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Abstract: The oxidation of palladium nanoparticles causes the performance degradation of alkaline
direct ethanol fuel cells. Quantifying this oxidation is a task of tremendous importance to design
mitigation strategies that extend the service life of catalysts and devices. Here, we show that the
Fixed Energy X-ray Absorption Voltammetry (FEXRAV) can provide this information with an in-situ
approach. To do so, we have developed a quantification method that assumes the linear response
at fixed energy. With this method, we have investigated the oxidation of carbon black-supported
palladium electrocatalysts during cyclic voltammetry in the same solution employed as a fuel in the
direct ethanol fuel cells. We have shown that up to 38% of the palladium is oxidised at 1.2 V vs. RHE
and that such oxidation also happens at lower potentials that the catalyst can experience in real direct
ethanol fuel cells. The result of this study is a proof of concept of quantitative FEXRAV.

Keywords: palladium; electrocatalysis; ethanol; X-ray Absorption Spectroscopy; FEXRAV

1. Introduction

Understanding electrocatalysts at work is a task of tremendous importance to design efficient
fuel cells and electrolysers. This can be done by methods that investigate materials in their working
environment under the application of an electrical potential difference. Among these techniques,
X-ray Absorption Spectroscopy (XAS) plays a major role [1–4]. Three main reasons account for this:
(i) XAS provides short-range structural information around a given element, shedding light on its
valence state, and on distance, nature and number of neighbouring atoms [5]; (ii) High energy X-rays
(e.g., Pd Kα ca. 24 keV) easily penetrate materials crossing the boundaries of the working environment
with little attenuation and enabling the analysis of complex systems/matrices. The ability to reach a
high flux/high energy X-Ray output also enables to scope out a wide array of elements; (iii) under
appropriate circumstances (nanoparticles, thin films under grazing angle irradiation), XAS is sensitive
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to surfaces and interfaces, a fact that is extremely important to understand the way in which materials
interact with the environment.

Since the inception of high brilliance synchrotrons, in-situ XAS has unravelled surface and
interphase phenomena in heterogeneous catalysis, electrocatalysis and more generally in materials
science [6]. In these studies, chemical reactions and physical parameters such as temperature, pressure
and, in the case of electrochemistry, potential, modify the surface composition and structure. This latter
point is, at present, of paramount importance because of the role of electrochemistry in the conversion
and storage of renewable energy. Fuel cells, batteries and electrolyser efficiency and functionality
largely depend on the surface of the electrocatalytic materials that can deactivate by oxidation or the
adsorption of poisoning chemical species.

Time-resolved XAS is a preferential choice to understand the nature and the dynamics of
electrocatalyst deactivation processes. In many cases, such surface information also provides essential
insights to understand the steps of electrochemical reactions catalysed by the surface [7–12]. So far,
this aim has been afforded by quick-XAS. Quick XAS consists of a peculiar acquisition technique [13]
not available in all beamlines, allowing the fast collection of XAS spectra in less than 1 s.

Minguzzi et al. have recently demonstrated a radically innovative approach to the XAS investigation
of materials evolution [14–16]. This consists of the acquisition of the XAS signal at fixed energy (FEXRAV,
Fixed Energy X-Ray Absorption Voltammetry), following the intensity of that signal with time during
voltammetry. Under this setup, a signal variation can be interpreted as a change in the redox state and/or
in the coordination of the absorber element, that is at least partially converted to a different species.
The key point in this approach is the selection of the right fixed energies for the XAS measurements.
This is done using the acquisition of X-ray Absorption Near Edge Spectroscopy (XANES) spectra
on standards, i.e., compounds containing the element under investigation in different valence states.
The reference compounds should be, as much as possible, representative of the species likely present
under working conditions. Then, by comparing their XANES spectra, the energy exhibiting the largest
variation among the reference spectra can be selected as the region with the highest achievable analytical
sensitivity). Our quantification approach is based on the “lever rule”, which implies the linear response
of the signal due to change of the ratio between two phases (represented by the reference compounds)
at fixed energy. This assumption is commonly considered very solid since the linear combination fit is
the most common way to perform quantitative XANES analysis.

FEXRAV was applied for the first time to the study of the evolution of the Iridium speciation in
Iridium oxides during cyclic voltammetry to unravel the chemical changes of Iridium in the oxygen
evolution reaction [16]. Successively, the validity of the method was confirmed by the investigation of
the chemical speciation of silver [15], copper [17] and iron [18] electrocatalysts.

