Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications
Abstract
:1. Introduction
2. Necessity
3. Mechanisms
3.1. Zr MOFs
3.2. Zn MOFs
3.3. Ti MOFs
4. Prospect of Photocatalytic CO2 Reduction
5. Conclusions
Funding
Conflicts of Interest
References
- Goeppert, A.; Czaun, M.; Jones, J.P.; Surya Prakash, G.K.; Olah, G.A. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048. [Google Scholar] [CrossRef] [PubMed]
- Lanzafame, P.; Centi, G.; Perathoner, S. Catalysis for biomass and CO2 use through solar energy: Opening new scenarios for a sustainable and low-carbon chemical production. Chem. Soc. Rev. 2014, 43, 7562–7580. [Google Scholar] [CrossRef] [PubMed]
- Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind. Eng. Chem. Res. 2006, 45, 2558–2568. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef] [PubMed]
- Logan, M.W.; Ayad, S.; Adamson, J.D.; Dilbeck, T.; Hanson, K.; Uribe-Romo, F.J. Systematic variation of the optical bandgap in titanium based isoreticular metal-organic frameworks for photocatalytic reduction of CO2 under blue light. J. Mater. Chem. A 2017, 5, 11854–11863. [Google Scholar] [CrossRef]
- White, J.L.; Baruch, M.F.; Pander, J.E.; Hu, Y.; Fortmeyer, I.C.; Park, J.E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.V.; Meier, A.; Darsell, J.; Nachimuthu, P.; Bowden, M.; Weil, K.S. Short-term oxidation studies on nicrofer-6025HT in air at elevated temperatures for advanced coal based power plants. Oxid. Met. 2013, 79, 383–404. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X. Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem. Int. Ed. 2015, 55, 2308–2320. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Inagaki, S.; Gong, J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 2016, 55, 14924–14950. [Google Scholar] [CrossRef]
- Pan, J.; Wu, X.; Wang, L.Z.; Liu, G.; Lu, M.; Cheng, H.M. Synthesis of aanatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun. 2011, 47, 8361–8363. [Google Scholar] [CrossRef]
- Roy, S.; Varghese, O.; Paulose, M.; Grimes, C.A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278. [Google Scholar] [CrossRef] [PubMed]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Ramírez, J.P. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energ. Environ. Sci. 2013, 6, 3112–3135. [Google Scholar] [CrossRef]
- Mozia, S. Generation of useful hydrocarbons and hydrogen during photocatalytic decomposition of acetic acid on CuO/rutile photocatalysts. Int. J. Photoenergy 2009, 2009, 469069. [Google Scholar] [CrossRef]
- Seki, T.; Kokubo, Y.; Ichikawa, S.; Suzuki, T.; Kayaki, Y.; Ikariya, T. Mesoporous silica-catalysed continuous chemical fixation of CO2 with N, N’-dimethylethylenediamine in supercritical CO2: The efficient synthesis of 1, 3-dimethyl-2-imidazolidinone. Chem. Commun. 2009, 3, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Electroanal. Chem. 2012, 43, 3165–3172. [Google Scholar] [CrossRef]
- Kazuhiko, M.; Keita, S.; Osamu, I. A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chem. Commun. 2013, 49, 10127–10129. [Google Scholar]
- Susumu, K.; Ryo, K.; Shin-Ichiro, N. Functional porous coordination polymers. Angew. Chem. 2004, 43, 2334–2375. [Google Scholar]
- Li, R.; Hu, J.H.; Deng, M.S.; Wang, H.L.; Wang, X.J.; Hu, Y.L.; Jiang, H.L.; Jiang, J.; Zhang, Q.; Xie, Y.; et al. Metal-organic frameworks: Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 2014, 26, 4783–4788. [Google Scholar] [CrossRef]
