
crystals

Article

The Na2−nHn[Zr(Si2O7)]·mH2O Minerals and Related
Compounds (n = 0–0.5; m = 0.1): Structure
Refinement, Framework Topology, and Possible
Na+-Ion Migration Paths

Natalya A. Kabanova 1,2, Taras L. Panikorovskii 1,3,* , Vladimir V. Shilovskikh 4 ,
Natalya S. Vlasenko 4, Victor N. Yakovenchuk 5, Sergey M. Aksenov 1 ,
Vladimir N. Bocharov 4 and Sergey V. Krivovichev 3,6

1 Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Kola Science Centre,
Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; n.kabanova@ksc.ru (N.A.K.);
s.aksenov@ksc.ru (S.M.A.)

2 Samara Center for Theoretical Materials Science, Samara State Technical University,
Molodogvardeyskaya Str. 244, 443100 Samara, Russia

3 Crystallography Department, Institute of Earth Sciences, St. Petersburg State University, University emb. 7/9,
199034 Petersburg, Russia; s.krivovichev@ksc.ru

4 Geo Environmental Centre “Geomodel”, Saint–Petersburg State University, Ul’yanovskaya Str. 1,
198504 Petersburg, Russia; vova_bel@mail.ru (V.V.S.); n.vlasenko@spbu.ru (N.S.V.);
bocharov@molsp.phys.spbu.ru (V.N.B.)

5 Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity,
Russia; v.yakovenchuk@ksc.ru

6 Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14,
184209 Apatity, Russia

* Correspondence: t.panikorovskii@ksc.ru; Tel.: +7-8155-579-628

Received: 26 October 2020; Accepted: 6 November 2020; Published: 9 November 2020
����������
�������

Abstract: The Na2−nHn[Zr(Si2O7)]·mH2O family of minerals and related compounds (n = 0–0.5; m
= 0.1) consist of keldyshite, Na3H[Zr2(Si2O7)2], and parakeldyshite, Na2[Zr(Si2O7)], and synthetic
Na2[Zr(Si2O7)]·H2O. The crystal structures of these materials are based upon microporous
heteropolyhedral frameworks formed by linkage of Si2O7 groups and ZrO6 octahedra with internal
channels occupied by Na+ cations and H2O molecules. The members of the family have been
studied by the combination of theoretical (geometrical–topological analysis, Voronoi migration map
calculation, structural complexity calculation), and empirical methods (single-crystal X-ray diffraction,
microprobe analysis, and Raman spectroscopy for parakeldyshite). It was found that keldyshite
and parakeldyshite have the same fsh topology, while Na2ZrSi2O7·H2O is different and has the xat
topology. The microporous heteropolyhedral frameworks in these materials have a 2-D system of
channels suitable for the Na+-ion migration. The crystal structure of keldyshite can be derived from
that of parakeldyshite by the Na+ + O2−

↔ OH− + � substitution mechanism, widespread in the
postcrystallization processes in hyperagpaitic rocks.

Keywords: keldyshite; parakeldyshite; crystal structure; ion migration; transformation; Raman
spectroscopy; Voronoi analysis; topology

1. Introduction

Microporous zirconosilicates attract considerable interest as ionic conductors, molecular sieves,
and ion exchangers [1–3]. Among them, compounds with the NASICON-type structures are considered
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as ionic conductors, while sodium amphoterosilicates (e.g., ETS-4) are of interest as selective adsorbents
for 137Cs and 90Sr radioactive isotopes [2,4–10]. The beginning of the study of zirconium silicate
was stimulated by the discovery of keldyshite-group minerals in the Lovozero alkaline massif, Kola
peninsula, Russia [11–15].