These successful experiences showed the potential of FEXRAV as a practical analytical tool for
investigation of electrocatalysts in the conditions encountered in real applications. However, a method
for the quantification of FEXRAV data and their uncertainties are still missing. The determination of
surface or interphase composition would be an extremely powerful quantitative tool able to deepen
the knowledge of how electrocatalysts work and deactivate. Moreover, FEXRAV permits to work
in-situ, directly inside the studied electrochemical wet system. This is an advantage in respect to other
ex-situ techniques for surface characterisation, like XAS, in which samples have to be kept in high
vacuum. The development of this quantitative approach to FEXRAV, as well as the identification of the
speciation promoted during voltammetry, are the major objectives of this study.

To give a demonstration of our approach, we have defined a case study: this consisted of the analysis
of the potential dependent palladium oxidation in an alkaline environment. The electro-oxidation
of palladium in alkali is particularly relevant for its extremely high electrocatalytic activity, both
toward alcohols and hydrogen oxidation [19–22]. This property has been widely exploited in direct
ethanol fuel cells [23–26] and electrochemical reformers [27,28] both promising energy conversion and
storage devices. Palladium also offers the advantage of having well-known chemistry in an alkaline
environment that helps much in the selection of the best conditions to perform FEXRAV. Indeed,
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Pd0 is known to oxidise to Pd(II) oxides/hydroxides at pH larger than 13 for potential larger than
0.5–0.6 V vs. RHE [29,30] with no formation of Pd(IV) species. However, at higher potential palladium
is also dissolved in the electrolyte [29,31–33], an aspect that is limited by the presence of reducing
agents such as NaBH4 [23] or even milder ones such as ethanol [34,35], ethylene glycol [36–38] and
glycerol [38–40]. It is also known that only metallic Pd shows activity towards ethanol electrooxidation,
while Pd(II) species are not electroactive toward this reaction [20]. Additionally, Pd electrocatalysts
consists of Pd nanoparticles (5 nm [21,38]) dispersed onto black carbon support. The limited size of the
particles provides a high surface to volume ratio and turns XAS into an in-situ technique sensitive to
the chemical state of surface atoms, enabling the study the evolution of the speciation of an element
among two oxidation states.

2. Results & Discussion

2.1. Nanoparticles Characterisation

The acquisition of surface-sensitive XAS spectra can be obtained either using grazing-incident
techniques (GIXAS, ReflEXAFS [41]) or by studying samples consisting of very small particles (or thin
films). This is required to have a high ratio between surface and bulk atoms, a condition that is usually
met in nanoparticles (NP) with a diameter lower than 10 nm. To check if the catalyst employed in
this investigation met this condition, we performed field emission scanning electron microscopy to
determine particle size. Figure 1 reports the TEM and the SEM backscattered electron images taken
on the catalyst at high magnification. Most of the particles are less than 5 nm, and many of them are
below 3 nm assembled in well-defined clusters.
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Figure 1. TEM (left) and Backscattered SEM (right) images of the Pd/C electrocatalyst. The backscattered
images show Pd NPs as black spots (TEM) and white spots (SEM with an inverted contrast in respect
to TEM), while the grey haloes come from carbon support.

XRD proved that particles are metallic Pd with a significant peak broadening due to the small size
of the crystallites [42]. No peak related to crystalline Pd oxide was detected (Figure 2). However, from
XRD, we cannot exclude the presence of a limited amount of amorphous oxide or hydrous oxide at the
surface of the nanoparticles, especially if these phases occur in amounts below some wt% units in the
sample. It is worth mentioning that a limited amount of these phases at the surface of Pd NP do not
affect much catalytic activity [43].
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The cell head (Figure 3a, elements A, B and C) holds in place the WE (a Pd/C ink deposited onto 
carbon paper, as visible in Figure 3b), allowing the catalyst exposure to X-Rays from one side and the 
contact to the electrolytic solution on the other. Its assembly consists of a cap, a PTFE sealing, a spacer-
adapter and of a carbon paper electrically connected to the potentiostat by a strip of conducting 
copper tape. The mass attenuation of the supporting carbon paper and the deposited ink is negligible 
[44]. This is essential to record the fluorescence signal that comes from the Pd NP in contact with the 
electrolyte. The carbon paper on which the catalyst is drop-casted, together with the PTFE sealing, 
prevent water flooding out from the X-ray window. It is worth mentioning that the carbon paper 
surface largely exceeds the size of the X-ray window, to allow the connection with the copper tape 
without shielding the X-rays. Four screws fix together the head cell assembly with the cell body, 
pressing the electrode and making the sealing tight. The cell head cap has a flaring hole that allows 
the X-rays coming from the electrodes to reach the detector for analysis in Fluorescence mode. The 
cell body E (Figure 3a) contains the electrolyte tank with the holes for positioning the reference 
electrode (RE) close to the WE surface, the counter electrode (CE) and the gas inlet and outlet (to keep 
the cell under a nitrogen atmosphere, Figure 3c). The tank is a cylinder with a diameter of 10 mm and 
a depth of 52 mm half-filled with electrolyte. Such a large volume has been intentionally selected to 
allow long experiments without significantly depleting the concentration of the electroactive species. 
Additionally, this avoids the use of flow systems that complicate the experimental design and that 