- Koen, B. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar]
- Yang, Q.Y.; Liu, D.H.; Zhong, C.L.; Li, J.R. Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem. Rev. 2013, 113, 8261–8323. [Google Scholar] [CrossRef]
- Yi, F.Y.; Li, J.P.; Wu, D.; Sun, Z.M. A series of multifunctional metal-organic frameworks showing excellent luminescent sensing, sensitization, and adsorbent abilities. Chemistry 2015, 21, 11475–11482. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.C.; Benjamin, J.D.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Gan, Z.; Fisenko, S.; Wang, D.; El-Kaderi, H.M.; Wang, W.N. Rapid formation of metal-organic frameworks (Mofs) based nanocomposites in microdroplets and their applications for CO2 photoreduction. ACS Appl. Mater. Interfaces 2017, 9, 9688–9698. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Low, Z.X.; Yao, J.F.; Liu, Q.; He, M.; Wang, H.T. Crystal transformation in zeolitic-imidazolate framework. Cryst. Growth Des. 2014, 14, 6589–6598. [Google Scholar] [CrossRef]
- Stassen, I.; Burtch, N.C.; Talin, A.A.; Falcaro, P.; Allendorf, M.D.; Ameloot, R. Correction: An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3853. [Google Scholar] [CrossRef]
- Lee, J.Y.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.B.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Chen, X.B.; Wang, X.Y.; Zhu, D.D.; Yan, S.J.; Lin, J. Three-component domino reaction synthesis of highly functionalized bcyclic pyrrole derivatives. Tetrahedron 2014, 45, 1047–1054. [Google Scholar] [CrossRef]
- Liu, S.W.; Feng, C.; Li, S.T.; Peng, X.X.; Xiong, Y. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Appl. Catal. B Environ. 2017, 211, 1–10. [Google Scholar] [CrossRef]
- Crake, A.; Christoforidis, K.C.; Kafizas, A.; Zafeiratos, S.; Petit, C. CO2 capture and photocatalytic reduction using bifunctional TiO2/Mofs nanocomposites under UV–Vis irradiation. Appl. Catal. B Environ. 2017, 210, 131–140. [Google Scholar] [CrossRef]
- Long, J.R.; Yaghi, O.M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Y.; Leng, K.Y.; Zhang, Y.M.; James, J.D.; Wang, J.; Hu, Y.F.; Ma, D.X.; Shi, Z.; Zhu, L.K.; Zhang, D.L. Metal-organic framework based upon the synergy of a brønsted acid framework and lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions. J. Am. Chem. Soc. 2015, 137, 4243–4248. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.; Suyetin, M.; Bichoutskaia, E.; Blake, A.J.; Allan, D.R.; Barnett, S.A.; Schroder, M. Modulating the packing of [Cu24(isophthalate)24] cuboctahedra in a triazole-containing metal-organic polyhedral framework. Chem. Sci. 2013, 4, 1731–1736. [Google Scholar]
- Hirscher, M.; Panella, B. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2007, 56, 809–835. [Google Scholar] [CrossRef]
- Ben, V.D.V.; Bart, B.; Joeri, D.; Dirk, D.V. Adsorptive separation on metal-organic frameworks in the liquid phase. Chem. Soc. Rev. 2014, 43, 5766–5788. [Google Scholar]
- Lee, J.Y.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.B.T.; Hupp, J.T. Cheminform abstract: Metal-organic framework materials as catalysts. Cheminform 2010, 40, 1450–1459. [Google Scholar] [CrossRef]
- Gascon, J.; Corma, A.; Kapteijn, F.; Xamena, F.X.L.I. Metal organic framework catalysis: Quo vadis? ACS Catal. 2014, 4, 361–378. [Google Scholar] [CrossRef]