Keldyshite, (Na,H)2[Zr(Si2O7)], was discovered in 1962 and the further detailed study of its
holotype material indicated the existence in the mineral sample of polysynthetic intergrowths
of two phases Na3HZr2(Si2O7)2 and Na2[Zr(Si2O7)] (renamed as keldyshite and parakeldyshite,
respectively) [16]. The crystal-structure model for parakeldyshite was proposed in 1970 [17] and
confirmed in 1974 [18]. The crystal structure of keldyshite was determined in 1978 [19], when the
similarity between the crystal structures of keldyshite and parakeldyshite was demonstrated. The “M-34
phase” with the idealized chemical formula NaH[Zr2(Si2O7)]·H2O was discovered in the samples of
parakeldyshite from Khibiny alkaline massif, but its crystal structure remains unknown [16].

General mineralogical and structural relationships between keldyshite, parakeldyshite, and the
“M-34 phase” allowed establishment of the ‘parakeldyshite → keldyshite → “M-34 phase”’
transformational group of minerals (similar to the ‘kazakovite → tisinalite’ [20], ‘zirsinalite →
lovozerite’ [21], etc. series). Within each group, transformation of the minerals is induced by
ion-exchange reactions under natural conditions [22–26].

Synthetic zirconium silicates related to keldyshite are known [5,6] and can be obtained by different
methods: (i) by crystallization from a melt at the temperature range 1000–1250 ◦C or (ii) by the
hydrothermal technique at the temperatures of 450–500 ◦C [1,3]. Recently, an alternative model of
the arrangement of Na cations in parakeldyshite was obtained [27] and the phase Na2ZrSi2O7·H2O
was discovered, which is close in composition to the M-34 phase [28]. Keldyshite-related compounds
have serious potential for their use in the purification of gases from sulfur dioxide in the production
of sulfuric acid and heavy non-ferrous metals from sulfide ores [29]. Further work determined the
presence of ion-exchange properties in the new zirconosilicate minerals discovered on the territory of
the Kola alkaline province [27,30–32].

In this paper, we report the results of the theoretical analysis of the Na+-ion migration paths in
the crystal structures of keldyshite, parakeldyshite, and zirconium silicate Na2[Zr(Si2O7)]·H2O using
a geometrical and topological approach [33,34]. The crystal structure of parakeldyshite was refined
using the sample from albitized pegmatite at Takhtarvumchorr Mt., Khibiny alkaline massif, Russia.
The transformational nature of keldyshite-related minerals is discussed.

2. Materials and Methods

2.1. Sample

A sample of parakeldyshite was collected from albitized pegmatites at the Takhtarvumchorr Mt.
(Khibiny massif). Albitites are composed of a fine-fine-grained aggregate of lamellar albite with lenses
(up to 1 × 0.5 m) of sugar-like apatite. The mass contains flattened prismatic crystals of enigmatite,
flakes and radial-radiant aggregates of molybdenite, plates of ilmenite and pyrrhotite, and dark-orange
prismatic spherulites of pale cream fibrous сhirvinskyite. Parakeldyshite was found as transparent
barley-like crystals up to 2 mm long, with the marginal zones replaced by powdery precipitates of
the “M-34 phase” [22] with the chemical composition NaH[Zr(Si2O7)] (Figure 1). In association with
parakeldyshite, spherulites of сhirvinskyite, lemon-yellow radial-radial aggregates, and individual
prismatic crystals of titanite (partially replaced by lorenzenite, eudialyte, and zircon grains) have
been observed.
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Figure 1. Powdered aggregates of parakeldyshite/keldyshite (1) in association with eudialyte (2), 
aegirine (3), albite (4), and låvenite (5) in albitized pegmatite in foyaites at Takhtarvumchorr Mt. 

2.2. Composition 

The chemical composition of parakeldyshite was determined at the ‘Geomodel’ resource center 
of St. Petersburg State University using the scanning electron microscope Hitachi S-3400N equipped 
by INCA 500 WDS detector operating at 20–30 nA and 20 kV. The analyses were performed with the 
beam size of 5 μm and the counting time of 10–20/10 s on peaks/background for each chemical 
element. Quartz (Si), corundum (Al), calcite (Ca), halite (Na), zircon (Zr), rutile (Ti), hematite (Fe), 
celestine (Sr), and rhodonite (Mn) were used as standards. An average chemical composition based 
on 5 analyzes (in wt.%): ZrO2 39.95, Na2O 20.02 SiO2 39.41, sum 99.38 The empirical formula 
calculated per 5 cations can be written as: Na1.99Zr0.99Si2.02O7.015. 