Figure 2. XRD spectra of the Pd/C catalyst employed in this work.

2.2. Design, Realisation and Testing of the Electrochemical Cell

To perform the FEXRAV experiments, we have designed a new dedicated electrochemical cell that
fits the LISA beamline hardware set up, like already done by other groups [43]. Our cell is designed to
acquire XAS spectra in the Fluorescence configuration, with a 45◦ angle between the normal to the
working electrode (WE) surface and the axis of the incoming beam [31]. The cell consists of two main
sections: (i) the cell head assembly and (ii) the cell body (Figure 3).
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Figure 3. Experimental cell for Fixed Energy X-ray Absorption Voltammetry (FEXRAV) measurements
at the K-alpha edge of Pd: (a) 3D ensemble view, depicting EC-cell components: A. Cell Head, B. PTFE
sealing, C. Adapter, D. Sealing, E. Cell Body; (b) exploded section view of the cell head, (c) lateral
section view of the assembled cell.

The cell head (Figure 3a, elements A, B and C) holds in place the WE (a Pd/C ink deposited onto
carbon paper, as visible in Figure 3b), allowing the catalyst exposure to X-Rays from one side and
the contact to the electrolytic solution on the other. Its assembly consists of a cap, a PTFE sealing, a
spacer-adapter and of a carbon paper electrically connected to the potentiostat by a strip of conducting
copper tape. The mass attenuation of the supporting carbon paper and the deposited ink is negligible [44].
This is essential to record the fluorescence signal that comes from the Pd NP in contact with the electrolyte.
The carbon paper on which the catalyst is drop-casted, together with the PTFE sealing, prevent water
flooding out from the X-ray window. It is worth mentioning that the carbon paper surface largely
exceeds the size of the X-ray window, to allow the connection with the copper tape without shielding
the X-rays. Four screws fix together the head cell assembly with the cell body, pressing the electrode and
making the sealing tight. The cell head cap has a flaring hole that allows the X-rays coming from the
electrodes to reach the detector for analysis in Fluorescence mode. The cell body E (Figure 3a) contains
the electrolyte tank with the holes for positioning the reference electrode (RE) close to the WE surface,
the counter electrode (CE) and the gas inlet and outlet (to keep the cell under a nitrogen atmosphere,
Figure 3c). The tank is a cylinder with a diameter of 10 mm and a depth of 52 mm half-filled with
electrolyte. Such a large volume has been intentionally selected to allow long experiments without
significantly depleting the concentration of the electroactive species. Additionally, this avoids the use
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of flow systems that complicate the experimental design and that are difficult to fit inside or in the
surrounding of the experimental XAS chamber. To accurately position the X-ray window inside the
chamber, the cell was fixed on a chamber holder allowing an x,y,z motion (laboratory reference system)
together with the rotation (along the z-axis) required to set up the cell in Fluorescence configuration.
All the cell components are made in polymethyl methacrylate (PMMA), apart from the PTFE sealing
ring (B) and O-Ring (D), and the screws that we used to fix the head assembly to the cell body, made of
steel. We choose to have an X-ray window of 5 mm diameter (on the cell head A, Figure 3a). This size
was selected to fit the beam into the X-ray window easily. Successively, we defined a protocol for cell
assembly and use, including the deposition of a known amount of catalyst exactly on the X-ray window.