- Mercedes, A.; Esther, C.; Belén, F.; Xamena, F.X.; Llabrés, I.; Hermenegildo, G. Semiconductor behavior of a metal-organic framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112. [Google Scholar]
- Bae, J.; Lee, E.J.; Jeong, N.C. Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal-organic frameworks. Chem. Commun. 2018, 54, 6458–6471. [Google Scholar] [CrossRef]
- Song, D.; Bae, J.; Ji, H.; Kim, M.-B.; Bae, Y.-S.; Park, K.S.; Moon, D.; Jeong, N.C. Coordinative reduction of metal nodes enhances the hydrolytic stability of a paddlewheel metal-organic framework. Am. Chem. Soc. 2019, 141, 7853–7864. [Google Scholar] [CrossRef]
- Howarth, A.J.; Peters, A.W.; Vermeulen, N.A.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Best practices for the synthesis, activation, and characterization of metal-organ frameworks. Chem. Mater. 2017, 29, 26–39. [Google Scholar] [CrossRef]
- Lin, R.B.; Li, F.; Liu, S.Y.; Qi, X.L.; Zhang, J.P.; Chen, X.M. A noble-metal-free porous coordination framework with exceptional sensing efficiency for oxygen. Angew. Chem. Int. Ed. 2013, 52, 13429–13433. [Google Scholar] [CrossRef]
- Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Photocatalytic hydrogen production from water using porous material [Ru2(ρ-BDC)2]n. Energy Environ. Sci. 2009, 2, 397–400. [Google Scholar] [CrossRef]
- Hu, X.; Sun, C.I.; Qin, C.; Wang, X.; Wang, H.K.; Zhou, E.; Li, W.; Su, Z.I. Iodine-emplated assembly of unprecedented 3d–4f metal-organic frameworks as photocatalysts for hydrogen generation. Chem. Commun. 2013, 49, 3564–3566. [Google Scholar] [CrossRef]
- Koroush, S.; Lin, Q.P.; Mao, C.Y.; Feng, P.Y. Incorporation of iron hydrogenase active sites into a highly stable metal-organic framework for photocatalytic hydrogen generation. Chem. Commun. 2014, 50, 10390–10393. [Google Scholar]
- Feng, D.W.; Gu, Z.Y.; Li, J.R.; Jiang, H.L.; Wei, Z.W.; Zhou, H.C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 2012, 51, 10307–10310. [Google Scholar] [CrossRef]
- Subhadeep, S.; Gobinda, D.; Jayshri, T.; Rahul, B. Photocatalytic metal-organic framework from Cds quantum dot incubated luminescent metallohydrogel. J. Am. Chem. Soc. 2014, 136, 14845–14851. [Google Scholar]
- Lee, Y.; Kim, S.; Ku, K.J.; Cohen, S.M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light iradiation. Chem. Commun. 2015, 51, 5735–5738. [Google Scholar] [CrossRef]
- Sonja, P.; Fei, H.; Andreas, O.; Cohen, S.M.; Sascha, O. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 16997–17003. [Google Scholar]
- Liu, Q.; Low, Z.X.; Li, L.; Razmjou, A.; Wang, K.; Yao, J.F.; Wang, H. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 2013, 1, 11563–11569. [Google Scholar] [CrossRef]
- Gastaldo, C.M.; Antypov, D.; Warren, J.E.; Briggs, M.E.; Chater, P.A.; Wiper, P.V.; Miller, G.J.; Khimyak, Y.Z.; Darling, G.R.; Berry, N.G. Side-Chain Control of Porosity Closure in Single and Multiple-Peptide-Based Porous Materials by Cooperative Folding. Nat. Chem. 2014, 6, 343–351. [Google Scholar] [CrossRef]
- Zhou, J.J.; Wang, R.; Liu, X.L.; Peng, F.M.; Li, C.H.; Teng, F.; Yuan, Y.P. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 2015, 346, 278–283. [Google Scholar] [CrossRef]
- Wang, S.B.; Yao, W.S.; Lin, J.L.; Ding, Z.X.; Wang, X.C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038. [Google Scholar] [CrossRef]
- Kim, D.; Kelsey, K.S.; Hong, D.; Yang, P.D. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 2015, 54, 3259–3266. [Google Scholar] [CrossRef]