2.3. Single-Crystal X-Ray Diffraction 

The crystal-structure studies of parakeldyshite were carried out at the X-ray Diffraction 
Resource Centre of St. Petersburg State University on an Agilent Technologies Xcalibur EOS 
diffractometer equipped with the CCD detector using monochromatic MoKα radiation (λ = 0.71069 
Å) at room temperature. More than a hemisphere of diffraction data was collected (scanning step 1°, 
exposure time 10 s). The absorption correction was done empirically using spherical harmonics 
implemented in the SCALE ABSPACK calibration algorithm in the CrysAlysPro software package 
[35]. The unit-cell parameters were determined and refined by the least squares method using 1364 
independent reflections. The structure was refined using the SHELXL software package [36]. The 
data are deposited in CCDC under Entry No. 22040710. The coordination number of Na determined 
by number bonds with maximal length constrained 3.10 Å. Crystal data, data collection information, 
and refinement details are given in Table 1. Atom coordinates and isotropic parameters of atomic 
displacements are given in Table S1, interatomic distances in Table S2, and the anisotropic parameters 
of atomic displacements are given in Table S3. 

Figure 1. Powdered aggregates of parakeldyshite/keldyshite (1) in association with eudialyte (2),
aegirine (3), albite (4), and låvenite (5) in albitized pegmatite in foyaites at Takhtarvumchorr Mt.

2.2. Composition

The chemical composition of parakeldyshite was determined at the ‘Geomodel’ resource center
of St. Petersburg State University using the scanning electron microscope Hitachi S-3400N equipped
by INCA 500 WDS detector operating at 20–30 nA and 20 kV. The analyses were performed with the
beam size of 5 µm and the counting time of 10–20/10 s on peaks/background for each chemical element.
Quartz (Si), corundum (Al), calcite (Ca), halite (Na), zircon (Zr), rutile (Ti), hematite (Fe), celestine (Sr),
and rhodonite (Mn) were used as standards. An average chemical composition based on 5 analyzes
(in wt.%): ZrO2 39.95, Na2O 20.02 SiO2 39.41, sum 99.38 The empirical formula calculated per 5 cations
can be written as: Na1.99Zr0.99Si2.02O7.015.

2.3. Single-Crystal X-ray Diffraction

The crystal-structure studies of parakeldyshite were carried out at the X-ray Diffraction Resource
Centre of St. Petersburg State University on an Agilent Technologies Xcalibur EOS diffractometer
equipped with the CCD detector using monochromatic MoKα radiation (λ = 0.71069 Å) at room
temperature. More than a hemisphere of diffraction data was collected (scanning step 1◦, exposure
time 10 s). The absorption correction was done empirically using spherical harmonics implemented in
the SCALE ABSPACK calibration algorithm in the CrysAlysPro software package [35]. The unit-cell
parameters were determined and refined by the least squares method using 1364 independent reflections.
The structure was refined using the SHELXL software package [36]. The data are deposited in CCDC
under Entry No. 22040710. The coordination number of Na determined by number bonds with
maximal length constrained 3.10 Å. Crystal data, data collection information, and refinement details
are given in Table 1. Atom coordinates and isotropic parameters of atomic displacements are given in
Table S1, interatomic distances in Table S2, and the anisotropic parameters of atomic displacements are
given in Table S3.
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Table 1. Crystal data, data collection information, and refinement details for parakeldyshite from
Takhtarvumchorr Mt., Khibiny, Russia.