2.3. XAS Analysis

The key for a successful FEXRAV acquisition is the selection of the best-fixed energy, chosen in
order to maximise the analytical sensitivity as already mentioned in the introduction. Remarkably,
palladium oxidation in alkaline media leads mostly to the formation of a thin layer of palladium (II)
oxides or oxyhydroxides and Pd dissolution as hydroxy-palladiates [29,43]. In principle, the formation
of these Pd(II) species is strongly dependent on the applied electrochemical parameters. This means
that different NP sizes, subjected to the same oxidation stimulus, grow the same amount of Pd(II)
species per surface unit. Indeed, on a single particle, the overall proportion between produced Pd(II)
species (present on the surface) and the inmost metallic palladium atoms can vary depending on NP
dimensions. Hence the maximum variation in the Pd(II)/Pd0 ratio is also deeply dependent on the
catalyst NP dimensional dispersion, while the XAS fluorescent intensity is related to their concentration
in respect of the carbon powder.

Pd dissolution in bare alkali has been previously demonstrated by Pourbaix diagram calculation,
XAS analysis and EQCM [20,31,45]. Liang et al. found that Pd oxidation happens with the formation
of the same species even in ethanol containing electrolytes. In this case, Pd oxidation is known to
compete with ethanol oxidation becoming faster with the increase of the potential. The advantage of
using ethanol is that it limits the dissolution of Pd(II) species as ethanol is known to be a reducing
agent for dissolved Pd [46].

We first acquired the reference spectra of pure Pd and pure PdO samples, to look for the proper
energy to investigate palladium oxidation with FEXRAV. The choice of Pd and PdO as a standard is
robust as the XANES spectrum of the electrochemically stressed palladium can be successfully fitted
using these two chemical species [21,47]. Although a relevant aliquot of the Pd(II) species investigated
by FEXRAV is probably Pd(OH)4

2− (due to the dissolution process already mentioned) the preparation
of a reliable standard solution is impossible in the sense that it could affect the reproducibility of the
measurements. Still, PdO and Pd(OH)4

2− share the same coordination geometry, number and distances
and the same ligand species, showing the same features in the respective XAS spectra [47–52]. All this
considered PdO should be considered the best standard for the XANES of Pd(OH)4

2−. Figure 4a shows
a series of spectra obtained by linearly combining the reference spectra in variable ratios. Standard
energy scales were calibrated with an in-beam Pd foil in order to avoid uncompensated shifts of edge
values. The fitting shows that two energies, respectively around 24,350 and 24,370 eV, display large
spectral variation. Particularly, the intensity of the peak at 24,350 eV decreases when the oxide fraction
increases, while that of the peak at 24,370 eV increases with increasing oxide content. Among the two,
the peak at 24,370 eV shows the largest variation (Figure 4). Accordingly, we selected this energy value
to monitor the change in the Pd speciation. However, in order to check that no other unpredicted
chemical changes occurred in the sample, the signal at 24,350 eV (i.e., that referring to the edge jump
position) has also been recorded.
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and PdO with variable molar fraction of PdO; (b) The extent of FEXRAV signal variation at 24,370 and
24,390 eV.

The basis for the quantification is that the signal changes linearly depending on the relative change
in the Pd concentration. This approach is an extension of the linear combination approach used to fit
XANES data for quantification [52]. The key points for FEXRAV quantification are:

(1) The normalised spectral intensity at 24,370 eV decreases linearly with the increase of the Pd(II)
content (while at 24,350 eV the trend is opposite, with a decrease of the signal with the increase
of Pd(II) content), and

(2) Palladium electrochemical reduction/oxidation occurs through a two-electrons process [53].
Hence, in this context, Palladium speciation varies only between metallic Pd and Pd(II) species
(oxides or hydroxypalladiates).

For the two energies proposed, the molar fraction of Pd as derived from the edge at 24,370 and
24,350 eV can be determined with Eqation (1) and Eqation (2) respectively.

%Pd(II)(24,370 eV) =

(
1−

I0 − IPdO (24,370eV)

IPd (24,370 eV) − IPdO (24,370 eV)

)
∗ 100 (1)

%Pd(II)(24,350 eV) =

( I0 − IPd, (24,370 eV)

IPdO (24,350 eV) − IPd (24,350 eV)

)
∗ 100 (2)

where %Pd(II)(energy) is the molar fraction at a certain energy, I0 is the fluorescence signal of the sample,
IPd (energy) and IPdO (energy) is the calibrated signal of the Pd and PdO references respectively.