- Serena, B.; Samuel, D.; Laia, F.; Carolina, G.S.; Miguel, G.; Craig, R.; Thibaut, S.; Antoni, L. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519. [Google Scholar]
- Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C.P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569. [Google Scholar] [CrossRef]
- Tao, A.; Prasert, S.; Yang, P.D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601. [Google Scholar] [CrossRef]
- Chambers, M.B.; Wang, X.; Elgrishi, N.; Christopher, H.H.; Aron, W.; Jonathan, B.; Canivet, J.; Alessandra, Q.E.; David, F.; Caroline, M.D. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. ChemSusChem 2015, 8, 603–608. [Google Scholar] [CrossRef]
- Hou, W.; Wei, H.H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S.B. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 2011, 1, 929–936. [Google Scholar] [CrossRef]
- Meister, S.; Reithmeier, R.O.; Tschurl, M.; Heiz, U.; Rieger, B. Unraveling side reactions in the photocatalytic reduction of CO2: Evidence for light-induced deactivation processes in homogeneous photocatalysis. ChemSusChem 2015, 7, 690–697. [Google Scholar] [CrossRef]
- Suljo, L.; Phillip, C.; Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar]
- Hou, W.; Cronin, S.B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Tu, W.; Zhou, Y.; Li, H.; Li, P.; Zou, Z. Au@TiO2 yolk-shell hollow spheres for plasmonInduced photocatalytic reduction of CO2 into solar fuel via local electromagnetic field. Nanoscale 2015, 7, 14232–14236. [Google Scholar] [CrossRef]
- Gao, S.T.; Liu, W.H.; Shang, N.Z.; Feng, C.; Wu, Q.H.; Wang, Z.; Wang, C. Integration of a plasmonic semiconductor with a metal-organic framework: A case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity. RSC Adv. 2014, 4, 61736–61742. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Hou, W.; Yan, W.; Zeng, G.M.; Chen, X.H.; Leng, L.J.; Wu, Z.B.; Hui, L. One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity. Appl. Organomet. Chem. 2016, 30, 289–296. [Google Scholar] [CrossRef]
- Wheeler, D.A.; Zhang, Z.J. Exciton dynamics in semiconductor nanocrystals. Adv. Mater. 2013, 25, 2878–2896. [Google Scholar] [CrossRef]
- Easun, T.L.; Jia, J.H.; James, A.C.; Danielle, L.B.; Stapleton, C.S.; Vuong, K.Q.; Champness, N.R.; George, M.W. Photochemistry in a 3D metal-organic framework (MOF): Monitoring intermediates and reactivity of the fac-to-mer photoisomerization of Re(Diimine)(CO)3Cl incorporated in a MOF. Inorg. Chem. 2014, 53, 2606–2612. [Google Scholar] [CrossRef]
- Matsuoka, S.; Kohzuki, T.; Pac, C.; Ishida, A.; Takamuku, S.; Kusaba, M.; Nakashima, N.; Yanagida, S. Photocatalysis of oligo(P-phenylenes): Photochemical reduction of carbon dioxide with triethylamine. J. Phys. Chem. 1992, 96, 4437–4442. [Google Scholar] [CrossRef]
- Smieja, J.M.; Benson, E.E.; Bhupendra, K.; Grice, K.A.; Seu, C.S.; Miller, A.J.M.; Mayer, J.M.; Kubiak, C.P. Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of Co. Proc. Natl. Acad. Sci. USA 2012, 109, 15646–15650. [Google Scholar] [CrossRef]
- Yuan, Y.P.; Ruan, L.W.; Barber, J.; Loo, J.; Xue, C. Hetero-nanostructured suspended photocatalysts for solar-to-fuelconversion. Energy Environ. Sci. 2014, 7, 3934–3951. [Google Scholar] [CrossRef]
- Hod, I.; Sampson, M.D.; Deria, P.; Kubiak, C.P.; Farha, O.K.; Hupp, J.T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302–6309. [Google Scholar] [CrossRef]
