combination of olefin metathesis and enzymatic ester hydrolysis in aqueous media in a one-pot synthesis. Adv. Synth. Catal. 2011, 353, 2363–2367. [Google Scholar] [CrossRef]
- Pauly, J.; Gröger, H.; Patel, A.V. Metathesis in water conducted by tailor-made encapsulated Grubbs’ catalyst. Green Chem. 2018, 20, 5179–5187. [Google Scholar] [CrossRef]
- Schneider, M.; Engel, N.; Boensmann, H. Enzymatic syntheses of chiral building blocks from racemates: Preparation of(1R,3R)-chrysanthemic, -permethrinic and -caronic acids from racemic, diastereomeric mixtures. Angew. Chem. Int. Ed. Engl. 1984, 23, 64–66. [Google Scholar] [CrossRef]
- Domínguez de María, P.; Kossmann, B.; Potgrave, N.; Buchholz, S.; Trauthwein, H.; May, O.; Gröger, H. Improved Process for the Enantioselective Hydrolysis of Prochiral Diethyl Malonates Catalyzed by Pig Liver Esterase. Synlett 2005, 1746–1748. [Google Scholar] [CrossRef]
- Junge, W.; Heymann, E. Characterization of the isoenzymes of pig-liver esterase 2. kinetic studies. 2. kinetic studies. Eur. J. Biochem. 1979, 95, 519–525. [Google Scholar] [CrossRef]
- Öhrner, N.; Mattson, A.; Norin, T.; Hult, K. Enantiotopic selectivity of-pig liver esterase isoenzymes. Biocatalysis 2009, 4, 81–88. [Google Scholar] [CrossRef]
- Tamm, C. Pig liver esterase catalyzed hydrolysis: Substrate specificity and stereoselectivity. Pure Appl. Chem. 1992, 64, 1187–1191. [Google Scholar] [CrossRef] [Green Version]
- Lam, L.K.P.; Brown, C.M.; de Jeso, B.; Lym, L.; Toone, E.J.; Jones, J.B. Enzymes in organic synthesis. 42. Investigation of the effects of the isozymal composition of pig liver esterase on its stereoselectivity in preparative-scale ester hydrolysis of asymmetric synthetic value. J. Am. Chem. Soc. 1988, 110, 4409–4411. [Google Scholar] [CrossRef]
- Hummel, A.; Brüsehaber, E.; Böttcher, D.; Trauthwein, H.; Doderer, K.; Bornscheuer, U.T. Isoenzymes of pig-liver esterase reveal striking differences in enantioselectivities. Angew. Chem. Int. Ed. 2007, 46, 8492–8494. [Google Scholar] [CrossRef] [PubMed]
- Pauly, J.; Gröger, H.; Patel, A.V. Design, characterisation and application of alginate-based encapsulated pig liver esterase. J. Biotechnol. 2018, 280, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, J.; Hou, H.; Yan, H.; Feng, Y.; Mi, X.; Lin, Q. Preparation and characterization of hydrophobic alginate derivative nanocapsules entrapping l-Cyhalothrin. Asian J. Chem. 2013, 25, 9904–9908. [Google Scholar] [CrossRef]
Entry | Grubbs’ Catalyst/PLE | Selectivity (Main Product 3) [%] | Conversion [%] | Initial Overall Reaction Rate [µmol/min] |
---|---|---|---|---|
1 | Non-encapsulated/non-encapsulated | 18 | 57 | 0.137 |
2 | Alginate amide/non-encapsulated | 1 | 95 | 0.201 |
3 | Non-encapsulated/chitosan-coated alginate | 50 | 64 | 0.204 |
4 | Alginate amide/chitosan-coated alginate | <1 | 50 | 0.060 |
Entry | Bead Type | Selectivity (Main Product) [%] | Conversion [%] | Initial Overall Reaction Rate [µmol/min] |
---|---|---|---|---|
1 | Alginate 1 | 1 | 98 | 0.113 |
2 | Chitosan-coated alginate 1 | 7 | >99 | 0.103 |
3 | Alginate amide 1 | 1 | 94 | 0.094 |
4 | Shell of alginate amide (Grubbs’ catalyst) + core of chitosan (PLE) 2,3 | 32 | 92 | 0.026 |
5 | Shell of alginate amide (Grubbs’ catalyst) + core of chitosan (PLE) 2,3,4 | 35 | 55 | 0.017 |
6 | Shell of alginate amide (Grubbs’ catalyst) + core of chitosan (PLE) 2,5,6 | 44 | 74 | 0.021 |
7 | Shell of alginate amide (Grubbs’ catalyst) + core of chitosan (PLE) 2,6,7 | 56 | 62 | 0.026 |
8 | Shell of alginate amide (Grubbs’ catalyst) + core of chitosan (PLE) 2,6,8 | 75 | 84 | 0.034 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauly, J.; Gröger, H.; Patel, A.V. Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process. Catalysts 2019, 9, 547. https://doi.org/10.3390/catal9060547
Pauly J, Gröger H, Patel AV. Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process. Catalysts. 2019; 9(6):547. https://doi.org/10.3390/catal9060547
Chicago/Turabian StylePauly, Jan, Harald Gröger, and Anant V. Patel. 2019. "Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process" Catalysts 9, no. 6: 547. https://doi.org/10.3390/catal9060547
APA StylePauly, J., Gröger, H., & Patel, A. V. (2019). Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process. Catalysts, 9(6), 547. https://doi.org/10.3390/catal9060547