Parameter Data

Temperature/K 293(2)
Crystal system triclinic

Space group P1
a/Å 5.4243(6)
b/Å 6.5923(5)
c/Å 8.8083(6)
α/◦ 71.309(7)
β/◦ 87.162(8)
γ/◦ 85.497(8)

Volume/Å3 297.34(5)
Z 2

ρcalc/g cm–3 3.411
µ/mm-1 2.388
F(000) 292.0

Crystal size/mm3 0.17 × 0.12 × 0.11
Radiation Mo Kα (λ = 0.71073)

2θ range for data collection/◦ 6.538 to 54.986
Index ranges −5 ≤ h ≤ 7, −8 ≤ k ≤ 8, −11 ≤ l ≤ 10

Reflections collected 2296
Independent reflections 1364 [Rint = 0.0221, Rσ = 0.0362]

Data/restraints/parameters 1364/0/109
Goodness-of-fit on F2 1.120

Final R indexes [I ≥ 2σ(I)] R1 = 0.0237, wR2 = 0.0602
Final R indexes [all data] R1 = 0.0256, wR2 = 0.0616

Largest diff. peak/hole/e Å−3 0.79/−0.69

2.4. Geometrical–Topological Analysis

Geometrical–topological analysis of the crystal structures of keldyshite-related compounds was
carried out using algorithms implemented in the ToposPro software package (https://topospro.com/) [33].
Maps of the migration of Na+-ions were constructed by the Voronoi method, which was shown to be
efficient for various types of ionic conductors [34,37,38]. The radius of an elementary channel (Rchan)
suitable for Na+-ion migration was chosen as 2.0 Å, similar to that reported previously [38,39].

Topological analysis of the crystal structures of keldyshite-related compounds also included
the determination of the type basic grid, the construction of tiling, and the search for topologically
similar inorganic compounds. The base grid is a graph whose vertices are the centers of gravity of the
structural units, i.e., SiO4 tetrahedra and ZrO6 octahedra [40]. After contraction of doubly connected
nodes (“bridging” oxygen atoms), a 4,6-coordinated grid was obtained (Figure 2).

The topological classification of the atomic nets in crystal structures was carried out in accordance
with the following basic principle [41]: atomic nets with the same set of topological indices (coordination
sequence, vertex symbols) belong to the same topological type [42]. In the case of the presence of
stable polyhedral units in the crystal structure, the classification was carried out according to the basic
grid [40]. Determination of the topological mesh type was performed using the ToposPro complex of
the TopCryst web service (http://topcryst.com), which contains data on about 190,000 topological types
of the nets.

The tiling theory, which is actively used to study and analyze the crystal structures of zeolites [43]
and zeolite-related materials with heteropolyhedral frameworks [44–46], was introduced and developed
by M. O’Keeffe [47]. This approach allows study of the smallest cavities in inorganic frameworks that
can be used to fill the entire crystal space [47]. Since the grids in the crystal structures of keldyshite
and parakeldyshite have the same topology, the set of tilings in these structures is the same.

https://topospro.com/
http://topcryst.com
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Figure 2. Basic net representation for the crystal structure of keldyshite.

2.5. Raman Spectroscopy

The Raman spectrum (RS) was obtained using a Horiba Jobin-Yvon LabRam HR 800 spectrometer
(Geomodel Resource Center, St. Petersburg State University) from the surface of a parakeldyshite
crystal at room temperature and a wavelength of 514 nm in the range from 4000 to 80 cm−1. The baseline
correction was carried out using the algorithms implemented in the OriginPro 8.1 software package.

3. Results

3.1. Single-Crystal X-ray Diffraction

The crystal structures of microporous zirconium silicates are based upon frameworks consisting
of ZrO6 octahedra and SiO4 tetrahedra linked via common O atoms. According to the structural
classification proposed by Ilyushin and Blatov [40], the crystal structures of keldyshite, NaH[Zr(Si2O7)],
parakeldyshite, Na2[Zr(Si2O7)], and Na2[Zr(Si2O7)]·H2O contain polyhedral microensembles (PME)
MT6 of the A-1 type (Figure 3).
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Figure 3. Polyhedral microensemble of MT6-type forms the frameworks in the crystal structures of
parakeldyshite, keldyshite, and the phase Na2[Zr(Si2O7)]·H2O.

In the terms proposed in [5], the crystal structure of parakeldyshite can be described as a
framework consisting of the M2T4-type secondary building units (SBUs) with Na atoms in adjacent
cavities (Figure 4a). Each ZrO6 octahedron is linked to six SiO4 tetrahedra, which in turn are linked to
two Zr octahedra each.
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only one independent Na site with sevenfold coordination. The uneven distribution of Na in 
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changes significantly as can be clearly seen in the projection of the MT layer (Figure 6b). 

The crystal structure of Na2[Zr(Si2O7)]∙H2O is based on the M2T6 type of SBUs (Figure 4c). As in 
the structures of keldyshite and parakeldyshite, the ZrO6 octahedron is linked through common 
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difference of the MT-framework (Figure 5c) from those observed in keldyshite and parakeldyshite is 

Figure 4. Secondary building units (SBUs) in Na-zirconosilicates: (a) M2T4-block in the crystal structure
of parakeldyshite; (b) M2T4-block in the crystal structure of keldyshite; (c) M2T6-block in the crystal
structure of the Na2ZrSi2O7 H2O phase.

The crystal structure of parakeldyshite from albitized pegmatite of Takhtarvumvorr Mt., Khibiny,
Russia was solved in the space group P1 and refined to final R1 = 0.024 [for 1364 F2 > 4σ(F2)]. In general,
the structure model proposed in [17] was confirmed. The bond lengths in polyhedra vary significantly
and are equal to 2.047-2.139(2), 1.601-1.672(2), 1.600-1.669(2), 2.443-2.913(3), and 2.384-2.913(3) Å for
the ZrO6, Si1O4, Si2O4, Na1O8, and Na2O7 polyhedra, respectively. The degrees of distortion of
polyhedra (based on bond lengths) calculated according to Baur [48] for the Si1O4, Si2O4, ZrO6,
Na1O8, and Na2O7 polyhedra are equal to 0.01369, 0.01171, 0.01626, 0.04376, and 0.07001, respectively.
According to our data, there are no additional Na sites described in [27]. In contrast to keldyshite, there
are two independent positions of Na1 and Na2 with a coordination number (CN) of 8, respectively,
in the crystal structure of parakeldyshite (Figure 5a).
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The crystal structure of keldyshite (Figure 5b) differs from that of parakeldyshite and contains only
one independent Na site with sevenfold coordination. The uneven distribution of Na in keldyshite
results in the slight framework deformation manifested by the change of the Si–O–Si angle of 126.7(9)◦

compared to 127.7(8)◦ in parakeldyshite. At the same time, the shape of the channels changes
significantly as can be clearly seen in the projection of the MT layer (Figure 6b).

The crystal structure of Na2[Zr(Si2O7)]·H2O is based on the M2T6 type of SBUs (Figure 4c). As in
the structures of keldyshite and parakeldyshite, the ZrO6 octahedron is linked through common vertices
to six SiO4 tetrahedra, each connected to three Zr-centered octahedra. The topological difference of the
MT-framework (Figure 5c) from those observed in keldyshite and parakeldyshite is confirmed by the
different value of the Si-О-Si angle equal to 156.96(9)◦. The increasing Si-O-Si angle corresponds to the
increasing size of the structure channels (Figure 6c,f).



Crystals 2020, 10, 1016 7 of 14

Crystals 2020, 10, x FOR PEER REVIEW 7 of 15 

 

confirmed by the different value of the Si‒О‒Si angle equal to 156.96(9)°. The increasing Si-O-Si angle 
corresponds to the increasing size of the structure channels (Figure 6c,f). 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 6. Projections of the MT layers in the crystal structures of (a,d) parakeldyshite; (b,e) keldyshite; 
(c,f) Na2[Zr(Si2O7)]∙H2O. 

