On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kandarakis, I.S. Luminescence in medical image science. J. Lumin. 2016, 169, 553–558. [Google Scholar] [CrossRef]
- Lecoq, P.; Gektin, A.; Korzhik, M.; Pedrini, C. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering; Lecoq, P., Ed.; Particle acceleration and detection; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-27766-8. [Google Scholar]
- Bizarri, G.; Moses, W.W.; Singh, J.; Vasil’ev, A.N.; Williams, R.T. An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 2009, 105, 044507. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, J.E.; Jordan, D.V.; Peurrung, A.J. Energy nonlinearity in radiation detection materials: Causes and consequences. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 570, 72–83. [Google Scholar] [CrossRef]
- Van Eijk, C.W.E. Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 460, 1–14. [Google Scholar] [CrossRef]
- Hofstadter, R. The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals. Phys. Rev. 1949, 75, 796–810. [Google Scholar] [CrossRef]
- Grassmann, H.; Lorenz, E.; Moser, H.G. Properties of CsI(TI)—Renaissance of an old scintillation material. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1985, 228, 323–326. [Google Scholar] [CrossRef]
- Jagtap, S.; Chopade, P.; Tadepalli, S.; Bhalerao, A.; Gosavi, S. A review on the progress of ZnSe as inorganic scintillator. Opto-Electron. Rev. 2019, 27, 90–103. [Google Scholar] [CrossRef]
- Valais, I.; Michail, C.; David, S.; Nomicos, C.D.; Panayiotakis, G.S.; Kandarakis, I. A comparative study of the luminescence properties of LYSO: Ce, LSO: Ce, GSO: Ce and BGO single crystal scintillators for use in medical X-ray imaging. Phys. Med. 2008, 24, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Van Eijk, C.W.E. Inorganic scintillators in medical imaging. Phys. Med. Biol. 2002, 47, R85–R106. [Google Scholar] [CrossRef]
- Balcerzyk, M.; Moszynski, M.; Kapusta, M.; Wolski, D.; Pawelke, J.; Melcher, C.L. YSO, LSO, GSO and LGSO. A study of energy resolution and nonproportionality. IEEE Trans. Nucl. Sci. 2000, 47, 1319–1323. [Google Scholar] [CrossRef]
- Kozma, P.; Kozma, P. Radiation sensitivity of GSO and LSO scintillation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 539, 132–136. [Google Scholar] [CrossRef]
- Holl, I.; Lorenz, E.; Mageras, G. A measurement of the light yield of common inorganic scintillators. Ieee Trans. Nucl. Sci. 1988, 35, 105–109. [Google Scholar] [CrossRef]
- Ryzhikov, V.; Chernikov, V.; Gal’chinetskii, L.; Galkin, S.; Lisetskaya, E.; Opolonin, A.; Volkov, V. The use of semiconductor scintillation crystals II-VI in radiation instruments. J. Cryst. Growth 1999, 197, 655–658. [Google Scholar] [CrossRef]
- Atroshchenko, L.V.; Gal’chinetskii, L.P.; Galkin, S.N.; Ryzhikov, V.D.; Silin, V.I.; Shevtsov, N.I. Distribution of tellurium in melt-grown ZnSe(Te) crystals. J. Cryst. Growth 1999, 197, 471–474. [Google Scholar] [CrossRef]
- Ryzhikov, V.; Grinyov, B.; Galkin, S.; Starzhinskiy, N.; Rybalka, I. Growing technology and luminescent characteristics of ZnSe doped crystals. J. Cryst. Growth 2013, 364, 111–117. [Google Scholar] [CrossRef]
- Dafinei, I.; Nagorny, S.; Pirro, S.; Cardani, L.; Clemenza, M.; Ferroni, F.; Laubenstein, M.; Nisi, S.; Pattavina, L.; Schaeffner, K.; et al. Production of 82Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay. J. Cryst. Growth 2017, 475, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Cool, S.; Miller, S.; Brecher, C.; Lingertat, H.; Sarin, V.; Riley, K.; Mashl, S.; Tylus, P.; Nagarkar, V. Fabrication of ZnSe: Te by hot pressing techniques. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 25–31 October 2010; pp. 2441–2447. [Google Scholar]