- Benson, E.E.; Kubiak, C.P. Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(Bpy)(CO)3Cl. Chem. Commun. 2012, 48, 7374–7376. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Hendon, C.H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D’arras, L.; Sassoye, C.; Rozes, L.; Mollot-Draznieks, C.; Walsh, A. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J. Am. Chem. Soc. 2013, 135, 10942–10945. [Google Scholar] [CrossRef]
- Wang, C. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454. [Google Scholar] [CrossRef]
- Wang, D.K.; Huang, R.K.; Liu, W.J.; Sun, D.R.; Li, Z.H. Fe-based Mofs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254–4260. [Google Scholar] [CrossRef]
- Xu, H.Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.H.; Jiang, H.L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443. [Google Scholar] [CrossRef]
- Chen, D.S.; Xing, H.Z.; Wang, C.G.; Su, Z.M. Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium Mof via dual catalytic routes. J. Mater. Chem. A 2016, 4, 2657–2662. [Google Scholar] [CrossRef]
- Sun, M.; Yan, S.; Sun, Y.; Yang, X.; Guo, Z.; Du, J.; Chen, D.; Chen, P.; Xing, H. Enhancement of visible-light-driven CO2 reduction performance using an amine-functionalized zirconium metal-organic framework. Dalton Trans. 2018, 47, 909–915. [Google Scholar] [CrossRef]
- Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z.D. Studies on photocatalytic CO2 reduction over NH2-Uio-66 (Zr) and its derivatives: Towards a better understanding of photocatalysis on metal-organic frameworks. Chem. Eur. J. 2013, 42, 14279–14285. [Google Scholar] [CrossRef]
- Choi, K.M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C.A.; Barmanbek, J.T.; Alshammari, A.S.; Yang, P.; Yaghi, O.M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Fei, H.; Kang, J.K.; Cohen, S.M. Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal-organic framework. Chem. Commun. 2015, 92, 16549–16552. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. 2016, 128, 14310–14314. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Z.; Liu, H.; Wang, Y. Cd0.2Zn0.8S@Uio-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal. B Environ. 2017, 200, 448–457. [Google Scholar] [CrossRef]
- Wang, S.B.; Wang, X.C. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B Environ. 2015, 162, 494–500. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.X.; Guo, C.M.; Gao, X.S.; Gong, C.H.; Wang, Y.; Liu, B.; Li, X.X.; Gurzadyan, G.G.; Sun, L.C. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect. J. Mater. Chem. A 2018, 6, 4768–4775. [Google Scholar] [CrossRef]
- Chen, M.; Han, L.; Zhou, J.; Sun, C.; Hu, C.; Wang, X.; Su, Z. Photoreduction of carbon dioxide under visible light by ultra-small Ag nanoparticles doped into Co-Zif-9. Nanotechnology 2018, 29, 284003. [Google Scholar] [CrossRef]
- Ye, L.; Gao, Y.; Cao, S.Y.; Chen, H.; Yao, Y.A.; Hou, J.G.; Sun, L.C. Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal-organic framework nanosheets. Appl. Catal. B Environ. 2018, 227, 54–60. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.S.; Feng, J.F.; Chen, Y.N.; Yang, X.; Gao, S.Y.; Cao, R. Synthesis and characterization of Zn2GeO4/Mg-MOF-74 composites with enhanced photocatalytic activity for CO2 reduction. Catal. Sci. Technol. 2018, 8, 1288–1295. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Stulp, S.; de Brito, J.F.; Flor, J.B.S.; Frem, R.C.G.; Zanoni, M.V.B. MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Appl. Catal. B Environ. 2018, 225, 563–573. [Google Scholar] [CrossRef]
- Sadeghi, N.; Sharifnia, S.; Sheikh Arabi, M. A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. J. CO2 Util. 2016, 16, 450–457. [Google Scholar] [CrossRef]
- Yan, S.C.; Ouyang, S.X.; Gao, J.; Yang, M.; Feng, J.Y.; Fan, X.X.; Wan, L.J.; Li, Z.S.; Ye, J.H.; Zhou, Y.; et al. A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew. Chem. Int. Ed. 2010, 49, 6400–6404. [Google Scholar] [CrossRef]
- Maina, J.W.; Schütz, J.A.; Grundy, L.; Ligneris, E.D.; Yi, Z.F.; Kong, L.X.; Pozo-Gonzalo, C.; Ionescu, M.; Dumée, L.F. Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2. ACS Appl. Mater. Interfaces 2017, 9, 35010–35017. [Google Scholar] [CrossRef]
- Kong, Z.C.; Liao, J.F.; Dong, Y.J.; Xu, Y.F.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. Core@shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662. [Google Scholar] [CrossRef]
- Fu, Y.H.; Sun, D.R.; Chen, Y.J.; Huang, R.K.; Ding, Z.X.; Fu, X.Z.; Li, Z.H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 2012, 51, 3364–3367. [Google Scholar] [CrossRef]
- He, X.; Wang, W.N. MOF-based ternary nanocomposites for better CO2 photoreduction: Roles of heterojunctions and coordinatively unsaturated metal sites. J. Mater. Chem. A 2018, 6, 932–940. [Google Scholar] [CrossRef]
Sample | Light Source Conditions | Product | Productivity | Ref. |
---|---|---|---|---|
Zr6O4(OH)4(bpdc)6 | Visible light | CO | - | 75 |
MIL-101(Fe) | Visible light | HCOO− | 7.375μmol/h | 76 |
PCN-222 | Visible light | HCOO− | 3.12μmol/h | 77 |
NNU-28 | Visible light | dicarboxylic acid | 183.3μmol/h | 78 |
Zr6O4(OH)4(L)•6DMF | Visible light | HCOO− | 96.2μmol/ h | 79 |
NH2-Uio-66(Zr) | Visible light | HCOO− | 1.32μmol/h | 80 |
Ag-Ren-MOF | Visible light | CO | - | 81 |
UiO-66-CAT MOF-525-Co Cd0.2Zn0.8S@UiO-66-NH2 Co-ZIF-9 ZIF-67 | Visible light Visible light Visible light Visible light Visible light | HCOOH CO CH3OH CO CO | 9μmo/h 36.67μmol/h - 28.54μmol/h 3.89μmol/h | 82 83 84 85 86 |
Ag@Co-ZIF-9 | Visible light | CO | 28.4μmol/h | 87 |
Zn-MOF nanoliths Zn2GeO4/Mg-MOF-74 TiO2-ZIF-8 Zn/PMOF Co-ZIF-9/TiO2 Cu-TiO2/ZIF-8 CsPbBr3@ZIFs Ti8O8(OH)4(bdc)6(MIL-125(Ti)) | Visible light Visible light Visible light Visible light Visible light UV-light Visible light 365nm UV-light | CO CO MeOH CH4 CH4 CO CO HCOO− | - 1.43μmol/h 1.21μmol/h 10.43μmol/h - - 29.630μmol/h 0.814μmol/ h | 88 89 90 91 92 93 94 95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, W.; Liu, B.; Qiao, J.; Lv, L.; Gao, X.; Zhang, X.; Xu, D.; Liu, W.; Liu, J.; et al. Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts 2019, 9, 658. https://doi.org/10.3390/catal9080658
Liu C, Wang W, Liu B, Qiao J, Lv L, Gao X, Zhang X, Xu D, Liu W, Liu J, et al. Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts. 2019; 9(8):658. https://doi.org/10.3390/catal9080658
Chicago/Turabian StyleLiu, Chang, Wenzhi Wang, Bin Liu, Jing Qiao, Longfei Lv, Xueping Gao, Xue Zhang, Dongmei Xu, Wei Liu, Jiurong Liu, and et al. 2019. "Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications" Catalysts 9, no. 8: 658. https://doi.org/10.3390/catal9080658
APA StyleLiu, C., Wang, W., Liu, B., Qiao, J., Lv, L., Gao, X., Zhang, X., Xu, D., Liu, W., Liu, J., Jiang, Y., Wang, Z., Wu, L., & Wang, F. (2019). Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts, 9(8), 658. https://doi.org/10.3390/catal9080658