3.2. Topological Analysis 

The topological type of the base grid in the crystal structures of keldyshite and parakeldyshite 
is fsh, while that in Na2[Zr(Si2O7)]∙H2O is xat (Figure 7). Table 2 shows data on related inorganic 
compounds of the fsh and xat topological types. Keldyshite and parakeldyshite consists of one type 
of the [43.63] tiles formed by three four-membered rings and three six-membered rings (Figure 8). In 
the case of Na2[Zr(Si2O7)]∙H2O, there are two types of tiles: [63] t-kah and [46.63] t-afo (Figure 8). Na 
atoms are located inside all [43.63] tiles in parakeldyshite and only half of these tiles are filled in 
keldyshite. In the crystal structure of Na2[Zr(Si2O7)]∙H2O, one Na site is located in the t-kah tile, 
whereas another one is within the t-afo tile. 

Figure 6. Projections of the MT layers in the crystal structures of (a,d) parakeldyshite; (b,e) keldyshite;
(c,f) Na2[Zr(Si2O7)]·H2O.

3.2. Topological Analysis

The topological type of the base grid in the crystal structures of keldyshite and parakeldyshite
is fsh, while that in Na2[Zr(Si2O7)]·H2O is xat (Figure 7). Table 2 shows data on related inorganic
compounds of the fsh and xat topological types. Keldyshite and parakeldyshite consists of one type
of the [43.63] tiles formed by three four-membered rings and three six-membered rings (Figure 8).
In the case of Na2[Zr(Si2O7)]·H2O, there are two types of tiles: [63] t-kah and [46.63] t-afo (Figure 8).
Na atoms are located inside all [43.63] tiles in parakeldyshite and only half of these tiles are filled
in keldyshite. In the crystal structure of Na2[Zr(Si2O7)]·H2O, one Na site is located in the t-kah tile,
whereas another one is within the t-afo tile.Crystals 2020, 10, x FOR PEER REVIEW 8 of 15 
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Table 2. Examples of inorganic compounds with the grids of the fsh or xat topological type.

Formula Space Group Topology ICSD Code Ref.

NaH[Zr(Si2O7)]
keldyshite P1 fsh 20186 [47]

Na2[Zr(Si2O7)]
parakeldyshite P1 fsh – This work

K2[Zr(Si2O7)]
khibinskite P21/b fsh 20100 [49]

K2[Zr(Ge2O7)] C2/c fsh 88843 [50]
K2[Cd(P2O7)] C2/c fsh 12117 [51]
Na[Ti(P2O7)] P21/c fsh 202751 [52]

Na2[SiVI(SiIV2O7) C2/c fsh 81134 [53]
Na2[Zr(Si2O7)]·H2O C2/c xat 419420 [28]

K[Y(P2O7)] Cmcm xat 75171 [54]
Ba6Dy2Al4O15 Cmcm xat 85071 [55]

Si(P2O7) P63 xat 75116 [56]
Tm(BO3) P6c2 xat 27942 [57]

Na3[Sc(Si2O7)] Pbnm xat 20120 [58]
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3.3. Raman Spectroscopy

The Raman spectrum of parakeldyshite from the albitites of Takhtarvumchorr Mt. is shown in
(Figure 9). The most intense spectral lines are similar to those for parakeldyshite from the Alluaiv Mt.,
Lovozero alkaline massif [52], RRUF, 120048 [59]. The bands in the range 850–1020 cm−1 correspond to
stretching vibrations of Si-O bonds. Two intense absorption bands at 968 and 1017 cm−1 are attributed
to asymmetric stretching vibrations of Si-O-Si bonds, while three bands at 850, 905, and 941 cm−1 are
attributed to symmetric vibration modes of similar bonds [60–62]. The non-typical band at 718 cm−1

can be associated with symmetric stretching vibrations of the Si-O-Si bridging oxygen in sorosilicate
groups [63]. The bands in the range 450–600 cm−1 correspond to asymmetric bending vibrations of
Si-O bonds in tetrahedra [62]. Bands of different intensities in the region 350–450 cm−1 belong to
symmetric deformation vibration modes in SiO4 tetrahedra [63]. The most intense absorption band at
331 cm−1 is attributed to bending vibration modes of the Zr-O bonds in octahedra, and the bands in the
range 90–300 cm−1 correspond to symmetric bending vibrations of bonds in octahedra or translational
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vibrations [64]. The absence of bands in the region 3000–3800 cm−1 (Figure S1) indicates the absence of
OH groups in the structure of parakeldyshite, confirming its unchanged nature.
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4. Discussion