- Gaysinskiy, V.; Singh, B.; Ovechkina, L.; Miller, S.; Thacker, S.; Nagarkar, V. Luminescence Properties and Morphology of ZnSe: Te Films. IEEE Trans. Nucl. Sci. 2008, 55, 1556–1560. [Google Scholar] [CrossRef]
- Cho, Y.H.; Park, S.H.; Lee, W.G.; Ha, J.H.; Kim, H.S.; Starzinskiy, N.; Lee, D.H.; Park, S.; Kim, Y.K. Comparative Study of a CsI and a ZnSe(Te/O) Scintillation Detector’s Properties for a Gamma-ray Measurement. J. Nucl. Sci. Technol. 2008, 45, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Passeri, A.; Formiconi, A.R. Ce. In Ionizing Radiation Detectors for Medical Imaging; Guerra, A.D., Ed.; WORLD SCIENTIFIC: Hackensack, NJ, USA, 2004; p. 256. ISBN 978-981-238-674-8. [Google Scholar]
- Christian, J. Advances in CMOS SSPM Detectors. In Biological and Medical Sensor Technologies; Iniewski, K., Ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 327. ISBN 978-1-138-07321-0. [Google Scholar]
- Stolberg-Rohr, T.; Hawkins, G.J. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared. Opt. Express 2015, 23, 580. [Google Scholar] [CrossRef] [Green Version]
- Rodnyj, P.A. Interaction of Ionizing Radiation with Scintillators. In Physical Processes in Inorganic Scintillators; The CRC Press Laser and Optical Science and Technology Series; CRC Press: Boca Raton, FL, USA, 1997; p. 17. ISBN 978-0-8493-3788-8. [Google Scholar]
- Mateck Zinc Selenide, ZnSe. Available online: http://www.matweb.com/search/datasheet.aspx?matguid=fb891a04b5bc46d1832fbb5906d9190c&ckck=1 (accessed on 7 January 2020).
- Grinyov, B.; Ryzhikov, V.; Lecoq, P.; Naydenov, S.; Opolonin, A.; Lisetskaya, E.; Galkin, S.; Shumeiko, N. Dual-energy radiography of bone tissues using ZnSe-based scintielectronic detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 571, 399–403. [Google Scholar] [CrossRef]
- Advatech UK. ZnSe:Te. Available online: https://www.advatech-uk.co.uk/znse_te.html (accessed on 15 June 2020).
- Ryzhikov, V.D.; Naydenov, S.V.; Onyshchenko, G.M.; Lecoq, P.; Smith, C.F. A spectrometric approach in radiography for detection of materials by their effective atomic number. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 603, 349–354. [Google Scholar] [CrossRef]
- Martini, N.; Koukou, V.; Fountos, G.; Michail, C.; Bakas, A.; Kandarakis, I.; Speller, R.; Nikiforidis, G. Characterization of breast calcification types using dual energy x-ray method. Phys. Med. Biol. 2017, 62, 7741–7764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, N.; Koukou, V.; Michail, C.; Fountos, G. Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast. Crystals 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Saatsakis, G.; Kalyvas, N.; Michail, C.; Ninos, K.; Bakas, A.; Fountzoula, C.; Sianoudis, I.; Karpetas, G.E.; Fountos, G.; Kandarakis, I.; et al. Optical Characteristics of ZnCuInS/ZnS (Core/Shell) Nanocrystal Flexible Films Under X-Ray Excitation. Crystals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Michail, C.; Valais, I.; Martini, N.; Koukou, V.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G. Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard. Radiat. Meas. 2016, 94, 8–17. [Google Scholar] [CrossRef]
- Michail, C.; Koukou, V.; Martini, N.; Saatsakis, G.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.; Panayiotakis, G.; Valais, I. Luminescence Efficiency of Cadmium Tungstate (CdWO4) Single Crystal for Medical Imaging Applications. Crystals 2020, 10, 429. [Google Scholar] [CrossRef]
