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Abstract: For the first time, waste-seashell-derived CaO catalysts were used as high-performance
solid base catalysts for cyclopentanone self-condensation, which is an important reaction in bio-jet
fuel or perfume precursor synthesis. Among the investigated seashell-derived catalysts, Scapharca
Broughtonii-derived CaO catalyst (S-shell-750) exhibited the highest dimer yield (92.1%), which was
comparable with commercial CaO (88.2%). The activity sequence of different catalysts was consistent
with the CaO purity sequence and contact angle sequence. X-ray diffraction (XRD) results showed
that CaCO3 in waste shell were completely converted to CaO after calcination at 750 ◦C or above
for 4 h. CO2 temperature-programmed desorption (CO2-TPD) results indicate that both the amount
and strength of base sites increase significantly when the calcination temperature climbs to 750 ◦C.
Therefore, we can attribute the excellent performance of S-shell-750/850/950 catalysts to the higher
CaO content, relatively low hydrophilicity, and stronger acidity and basicity of this catalyst. This
study developed a new route for waste shell utilization in bio-derived ketone aldol condensation.
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1. Introduction

With the depleting supplies of fossil fuel and increasing environmental problems, the catalytic
conversion of biomass to fuel and chemicals has been gaining great attention [1–3]. Compared with
other biomass, lignocellulose, which is derived from agricultural waste and forest residues, is much
cheaper and more abundant. Therefore, the synthesis of fuel and chemicals with lignocellulose-derived
platform molecules has been a research hotspot [4–8].

Cyclopentanone is a promising lignocellulose-derived platform molecule in the conversion of
biomass to fuels and chemicals. It can be produced via aqueous-phase selective hydrogenation of
furfural derived from hemicellulose [9,10]. Cyclopentanone can undergo a self-aldol condensation
pathway, and as-obtained dimer can be used as either high-density fuel [11,12] or perfume
precursors [13]. Generally, this reaction was catalyzed by solid base or acid catalysts, for example:
commercial CaO, hydrotalcites [11], MOF-encapsulating phosphotungstic acid [14] or MgO-based
catalysts [15] (as shown in Scheme 1). However, all of these catalysts need to be prepared by
multiple steps or purchased additionally. From the point of view of green chemistry and economic
cost, it is still expected to develop bio-based and cost-effective catalysts with high activity for
cyclopentanone condensation.
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The major constituent of seashells (e.g., clams, conches) is CaCO3, which can be transformed to CaO 
by direct calcination at appropriate temperatures. In previous work, these calcined waste-shell 
derived catalysts were mainly employed to produce biodiesel from transesterification of soybean oil 
[17], palm olein oil [18], etc. In addition, they were also used as pretreatment materials for kraft lignin 
pyrolysis [19]. However, there is no report about using calcined waste shells as aldol condensation 
catalysts of bio-derived ketones. 
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typical waste seashells in Dalian, China, which were chosen as raw materials. After simple 
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Scheme 1. Reaction pathway of cyclopentanone aldol-condensation.

Waste seashells are one of the major food residues in China, especially in the southeastern
coastal areas. The annual production of seafood in China was 35 million tons in 2017. Among these,
the production of mollusks was over 12.7 million tons, which accounts for over 36% [16]. Currently,
the shells of these mollusks are directly discarded. Thus, using these waste seashells as raw materials
for catalyst preparation can not only minimize food residues, but also synthetize cost-effective catalysts.
The major constituent of seashells (e.g., clams, conches) is CaCO3, which can be transformed to CaO by
direct calcination at appropriate temperatures. In previous work, these calcined waste-shell derived
catalysts were mainly employed to produce biodiesel from transesterification of soybean oil [17],
palm olein oil [18], etc. In addition, they were also used as pretreatment materials for kraft lignin
pyrolysis [19]. However, there is no report about using calcined waste shells as aldol condensation
catalysts of bio-derived ketones.

The aim of this paper is to demonstrate the usage of waste seashells as a bio-based and cost-effective
catalyst for cyclopentanone condensation with a high activity. Multiple characterizations were also
investigated to illuminate the reason for activity differences.

2. Results and Discussion

2.1. Catalytic Activity

Scapharca Broughtonii shell (S-shell), conch shell (C-shell), and oyster shell (O-shell) are three typical
waste seashells in Dalian, China, which were chosen as raw materials. After simple pretreatment
(calcined at 950 ◦C for 4 h), three kinds of seashell-derived catalysts were prepared and named as
S-shell-950, C-shell-950, and O-shell-950, respectively.

Figure 1 demonstrates the conversion of cyclopentanone and carbon yield of dimer obtained
under different catalysts. Among the investigated waste seashell catalysts, S-shell-950 exhibited the
best catalytic activity.

From S-shell-950, an 82.2% yield of dimer was achieved, which was comparable with commercial
CaO catalyst (88.2%). C-shell-950 also achieved relatively high activity (dimer yield: 82.1%). However,
dimer yield of O-shell-950 catalyst was not desirable, which was only 4.6%.

Subsequently, the effect of the S-shell calcination temperature on dimer yield was also investigated
(as shown in Figure 2). In the absence of catalyst, no conversion of cyclopentanone was observed.
Likewise, no conversion of cyclopentanone was observed if S-shell was used as a catalyst without
calcination. However, if we calcined S-shell at different temperatures (e.g., S-shell-550 represents
S-shell calcined at 550 ◦C for 4 h), the catalytic activities showed obviously different: the dimer yield
increased significantly when the calcination temperature reached 750 ◦C, then decreased slightly with
the further increment of the calcination temperature. In contrast, trimer can only be detected above
850 ◦C and the yield of trimer was increased with the further increment of the calcination temperature.
Among the investigated catalysts, S-shell-750, S-shell-850 and S-shell-950 exhibited a relatively good
catalytic performance. In particular, S-shell-750 catalyst exhibited the best performance; a 92.1% yield
of dimer was obtained with nearly 100% selectivity. Moreover, catalyst reusability of commercial CaO
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and S-shell-950 in this reaction was comparable (as shown in Figure S1). The evidence above indicates
that commercial CaO can be substituted directly with S-shell catalysts in this condensation reaction.
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Figure 1. Effect of CaO source on carbon yield of dimer. Reaction conditions: 180 ◦C; 4.0 g
cyclopentanone; 1.0 g catalyst; 2 h.
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Figure 2. Effect of S-shell calcination temperature on carbon yield of dimer. Reaction conditions: 180 ◦C;
4.0 g cyclopentanone; 1.0 g S-shell catalyst; 2 h.

2.2. Catalyst Characterization

To get a deeper insight of activity difference of catalysts derived from different sources, multiple
characterizations of the catalysts were performed. According to the results of X-ray diffraction (XRD)
in Figure 3, the only CaO diffraction peaks were detected after all types of waste seashell calcined at
950 ◦C for 4 h. This indicates that the CaCO3 ingredient in waste seashell completely converted to CaO
at pretreatment conditions (calcined at 950 ◦C for 4 h).

The Brunauer-Emmet-Teller (BET) specific surface areas of the investigated catalysts were
characterized by physical adsorption. As the results shown in Table 1, SBET values of four types of
catalysts showed no significant differences, which were around 10 m2 g−1.

However, the CaO content of these catalysts showed obvious variations (as shown in Table 1).
There is an evident correspondence between the activity and the CaO content of catalysts. Among the
investigated waste seashell catalysts, S-shell-950 exhibited the highest purity, which is comparable
with commercial CaO (97.78% vs. 98.00%). The CaO content sequence for the investigated catalysts
was commercial CaO > S-shell-950 > C-shell-950 > O-shell-950, which was consistent with the activity
sequence of catalysts mentioned in Figure 1. This result was also confirmed by SEM-EDS (as shown in
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Figures S2 and S3 in the supporting information). Compared with S-shell and C-shell, O-shell has
more impurity elements (such as Na, Mg, Si, S, Cl), even if calcined at 950 ◦C.

Table 1. Specific Brunauer-Emmet-Teller surface areas (SBET), CaO content, and contact angle of the
calcined shell catalysts.

Catalyst SBET (m2 g−1) 1 CaO Content (%) 2 CA Mean(◦) 3

Commercial CaO 9.69 98.00 16.55
S-shell-950 8.00 97.78 10.42
C-shell-950 11.80 80.34 8.92
O-shell-950 15.73 76.14 5.13

1: measured by physical adsorption, 2: measured by ICP, 3: contact angle-measured by optical contact
angle measurement.