According to the approach of matrix (self)assembly of the crystal structures from SBUs proposed
by Ilyushin for sodium zirconium silicates, all possible SBUs variants are defined as М2Тn (n = 2,
4, 6) [5]. The crystal structure of keldyshite/parakeldyshite is based upon the M2T4 blocks, while
the structure of Na2[Zr(Si2O7)]·H2O is based upon the M2T6 blocks. This fact indicates different
formation conditions and the impossibility of the transformation of one structure type into another
through the rearrangement of Na+-ions. Indeed, the conditions of the formation of phases in the
Na2CO3-ZrO2-SiO2-H2O hydrothermal system are different: parakeldyshite crystallizes at 450 ◦C [5],
while the Na2[Zr(Si2O7)]·H2O phase appears at a temperature of about 200 ◦C [28]. According to [65],
keldyshite is a product of the sequential transformation of parakeldyshite under hypergenic conditions
with the preservation of the overall framework topology. According to our data on the migration of
Na+-ions, such transition is possible.

The unit-cell parameters (Table 3) of keldyshite and parakeldeshite are close to each other and
differ from those of Na2[Zr(Si2O7)]·H2O.

Table 3. Unit cell parameters of Na-zirconosilicates chemically close to keldyshite.

Compound Sp. Gr., Z Unit Cell Parameters
V, Å3 Citation

a, Å, α, ◦ b, Å, β ◦ c, Å, γ, ◦

Keldyshite
NaH[Zr(Si2O7)] P1, 2

9.01 5.34 6.96
300.39 [19]

92.1 116.1 88.1

Parakeldyshite
Na2[Zr(Si2O7)] P1, 2

8.8083 5.4243 6.5923
297.34 Current

work87.162 85.497 71.309

Na2[Zr(Si2O7)]·H2O C2/c, 4 10.422 8.247 9.205
672.2 [27]

90 116.55 90

Note. For parakeldyshite, the same setting as in the initial study of keldyshite was used (associated with that given
in this work by the transition matrix 0 1 0/0 0 1/1 0 0).
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The paths of the Na+-ion migration obtained using the Voronoi method are two-dimensional,
running through all the crystallographic positions of Na (Figure 10). Thus, the migration of Na+-ions in
the keldyshite-related zirconium silicates occurs along a two-periodic network of channels. Diffusion is
possible when Na+-ions move from cavity to cavity (from one tile to another) through four-membered
and six-membered rings. Calculating the radius of these rings (Table 4) and comparing it with the
threshold value of 2.0 Å, we can conclude that free migration of Na+ in these structures will occur only
through six-membered rings. Moreover, in the case of parakeldyshite, there is one six-membered ring
that is too narrow (marked in red in Table 4) for sodium to move along. However, the migration paths
through the remaining six-membered rings form a 2-D migration map, which is consistent with the
result obtained by the Voronoi method.

Crystals 2020, 10, x FOR PEER REVIEW 10 of 15 

 

The unit-cell parameters (Table 3) of keldyshite and parakeldeshite are close to each other and 
differ from those of Na2[Zr(Si2O7)]∙H2O. 

Table 3. Unit cell parameters of Na-zirconosilicates chemically close to keldyshite. 

Compound Sp. Gr., Z 
Unit Cell Parameters 

V, Å3 Citation 
a, Å, α, ° b, Å, β ° c, Å, γ, ° 

Keldyshite 
NaH[Zr(Si2O7)] P1ത, 2 

9.01 5.34 6.96 
300.39 [19] 

92.1 116.1 88.1 
Parakeldyshite 
Na2[Zr(Si2O7)] 

P1ത, 2 
8.8083 5.4243 6.5923 

297.34 Current 
work  87.162 85.497 71.309 

Na2[Zr(Si2O7)]∙H2O C2/c, 4 
10.422 8.247 9.205 

672.2 [27] 
90 116.55 90 

Note. For parakeldyshite, the same setting as in the initial study of keldyshite was used (associated 
with that given in this work by the transition matrix 0 1 0/0 0 1/1 0 0). 

The paths of the Na+-ion migration obtained using the Voronoi method are two-dimensional, 
running through all the crystallographic positions of Na (Figure 10). Thus, the migration of Na+-ions 
in the keldyshite-related zirconium silicates occurs along a two-periodic network of channels. 
Diffusion is possible when Na+-ions move from cavity to cavity (from one tile to another) through 
four-membered and six-membered rings. Calculating the radius of these rings (Table 4) and 
comparing it with the threshold value of 2.0 Å, we can conclude that free migration of Na+ in these 
structures will occur only through six-membered rings. Moreover, in the case of parakeldyshite, there 
is one six-membered ring that is too narrow (marked in red in Table 4) for sodium to move along. 
However, the migration paths through the remaining six-membered rings form a 2-D migration map, 
which is consistent with the result obtained by the Voronoi method. 

The refinement of the crystal structure of parakeldyshite from the Takhtarvumchorr pegmatite 
demonstrates the absence of splitting of the Na sites. According to the chemical data and Raman 
spectroscopy, the studied sample of parakeldyshite is the extreme Na-member of the possible 
keldyshite-parakeldyshite series. The migration paths analysis by the Voronoi method showed that 
all three studied phases have a 2-D system of channels (Figures 10 and 11), within which the 
migration of Na+ cations is possible. These data confirm the possibility of transition from 
parakeldyshite to keldyshite by the Na+ + O2‒ ↔ OH‒ + □ substitution scheme, which is widespread 
in postcrystallization processes in peralkaline rocks. 

  
(a) (b) 

Figure 10. Migration paths of Na+ cations obtained using the Voronoi method for the structures: (a) 
parakeldyshite; (b) keldyshite. 

  

Figure 10. Migration paths of Na+ cations obtained using the Voronoi method for the structures: (a)
parakeldyshite; (b) keldyshite.

Table 4. The radii of the rings for the possible migration of Na+ cations in the structures of keldyshite,
parakeldyshite, and Na2ZrSi2O7·H2O calculated using the geometric-topological approach.

Compound
Number of

Nodes in the
Ring

Radius of
Ring, Å Compound

Number of
Nodes in the

Ring

Radius of
Ring, Å

Parakeldyshite
Na2ZrSi2O7

6 2.12

Keldyshite
NaZr(Si2O6OH)

6 2.09
6 2.06 6 2.00
6 1.75 6 2.05
6 2.14 6 2.12
6 2.06 6 2.10
4 1.53 4 1.77
4 1.54 4 1.37
4 1.80 4 1.65
4 1.66 4 1.84
4 1.64 4 1.17

Na2ZrSi2O7·H2O
6 2.36 4 1.77
6 2.37 4 1.78
4 1.75

The refinement of the crystal structure of parakeldyshite from the Takhtarvumchorr pegmatite
demonstrates the absence of splitting of the Na sites. According to the chemical data and Raman
spectroscopy, the studied sample of parakeldyshite is the extreme Na-member of the possible
keldyshite-parakeldyshite series. The migration paths analysis by the Voronoi method showed
that all three studied phases have a 2-D system of channels (Figures 10 and 11), within which
the migration of Na+ cations is possible. These data confirm the possibility of transition from
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parakeldyshite to keldyshite by the Na+ + O2−
↔ OH− + � substitution scheme, which is widespread

in postcrystallization processes in peralkaline rocks.
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The structural complexity IG,total was calculated according to the method proposed in [66].
The calculated values for keldyshite/parakeldyshite and Na2ZrSi2O7·H2O are 76.107 and 86.606
(bits/u.c.), respectively. The identity of the structural complexity values for keldyshite and
parakeldyshite emphasizes their structural similarity. The increase in structural complexity with
the decreasing crystallization temperature is in agreement with the general tendency observed for
hydrothermal systems [66,67].
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