- Michail, C.; Valais, I.; Fountos, G.; Bakas, A.; Fountzoula, C.; Kalyvas, N.; Karabotsos, A.; Sianoudis, I.; Kandarakis, I. Luminescence efficiency of calcium tungstate (CaWO4) under X-ray radiation: Comparison with Gd2O2S:Tb. Measurement 2018, 120, 213–220. [Google Scholar] [CrossRef]
- Boone, J. X-ray production, interaction, and detection in diagnostic imaging. In Handbook of Medical Imaging. Volume 1: Physics and Psychophysics; Beutel, J., Kundel, H.L., Van Metter, R.L., Eds.; SPIE Press: Bellingham, WA, USA, 2000; Volume 1, pp. 36–57. ISBN 978-0-8194-7772-9. [Google Scholar]
- Swank, R.K. Calculation of Modulation Transfer Functions of X-Ray Fluorescent Screens. Appl. Opt. 1973, 12, 1865. [Google Scholar] [CrossRef]
- Swank, R.K. Absorption and noise in X-ray phosphors. J. Appl. Phys. 1973, 44, 4199–4203. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, R.M.; Yaffe, M.J. Signal-to-noise properties of mammographic film-screen systems: SNR properties of mammographic film-screen systems. Med. Phys. 1985, 12, 32–39. [Google Scholar] [CrossRef]
- Dick, C.E.; Motz, J.W. Image information transfer properties of X-ray fluorescent screens. Med. Phys. 1981, 8, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, A.; Dick, C.E. Image information transfer properties of x-ray intensifying screens in the energy range from 17 to 320 keV. Med. Phys. 1993, 20, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, A. Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities. J. Phys. Conf. Ser. 2015, 637, 012012. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, A. Physical Parameters of Image Quality. In Comprehensive Biomedical Physics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 49–63. ISBN 978-0-444-53633-4. [Google Scholar]
- Konstantinidis, A.C.; Szafraniec, M.B.; Speller, R.D.; Olivo, A. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Instrum. Methods Phys. Res. Sect. AAccel. SpectrometersDetect. Assoc. Equip. 2012, 689, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Michail, C.; Ninos, K.; Kalyvas, N.; Bakas, A.; Saatsakis, G.; Fountos, G.; Sianoudis, I.; Panayiotakis, G.; Kandarakis, I.; Valais, I. Spectral efficiency of lutetium aluminum garnet (Lu3Al5O12:Ce) with microelectronic optical sensors. Microelectron. Reliab. 2020, 109, 113658. [Google Scholar] [CrossRef]
- Valais, I.G.; Kandarakis, I.S.; Nikolopoulos, D.N.; Sianoudis, I.A.; Dimitropoulos, N.; Cavouras, D.A.; Nomicos, C.D.; Panayiotakis, G.S. Luminescence efficiency of (Gd2SiO5:Ce) scintillator under x-ray excitation. In Proceedings of the IEEE Symposium Conference Record Nuclear Science 2004, Rome, Italy, 16–22 October 2004; Volume 5, pp. 2737–2741. [Google Scholar]
- Hamamatsu Photonics, MPPC (Multi-Pixel Photon Counters). Available online: https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/index.html (accessed on 29 June 2020).
- Magnan, P. Detection of visible photons in CCD and CMOS: A comparative view. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 504, 199–212. [Google Scholar] [CrossRef]
- Rowlands, J.A.; Yorkston, J. Flat Panel Detectors for Digital Radiography. In Handbook of Medical Imaging. Volume 1: Physics and Psychophysics; Beutel, J., Kundel, H.L., Van Metter, R.L., Eds.; SPIE Press: Bellingham, WA, USA, 2000; Volume 1, pp. 223–328. ISBN 978-0-8194-7772-9. [Google Scholar]
- Silicon Photomultipliers (SiPM). Available online: https://www.onsemi.com/products/sensors/silicon-photomultipliers-sipm (accessed on 29 June 2020).