Under the adopted experimental conditions, one can estimate the uncertainty and minimum
detection limit from the reproducibility of the intensity of the Fluorescence signal with time. Accordingly,
we performed a long acquisition of the noise. Figure 5 shows the changes in the fluorescence signal,
along with the average value and ±3σ values. Noise oscillation resulted in the order of 1% of the total
fluorescence. This uncertainty is independent on the energy value for energy variations in the 24,300
to 24,400 eV range and can increase relevantly as a reciprocal function of the net change of intensity
during the jump. Thus, a reference value of ~1% of the normalised intensity jump can be considered as
a limit value for the determination of Pd(II) in FEXRAV. Regarding the Pd(II) moles, this corresponds
to a minimum detectable change of ~7%.

Figure 6 shows an example of FEXRAV during voltammetric cycle registered at 24,370 eV.
The intensity of the Fluorescence yield increases with increasing the applied potential and decreases
with decreasing the potential. Numerous cycles performed on different cells confirm this spectral change
to be fully reproducible. Figure 6 also compares the FEXRAV cycle with the conventional voltammetry
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carried out simultaneously on the same system. The PdO% label refers to the quantification undertaken
using palladium oxide as a standard to obtain the typical Pd(II) XANES curves. Accordingly, the
occurrence of a definite potential range where a fraction of Pd(II) oxy(hydroxy)des is stabilised is
confirmed. Thus, we performed a calibration of the FEXRAV changes, assuming as a starting point the
experimental observation that the Pd/C electrode contains, under the open circuit conditions, a 15%
molar fraction of PdO [21]. On the light of the performed evaluation, one can estimate that the Pd(II)
content at the electrode ranges between 15 and 38% (38% ± 4% max, calculated from error propagation
in Equations (1) and (2)) during a single FEXRAV cycle. The molar fraction achievable step-by-step
from the Fluorescence signal, according to the procedure, is represented by the bar between the two
graphs (as % Pd(II)) calculated according to the Equations (1) and (2) at 24,370 eV and 24,350 eV,
respectively. It is worth mentioning that for the actual catalyst amount that is required for performing
the measurements, cyclic voltammetry shows a significant iR drop as only a 70% iR compensation was
used to avoid signal instabilities. This effect is ascribed to the fact that we observe currents exceeding
150 mA and that under this condition, a potential shift is due to the residual uncompensated resistance.
Additionally, the cyclic voltammetry shows a significant cathodic current at low overpotential. This
current is attributed to the presence of dissolved oxygen that was kept in the solution to simulate the
real conditions of the fuel in direct ethanol fuel cells.
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3. Materials and Methods

3.1. Chemicals and Catalyst Preparation

A 1 M KOH (Fluka, Munich, Germany) + EtOH 1 M (AnalaR Normapur 99.9%, VWR Chemicals,
Milan, Italy) solution was used as electrolyte during voltammetric tests. The solution was deaerated
before its introduction inside the cell. Then, the cell kept under nitrogen environment during the whole
experimental acquisition.

The Pd on C catalyst was prepared according to the procedure described elsewhere [21].
The synthesis of a batch of catalysts starts with the suspension of 6.0 g of Vulcan XC-72 in 250 mL flask
of ethylene glycol, followed by 20 min sonication. Then a mixture of MilliQ water (50 mL), ethylene
glycol (50 mL, Sigma-Aldrich, anhydrous 99.8%) and 20 mL HCl (Sigma-Aldrich, reagent grade, 37%,
(Milan, Italy) with 2 g of PdCl2 (Sigma-Aldrich, Reagent plus, (Milan, Italy) is added drop by drop
under an N2 stream. After stirring, an alkaline solution of NaOH (13.2 g, Sigma-Aldrich, (Milan, Italy)
in H2O (10 mL) and ethylene glycol (35 mL) was introduced in a closed reactor, which then was heated
at 140 ◦C for three h again under an N2 atmosphere. After cooling, the solid product was filtered and
washed with H2O to neutral pH. The final product was dried in a vacuum oven at 40 ◦C. 7.79 g of
catalyst was obtained, the total Pd content being determined in 20.3 wt. % [54]. All the solutions were
freshly prepared with Milli-Q water (18.2 MΩ cm).