Moreover, the contact angle (CA) of water on the catalyst surface was also measured to evaluate
the hydrophilicity of the catalysts (as shown in Table 1 and Figure 4). The CA sequence of catalysts
was commercial CaO > S-shell-950 > C-shell-950 > O-shell-950. This sequence was also consistent with
the activity sequence of catalysts mentioned in Figure 1. It can be assumed from this result that in this
reaction, the activities of CaO catalysts are also related to its hydrophilicity. The more hydrophilic
a catalyst is, the lower the activity it obtains. This assumption can be supported by following the
literature [20]: CaO catalysts are unavoidably poisoned by atmospheric H2O or produced H2O during
the reaction. Therefore, if a CaO catalyst is hydrophilic, H2O can be absorbed by catalyst more easily,
which leads to bad catalytic activity. In conclusion, the excellent performance of S-shell-950 catalysts
can be explained by two reasons: the high content of CaO and the relatively low hydrophilicity.

Another question to be revealed is the relationship between the calcination temperature and
the catalytic activity of S-shell catalysts. As the XRD results in Figure 5a show, when the calcination
temperature was below 750 ◦C, CaCO3 residue was found in S-shell catalysts. When the calcination
temperature was raised above 750 ◦C, no CaCO3 diffraction peak was observed, which indicated
CaCO3 was completely transformed to CaO. Figure 5b shows the visible effect of the S-shell with
different calcination temperatures. The outside surface of the S-shell transformed from black color
to grey color as the calcination temperature increased, which was owing to the decomposition of
organism residues. When the calcination temperature was above 750 ◦C, the calcined shell became
fragile and easy to mill into powder. The abovementioned results indicate that CaCO3 in S-shell was
completely transformed into CaO after calcination at 750 ◦C or above.Catalysts 2019, 9, x FOR PEER REVIEW 4 of 9 
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for 4 h.
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Figure 4. Contact angle of water on catalysts. (a) commercial CaO; (b) S-shell-950; (c) C-shell-950;
(d) O-shell-950.
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Figure 5. (a) XRD pattern of S-shell catalysts. (b) The original appearance of S-shell and visible
alterations of appearance after calcination at 550–950 ◦C for 4 h.

In addition, CO2 temperature-programmed desorption (CO2-TPD) and NH3-TPD of S-shell
catalysts were also carried out. From the results shown in Figure 6 and Table 2, we can see the
calcination temperature has a strong influence on the base sites amount and base strength of the
catalysts. When the calcination temperature increased to 750 ◦C, the amount of base sites and base
strength both increased significantly. Likewise, the amount of acid sites was also increased with
the increment of the calcination temperature, but the amount was relatively low, which was only
~10µmol g−1. Among the investigated S-shell catalysts, S-shell-750, S-shell-850, and S-shell-950 catalysts
have relatively stronger basicity and acidity. Therefore, we can attribute the excellent performance of
S-shell-750/850/950 to the higher CaO content, relatively low hydrophilicity, and stronger acidity and
basicity of these catalysts.
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Figure 6. (a) CO2 temperature-programmed desorption (CO2-TPD) profiles of S-shell calcined at
different temperatures. (b) NH3-TPD profiles of S-shell calcined at different temperatures.

Table 2. The amounts of acid sites or base sites of S-shell calcined at different temperatures.

Catalysts Base Sites Amount (µmol g−1) Acid Sites Amount (µmol g−1)

S-shell
S-shell-550 1.93 2.04
S-shell-650 72.79 9.47
S-shell-750 496.83 16.48
S-shell-850 744.34 14.92
S-shell-950 428.32 5.34

3. Materials and Methods

3.1. Materials and Catalyst Preparation

Waste seashells were collected from home food residue with subsequent washing and drying.
Before activity testing, the seashells were calcined in a muffle furnace at the proper temperature for 4 h
and milled into powders. Commercial CaO and cyclopentanone were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China).

3.2. Characterization of Catalysts

3.2.1. X-ray Diffraction (XRD)

XRD patterns of different CaO catalysts were recorded with a Shimadzu X-Ray diffractometer
XRD-6100 from Shimadzu, Japan, using Cu target at a scan speed of 5◦ min−1. Before tests, the CaO
catalysts were calcined at the required temperature for 4 h in a muffle furnace.

3.2.2. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

The actual CaO contents in catalysts were measured by ICP-OES (Perkin-Elmer Optima 8000,
Waltham, MA, USA). Before tests, the different CaO catalysts were calcined at 950 ◦C for 4 h. Based on
the Ca contents, the CaO contents were calculated as follow:

CaO content =
Ca content

M(Ca)
×M(CaO) × 100%

M(Ca): 40.0; M(CaO): 56.0
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3.2.3. Physical Adsorption

The specific Brunauer-Emmet-Teller surface areas (SBET) of the CaO catalysts were measured by
nitrogen physisorption at 77 K using an ASAP 2020 PLUS HD88 apparatus (Micromeritics, Norcross,
Georgia, USA). Before the measurements, the samples were evacuated at 573 K for 3 h.

3.2.4. Chemi-Sorption

The basicity of S-shell catalysts was characterized by CO2 temperature-programmed desorption
(CO2-TPD) experiments on a PCA-1200 chemi-adsorption analyzer provided by Biaode electronic
technology CO.,LTD (Beijing, China). For each test, the sample was placed in a quartz reactor, pretreated
in He flow at its preparation temperature for 1 h, and cooled down in He flow to 80 ◦C. After the
saturated adsorption of CO2, the sample was purged with He at 80 ◦C for 45 min to remove the
physically adsorbed CO2. The desorption of CO2 was carried out in He flow from 80 ◦C to 800 ◦C at a
heating rate of 10 ◦C/min.

The acidity of the solid base catalysts was measured with NH3-TPD on the same catalyst
characterization system as we used in CO2-TPD. For each test, the sample was placed in a quartz
reactor. Before the measurement, the sample was purged with He flow at 120 ◦C for 2 h. After the
saturated adsorption of NH3 at 120 ◦C, the sample was maintained at 100 ◦C in He flow for 45 min to
remove the physically adsorbed ammonia. The desorption of NH3 was conducted in He flow from
100 ◦C to 800 ◦C at a heating rate of 10 ◦C/min.

3.2.5. Contact Angle

The contact angle (CA) of water on catalyst surface was observed by Biolin Scientific Attension®

Theta Flex (Gothenburg, Sweden).

3.2.6. Activity Test

The self-aldol condensation of cyclopentanone was conducted in a 20 mL stainless steel batch
reactor with Teflon lining. Typically, 4.0 g cyclopentanone and 1.0 g catalyst were used. Before each
reaction, the reactor was purged with nitrogen for 30 s. Then the reactor kept stirring at 180 ◦C for
2 h. After the reaction, the reactor was quenched to room temperature with water. The products were
taken out and dissolved in 96 g 1% cyclohexanone (internal standard)—ethanol solution. The solution
was filtrated, diluted with ethanol, and analyzed by a Varian 450-GC. Before the test, the catalysts were
calcined at the required temperature.

4. Conclusions

CaO catalysts derived from three types of waste seashell were first reported as active catalysts
in cyclopentanone self-aldol condensation. Among the investigated catalysts, S-shell-750 catalyst
exhibited the highest catalytic activity and selectivity (dimer yield: 92.1%; selectivity: up to 100%),
which was comparable with commercial CaO (dimer yield: 88.2%). According to the results of multiple
characterizations, the excellent catalytic performance of S-shell catalysts can be rationalized by its
relatively higher CaO content, low hydrophilicity, and stronger basicity/acidity. In this reaction,
commercial CaO can be substituted directly by S-shell-750 catalyst. This work developed a new route
for using cost-effective bio-based catalysts for biomass platform chemical conversion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/8/661/s1,
Figure S1: Catalyst reusability of commercial CaO and S-shell-950 catalysts. Reaction conditions: 4.0 g
cyclopentanone; 1.0 g catalyst; 180 ◦C; 2h. Catalysts were regenerated by calcination at 950 ◦C for 4 h.
Figure S2: SEM-EDS data of catalysts before calcination. (a) commercial CaO; (b) S-shell; (c) C-shell; (d) O-shell.
Figure S3: SEM-EDS data of catalysts after calcination at 950 ◦C. (a) commercial CaO; (b) S-shell-950; (c) C-shell-950;
(d) O-shell-950.

http://www.mdpi.com/2073-4344/9/8/661/s1
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