- Storm, L.; Israel, H.I. Photon cross sections from 1 keV to 100 MeV for elements Z = 1 to Z = 100. At. Data Nucl. Data Tables 1970, 7, 565–681. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, NIST Standard Reference Database 126; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 1995. [Google Scholar]
Properties | BGO | GSO:Ce | ZnSe:Te |
---|---|---|---|
Wavelength, max emission (nm) | 480 | 430 | 640 |
Wavelength Range (nm) | 375–650 | 400–650 | 525–750 |
Decay Time | 300 ns | 30–60 ns | 1–150 μs |
Afterglow | 0.05% @ 3ms | 0.005% @ 6ms | < 0.05% @ 6ms |
Light Yield (photons/MeV) | 8.9 ∙ 103 | 8.0 ∙ 103 | 2.8–16.9 ∙ 104 (4 ∙ 104)a |
Photoelectron Yield (% of NaI:Tl) | 15–20 | 20 | 31.5–63 |
Radiation Length (cm) | 1.12 | 1.38 | 2.23 |
Refractive Index | 2.15 @ 480 nm | 1.85 | 2.67 @ 550 nm |
Density (g/cm3) | 7.13 | 6.7 | 5.42 |
Effective Atomic Number | 74 | 58 | 33 |
Melting Point (°C) | 1044 | 1627 | 1779 |
Thermal Expansion Coefficient (°C−1) | 7.0 ∙ 10−6 | 4–12 ∙ 10−6 | 7.6 ∙ 10−6 |
Hardness (Mho) | 5 | 5.7 | 4 |
Hygroscopicity | No | No | No |
Optical Detectors | ZnSe:Te | Optical Detectors | ZnSe:Te |
---|---|---|---|
CCD broadband AR coating | 0.91 | GaAsP phosphor photocathode | 0.79 |
CCD infrared (IR) anti-reflection (AR) coating | 0.92 | Extended photocathode (E-S20) | 0.60 |
CMOS hybrid, blue anti-reflection (AR) coating | 0.94 | Si PM MicroFC-30035-SMT | 0.34 |
Hybrid CMOS blue | 0.99 | Si PM MicroFB-30035-SMT | 0.30 |
CMOS (monolithic 0.25μm) | 0.96 | Si PM MicroFM-10035 | 0.67 |
a-Si:H passivated | 0.77 | Si PM S10985-050C | 0.55 |
a-Si:H non-passivated | 0.85 | Si PM S10362-11-025U | 0.54 |
CCD indium tin oxide (ITO) gates, microlenses | 0.96 | Si PM S10362-11-050U | 0.55 |
CCD with indium tin oxide (ITO) gates | 0.90 | Si PM S10362-11-100U | 0.52 |
CCD with polygates | 0.78 | Flat panel PS-PMT H8500C-03 | 0.08 |
CCD no poly-gates LoD | 0.87 | Flat panel PS-PMT H8500D-03 | 0.05 |
CCD with traditional poly gates | 0.88 | Flat panel PS-PMT H10966A | 0.05 |
CMOS (photogate array 0.5) | 0.91 | Flat panel PS-PMT H8500C | 0.07 |
CMOS RadEye HR | 0.97 | Bialkali Photocathode | 0.06 |
GaAs Photocathode | 0.99 | Multialkali Photocathode | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linardatos, D.; Konstantinidis, A.; Valais, I.; Ninos, K.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.; Michail, C. On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal. Crystals 2020, 10, 961. https://doi.org/10.3390/cryst10110961
Linardatos D, Konstantinidis A, Valais I, Ninos K, Kalyvas N, Bakas A, Kandarakis I, Fountos G, Michail C. On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal. Crystals. 2020; 10(11):961. https://doi.org/10.3390/cryst10110961
Chicago/Turabian StyleLinardatos, Dionysios, Anastasios Konstantinidis, Ioannis Valais, Konstantinos Ninos, Nektarios Kalyvas, Athanasios Bakas, Ioannis Kandarakis, George Fountos, and Christos Michail. 2020. "On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal" Crystals 10, no. 11: 961. https://doi.org/10.3390/cryst10110961
APA StyleLinardatos, D., Konstantinidis, A., Valais, I., Ninos, K., Kalyvas, N., Bakas, A., Kandarakis, I., Fountos, G., & Michail, C. (2020). On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal. Crystals, 10(11), 961. https://doi.org/10.3390/cryst10110961