3.2. Beamline Set-Up

Experiments were conducted at the BM-08 LISA CRG Beamline at the European Synchrotron
Radiation Facility (ESRF) (see affiliations) in Grenoble [55] during four experimental sessions (08-01-996,
MA2936, MA3173, and MA3431, in chronological order). For the first three sessions, a dynamically
focusing sagittal monochromator equipped with a pair of Si(311) crystals were employed [45]. During
experiment MA3431, samples were measured after the first part of the BM08 refurbishment [55] using
a pair of flat Si [311] monochromator crystals. In all experimental sessions, a pair of Pt-coated mirrors
(E cutoff ' 27 keV) was used for harmonic rejection and vertical focusing on the sample; beam size
on the sample was approximately 2000 µm (H) × 200 µm (V); energy resolution (∆E/E) was ≈ 10−5.
Measurements were carried out in fluorescence mode by means of a 12-element solid-state (high purity
Germanium) detector. All the spectroscopic and electrochemical measurements were synchronised
and performed within the SPEC environment (Certified Scientific Software; http://www.certif.com/).
The line was also furbished with ion chambers, one measuring the incoming beam (I0) and the others
reading beam transmitted through the sample (I1) and the reference (IR). This particular set-up permits
both to avoid signal variations due to changes in the incoming photon beam (by simple normalization
of the sample signal using I0) and to calibrate the acquisition energy through the simultaneous analysis
of a Pd reference foil, located in a second analytical XAS chamber. The software ATHENA was used to
average multiple spectra and extract the normalised absorption edge [56–58].

3.3. Electrochemical Set-Up

Experiments were performed using the electrochemical cell described in the result and discussion
section. In order to coordinate the application of the required electrochemical conditions together
with XAS data acquisition, cyclic voltammetries were recorded with a PAR 263 potentiostat that was
interfaced with SPEC, exploiting a well-established setup at ESRF [47,48]. A standard Ag/AgCl KCl Sat.
electrode has been employed as RE. The CE was a graphite rod. Voltammetries were performed using
a scan speed of 1 mV/s. All the potentials of this study are quoted against the reversible hydrogen
electrode (RHE) potential scale. Moreover, the potential window in which to perform voltammetries
was selected in such a way that a little superimposition with the oxygen evolution region happened.
The cell configuration also allowed easy removal of possible bubbles through an open channel in the
upper part of the cell, thanks to an electrodic surface orthogonal to the floor plan.

http://www.certif.com/
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3.4. SEM, TEM and XRD Acquisitions

A Tescan Gaia 3 FIB/SEM (Brno, Czech Republic) was used to acquire the images, using the
built-in annular backscattered electrons (BSE) detector. Images were collected using a 15 keV energy
for the electron beam. TEM images were acquired using a Philips CM 12 microscope.

X-ray diffraction patterns were acquired at room temperature with a PANalytical X’PERT PRO
diffractometer (Malvern, UK), employing CuKα radiation (λ = 1.54187 Å) and a parabolic MPD mirror.
The spectra were acquired in the 2θ range from 20◦ to 80◦.

4. Conclusions

In this work, we have successfully demonstrated the application of FEXRAV to the quantification
of the speciation of palladium in-situ, for a given sample with a defined particle distribution. Besides
the quantification approach, we have built up a new cell design that allows the acquisition of XAS data
in Fluorescence mode and avoids the use of flow systems, overcoming two major limitations: (i) Flow
systems are usually difficult to fit in the measurement XAS chamber and (ii) they cannot simulate the
conditions that are commonly encountered in passive fuel cells. With the cell, we have identified the
suitable conditions to perform FEXRAV on carbon black supported Pd electrocatalysts, defining the
parameters that a sample must meet to allow a reliable quantification.

Our data show that FEXRAV allows the quantification of the catalyst speciation under dynamic
conditions, with a time resolution that for our experimental set-up was 4s. Additionally, we have
investigated the noise to determine the lower detection limit of quantitative FEXRAV. We found that
a cyclic voltammetry scan performed between 0.2 and 1.5 V at a scan rate of 1 mV s−1 produces a
maximum Pd(II) content of 38% in mole fraction.

Quantitative FEXRAV enables the quantitative determination of the oxidation of electrocatalysts
that is a primary cause of the degradation of the performance of electrochemical energy conversion
devices. This knowledge has a tremendous impact in designing mitigation strategies to boost the
service life of catalysts and devices.

Author Contributions: E.B. (Paper writing, ESRF experiments participation), A.G. (Paper writing, ESRF experiment
participation, data analysis), G.M. (Paper writing, Experiment design, ESRF experiments participation), F.D.
(ESRF experiments participation), F.D.B. (Paper writing, Experiment design, ESRF experiments participation, data
analysis), C.Z. (ESRF experiments participation), A.P. (ESRF experiments participation), G.O.L. (ESRF experiments
participation), H.M. (Catalyst synthesis), W.G. (Data analysis), M.I. (advice on the systems to be investigated), F.V.
(advice on the systems to be investigated) and A.L. (Paper writing, ESRF experiments participation, electrochemical
cell design, e).

Funding: “Ente Cassa di Risparmio di Firenze” with the projects: “Richiesta contributo per acquisto di un
microscopio elettronico a scansione ad ultra-alta risoluzione per potenziare il Centro di Microscopie Elettroniche
(Ce.M.E.) and “EnergyLab”; POR FESR 2014-2020 project FELIX (Fotonica ed Elettronica Integrate per l’Industria),
project code n. 6455; PRIN 2017 project funded by the Italian Ministry for University and Research (MIUR) (grant
n. 2017YH9MRK).

Acknowledgments: The authors gratefully acknowledge the Italian National Research Council (CNR) microscopy
facility “Ce.M.E.—Centro Microscopie Elettroniche Laura Bonzi” for the SEM images, and the CNR-ICCOM
technician Carlo Bartoli for the electrochemical cell manufacturing. ESRF is gratefully acknowledged for the
provision of synchrotron radiation during the MA3431, MA3173, MA2936, and 08-01-996 experiments carried out
at the Italian LISA BM08 beamline. Francesco Carlà (former scientist of ID03), is also acknowledged for the access
to the ESRF electrochemistry lab.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Meirer, F.; Weckhuysen, B.M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron
radiation. Nat. Rev. Mater. 2018, 3, 324–340. [CrossRef]

2. Fabbri, E.; Abbott, D.F.; Nachtegaal, M.; Schmidt, T.J. Operando X-ray absorption spectroscopy: A powerful
tool toward water splitting catalyst development. Curr. Opin. Electrochem. 2017, 5, 20–26. [CrossRef]

http://dx.doi.org/10.1038/s41578-018-0044-5
http://dx.doi.org/10.1016/j.coelec.2017.08.009


Catalysts 2019, 9, 659 10 of 12

3. Frenkel, A.I.; Rodriguez, J.A.; Chen, J.G. Synchrotron techniques for in situ catalytic studies: Capabilities,
challenges, and opportunities. ACS Catal. 2012, 2, 2269–2280. [CrossRef]

4. Fracchia, M.; Ghigna, P.; Vertova, A.; Rondinini, S. Time-Resolved X-ray Absorption Spectroscopy in (Photo)
Electrochemistry Time-Resolved X-ray Absorption Spectroscopy in (Photo) Electrochemistry. Surfaces 2018,
1, 138–150. [CrossRef]

5. Koningsberger, D.C.; Mojet, B.L.; van Dorssen, G.E.; Ramaker, D.E. XAFS spectroscopy; fundamental
principles and data analysis. Top. Catal. 2000, 10, 143–155. [CrossRef]

6. Sharma, A.; Singh, J.; Won, S.O.; Chae, K.; Sharma, S.K.; Kumar, S. Introduction to X-Ray Absorption
Spectroscopy and Its Applications in Material Science. In Handbook of Materials Characterization; Sharma, S.,
Ed.; Springer: Cham, Switzerland, 2018; pp. 497–548.

7. Niwa, H.; Horiba, K.; Harada, Y.; Oshima, M.; Ikeda, T.; Terakura, K.; ichi Ozaki, J.; Miyata, S. X-ray
absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts
for polymer electrolyte fuel cells. J. Power Sources 2009, 187, 93–97. [CrossRef]

8. Friebel, D.; Miller, D.J.; O’Grady, C.P.; Anniyev, T.; Bargar, J.; Bergmann, U.; Ogasawara, H.; Wikfeldt, K.T.;
Pettersson, L.G.M.; Nilsson, A. In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys. Chem.
Chem. Phys. 2011, 13, 262–266. [CrossRef]

9. McBreen, J. The application of synchrotron techniques to the study of lithium-ion batteries. J. Solid State
Electrochem. 2009, 13, 1051–1061. [CrossRef]
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