Anatomy of Magnetic Anisotropy and Voltage-Controlled Magnetic Anisotropy in Metal Oxide Heterostructure from First Principles
Abstract
:1. Introduction
2. Computational Models and Methods
3. Results and Discussion
3.1. Alloying Effect of Magnetic Anisotropy
3.2. Strain Effect
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Atomic k-Resolved MCAE of Structure-I
Appendix B. Atom k-Resolved MCAE of Structure-II
References
- Chappert, C.; Fert, A.; Van Dau, F.N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Meena, J.S.; Sze, S.M.; Chand, U.; Tseng, T.Y. Emerging nonvolatile memory technologies, Flash memory technologies. Nanoscale Res. Lett. 2014, 9, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieny, B.; Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 2017, 89, 025008. [Google Scholar] [CrossRef]
- Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1. [Google Scholar] [CrossRef]
- Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangin, S.; Ravelosona, D.; Katine, J.A.; Carey, M.J.; Terris, B.D.; Fullerton, E.E. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 2006, 5, 210. [Google Scholar] [CrossRef]
- Brataas, A.; Kent, D.; Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 2012, 11, 372–381. [Google Scholar] [CrossRef]
- Fukami, S.; Zhang, C.; Duttagupta, S.; Kurenkov, A.; Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat. Mater. 2016, 15, 535–541. [Google Scholar] [CrossRef]
- Fukami, S.; Anekawa, T.; Zhang, C.; Ohno, H. A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 2016, 11, 621–625. [Google Scholar] [CrossRef]
- Ohno, H.; Chiba, D.; Matsukura, F.; Omiya, T.; Abe, E.; Dietl, T.; Ohno, Y.; Ohtani, K. Electric-field control of ferromagnetism. Nature 2000, 408, 944–946. [Google Scholar] [CrossRef]
- Chiba, D.; Yamanouchi, M.; Matsukura, F.; Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 2003, 301, 943–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisheit, M.; Fähler, S.; Marty, A.; Souche, Y.; Poinsignon, C.; Givord, D. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 2007, 315, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, T.; Shiota, Y.; Nozaki, T.; Ohta, K.; Toda, N.; Mizuguchi, M.; Tulapurkar, A.A.; Shinjo, T.; Shiraishi, M.; Mizukami, S.; et al. Electric-field control of ferromagnetism. Nat. Nanotechnol. 2009, 4, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, T.; Shiota, Y.; Shiraishi, M.; Shinjo, T.; Suzuki, Y. Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 2010, 96, 022506. [Google Scholar] [CrossRef]
- Shiota, Y.; Murakami, S.; Bonell, F.; Nozaki, T.; Shinjo, T.; Suzuki, Y. Quantitative evaluation of voltage-induced magnetic anisotropy change by magnetoresistance measurement. Appl. Phys. Express 2011, 4, 2–5. [Google Scholar] [CrossRef]
- Shiota, Y.; Nozaki, T.; Bonell, F.; Murakami, S.; Shinjo, T.; Suzuki, Y. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 2012, 11, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, T.; Shiota, Y.; Miwa, S.; Murakami, S.; Bonell, F.; Ishibashi, S.; Kubota, H.; Yakushiji, K.; Saruya, T.; Fukushima, A.; et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat. Phys. 2012, 11, 491–496. [Google Scholar] [CrossRef]
- Wang, W.G.; Li, M.; Hageman, S.; Chien, C.L. Electric-field-assisted switching in magnetic tunneljunctions. Nat. Mater. 2012, 11, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Kanai, S.; Yamanouchi, M.; Ikeda, S.; Nakatani, Y.; Matsukura, F.; Ohno, H. Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Appl. Phys. Lett. 2012, 101, 2010–2013. [Google Scholar] [CrossRef]
- Miwa, S.; Suzuki, M.; Tsujikawa, M.; Matsuda, K.; Nozaki, T.; Tanaka, K.; Tsukahara, T.; Nawaoka, K.; Goto, M.; Kotani, Y.; et al. Voltage controlled interfacial magnetism through platinum orbits. Nat. Commu. 2017, 8, 15848. [Google Scholar] [CrossRef] [Green Version]
- Duan, C.; Velev, J.P.; Sabirianov, R.F.; Zhu, Z.; Chu, J.; Jaswal, S.S.; Tsymbal, E.Y. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 2008, 101, 137201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Shimabukuro, R.; Fujiwara, Y.; Akiyama, T.; Ito, T.; Freeman, A.J. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 2009, 102, 187201. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, M.; Oda, T. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): A first-principles study. Phys. Rev. Lett. 2009, 102, 247203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhang, S. Electric field control of interface magnetic anisotropy. J. Appl. Phys. J. Appl. Phys. 2012, 111, 2012–2015. [Google Scholar] [CrossRef]
- Barnes, S.E.; Ieda, J.; Maekawa, S. Rashba spin-orbit anisotropy and the electric field control of magnetism. Sci. Rep. 2014, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, F.; Yang, H.X.; Hallal, A.; Dieny, B.; Chshiev, M. Anatomy of electric field control of perpendicular magnetic anisotropy of Fe/MgO interfaces. Phys. Rev. B 2016, 93, 014429. [Google Scholar] [CrossRef]
- Butler, W.H.; Zhang, X.-G.; Schulthess, T.C.; MacLaren, J.M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 2001, 63, 054416. [Google Scholar] [CrossRef] [Green Version]
- Mathon, J.; Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 2001, 63, 220403. [Google Scholar] [CrossRef] [Green Version]
- Parkin, S.S.P.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S.H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867. [Google Scholar] [CrossRef]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868–871. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.W.; Mitani, S.; Sasaki, T.T.; Sukegawa, H.; Wen, Z.C.; Ohkubo, T.; Niizeki, T.; Inomata, K.; Hono, K. Large perpendicular magnetic anisotropy at Fe/MgO interface. Appl. Phys. Lett. 2013, 103, 192401. [Google Scholar] [CrossRef]
- Xiang, Q.; Wen, Z.; Sukegawa, H.; Kasai, S.; Seki, T.; Kubota, T.; Takanashi, K.; Mitani, S. Nonlinear electric field effect on perpendicular magnetic anisotropy in Fe/MgO interfaces. J. Phys. D Appl. Phys. 2017, 50, 40LT04. [Google Scholar] [CrossRef]
- Yang, H.X.; Chshiev, M.; Dieny, B.; Lee, J.H.; Manchon, A.; Shin, K.H. First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces. Phys. Rev. B 2011, 84, 054401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Franz, C.; Czerner, M.; Heiliger, C. Perpendicular magnetic anisotropy in CoFe/MgO/CoFe magnetic tunnel junctions by first-principles calculations. Phys. Rev. B 2014, 90, 184409. [Google Scholar] [CrossRef]
- Masuda, K.; Miura, Y. Perpendicular magnetic anisotropy at the Fe/MgAl2O4 interface: Comparative first-principles study with Fe/MgO. Phys. Rev. B 2018, 98, 224421. [Google Scholar] [CrossRef] [Green Version]
- Ikhsan, N.; Kanagawa, T.; Pardede, I.; Yoshikawa, D.; Obata, M.; Oda, T. Perpendicular and in-plane magnetic anisotropies in Cr-buffered Fe(x)/MgO interface from first-principles approach. Sci. Rep. Kanazawa Univ. 2018, 62, 23–35. [Google Scholar]
- Pardede, I.; Kanagawa, K.; Ikhsan, N.; Murata, I.; Yoshikawa, D.; Obata, M.; Oda, T. A comprehensive study of sign change in electric field control perpendicular magnetic anisotropy energy at Fe/MgO Interface: First principles calculation. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Nozaki, T.; Kozioł-Rachwał, A.; Skowroński, W.; Zayets, V.; Shiota, Y.; Tamaru, S.; Kubota, H.; Fukushima, A.; Yuasa, S.; Suzuki, Y. Large voltage-induced changes in the perpendicular magnetic anisotropy of an MgO-based tunnel junction with an ultrathin Fe layer. Phys. Rev. Appl. 2016, 5, 044006. [Google Scholar] [CrossRef] [Green Version]
- Suwardy, J.; Nawaoka, K.; Cho, J.; Goto, M.; Suzuki, Y.; Miwa, S. Voltage-controlled magnetic anisotropy and voltage-induced Dzyaloshinskii-Moriya interaction change at the epitaxial Fe(001)/MgO(001) interface engineered by Co and Pd atomic-layer insertion. Phys. Rev. B 2018, 98, 144432. [Google Scholar] [CrossRef]
- Nakamura, K.; Nomura, T.; Pradipto, A.-M.; Nawa, K.; Akiyama, T.; Ito, T. Effect of heavy-metal insertions at Fe/MgO interfaces on electric-fieldinduced modification of magnetocrystalline anisotropy. J. Magn. Magn. Mater. 2017, 429, 214–220. [Google Scholar] [CrossRef]
- Nozaki, T.; