Fast Method for Testing the Photocatalytic Performance of Modified Gypsum
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Photocatalytic Activity Tests
3.2.1. Dye Decomposition
3.2.2. NOx Decomposition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.; Jia, C.; Cao, Y.; Yao, Y.; Xie, S.; Zhang, S.; Lin, H. Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process. Green Chem. 2019, 21, 1668–1679. [Google Scholar] [CrossRef]
- Didaskalou, C.; Kupai, J.; Cseri, L.; Barabas, J.; Vass, E.; Holtzl, T.; Szekely, G. Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catal. 2018, 8, 7430–7438. [Google Scholar] [CrossRef]
- Wilson, A.N.; Dutta, A.; Black, B.A.; Mukarakate, C.; Magrini, K.; Schaidle, J.A.; Michener, W.E.; Becham, G.T.; Nimlos, M.R. Valorization of aqueous waste streams from thermochemical biorefineries. Green Chem. 2019, 21, 4217–4230. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zeng, J.; Lei, H.; Yang, W.; Zhang, Q. Direct Electrodeposition of Phosphorus-Doped Nickel Superstructures from Choline Chloride–Ethylene Glycol Deep Eutectic Solvent for Enhanced Hydrogen Evolution Catalysis. ACS Sustain. Chem. Eng. 2019, 7, 1529–1537. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, T.; Deng, L.; Li, P.; Wang, X.; Hsiao, B.S. Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu(II) and sustainable catalytic applications A Physicochemical and engineering aspects. Colloid Surf. 2018, 558, 228–241. [Google Scholar] [CrossRef]
- DIN German Institute for Standardization. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 1: Removal of Nitric Oxide; Beuth Verlag GmbH: Berlin Germany, 2007. [Google Scholar]
- Italian Standards, Determination of The Degradation of Nitrogen Oxides in the Air by Inorganic Photocatalytic Materials: Continuous Flow Test Method 91.100.01. 2010. Available online: https://infostore.saiglobal.com/en-gb/Standards/UNI-11247-2007-677718/ (accessed on 18 April 2019).
- German Institute for Standardization. Photocatalytic Activity of Surfaces—Determination of the Photocatalytic Deposition Velocity of Nitrogen Monoxide at Photocatalytically Active Surfaces; Beuth Verlag GmbH: Berlin, Germany, 2016. [Google Scholar]
- DIN German Institute for Standardization. Photocatalysis—Continuous Flow Test Methods—Part 1: Determination of the Degradation of Nitric Oxide (NO) in the Air by Photocatalytic Materials; Beuth Verlag GmbH: Berlin, Germany, 2017. [Google Scholar]
- Amrhein, K.; Stephan, D. Principles and test methods for the determination of the activity of photocatalytic materials and their application to modified building materials. Photochem. Photobiol. Sci. 2011, 10, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.L.; Dondi, M.; Raimondo, M.; Hotza, D. Photocatalytic ceramic tiles: Challenges and technological solutions. J. Europ. Cer. Soc. 2018, 38, 1002–1017. [Google Scholar] [CrossRef]
- Binas, V.; Papadaki, D.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Study of innovative photocatalytic cement based coatings: The effect of supporting materials. Const. Build. Mater. 2018, 168, 923–930. [Google Scholar] [CrossRef]
- Peng, F.; Ni, Y.; Zhou, Q.; Kou, J.; Lu, C.; Xu, Z. New g-C3N4 based photocatalytic cement with enhanced visible-light photocatalytic activity by constructing muscovite sheet/SnO2 structures. Const. Build. Mater. 2018, 179, 315–325. [Google Scholar] [CrossRef]
- Wang, D.; Hou, P.; Zhang, L.; Xie, N.; Yang, P.; Cheng, X. Photocatalytic activities and chemically-bonded mechanism of SiO2@TiO2 nanocomposites coated cement-based materials. Mater. Res. Bull. 2018, 102, 262–268. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Torres-Martínez, L.M.; Cantú-Castro, L.V.F. Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4. Constr. Build. Mater. 2019, 220, 206–213. [Google Scholar] [CrossRef]
- Krutsko, E.N.; Musskaya, O.N.; Kulak, A.I.; Krut’ko, V.K. Photocatalytc Activation of Gypsum Cements. Russ. J. Appl. Chem. 2017, 90, 51–57. [Google Scholar] [CrossRef]
- Janus, M.; Bubacz, K.; Zatorska, J.; Kusiak-Nejman, E.; Czyżewski, A.; Morawski, A.W. NOx photocatalytic degradation on gypsum plates modified by TiO2-N,C photocatalysts. Pol. J. Chem. Technol. 2015, 17, 8–12. [Google Scholar] [CrossRef]
- Janus, M.; Zatorska, J.; Zając, K.; Kusiak-Nejman, E.; Czyżewski, A.; Morawski, A.W. The mechanical and photocatalytic properties of modified gypsum materials. Mater. Sci. Eng. B 2018, 236–237, 1–9. [Google Scholar] [CrossRef]
- Zając, K.; Janus, M.; Morawski, A.W. Improved Self-Cleaning Properties of Photocatalytic Gypsum Plaster Enrich with Glass Fiber. Materials 2019, 12, 357. [Google Scholar] [CrossRef] [PubMed]
- Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Zając, K.; Janus, M.; Kuźmiński, K.; Morawski, A.W. Preparation of gypsum building materials with photocatalytic properties. A strong emphasis on waste gypsum from flue gas desulfurization. Przemysł Chemiczny 2016, 95, 2222–2226. [Google Scholar]
- Ehm, C.; Stephan, D. Site resolved optical detection of photocatalysis on building materials. J. Photochem. Photobiol. A 2018, 366, 97–102. [Google Scholar] [CrossRef]
Time [s] | Gypsum | Gypsum + 1%TiO2/N | Gypsum + 3%TiO2/N | Gypsum + 5%TiO2/N |
---|---|---|---|---|
0 | ||||
12 | ||||
24 | ||||
36 | ||||
48 | ||||
60 | ||||
72 | ||||
84 | ||||
96 | ||||
108 | ||||
120 | ||||
132 |
Numbers of Layers | Discoloration Time (s) |
---|---|
1 | 30 |
2 | 69 |
3 | 93 |
4 | 102 |
5 | 120 |
6 | 135 |
7 | 139 |
8 | 174 |
Cycle Number | Discoloration Time (s) |
---|---|
1 | 87 |
2 | 96 |
3 | 111 |
4 | 126 |
5 | 144 |
Phase Participation (%) | Crystal Size of Anatase (nm) | SBET (m2 g−1) | EG (eV) | Izoelectric Point pHpzc | ||
---|---|---|---|---|---|---|
Anatase | Rutile | Amorphous | ||||
31.9 | 3.0 | 65.1 | 10.8 | 235 | 3.2 | 5.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janus, M.; Zając, K.; Ehm, C.; Stephan, D. Fast Method for Testing the Photocatalytic Performance of Modified Gypsum. Catalysts 2019, 9, 693. https://doi.org/10.3390/catal9080693
Janus M, Zając K, Ehm C, Stephan D. Fast Method for Testing the Photocatalytic Performance of Modified Gypsum. Catalysts. 2019; 9(8):693. https://doi.org/10.3390/catal9080693
Chicago/Turabian StyleJanus, Magdalena, Kamila Zając, Clemens Ehm, and Dietmar Stephan. 2019. "Fast Method for Testing the Photocatalytic Performance of Modified Gypsum" Catalysts 9, no. 8: 693. https://doi.org/10.3390/catal9080693
APA StyleJanus, M., Zając, K., Ehm, C., & Stephan, D. (2019). Fast Method for Testing the Photocatalytic Performance of Modified Gypsum. Catalysts, 9(8), 693. https://doi.org/10.3390/catal9080693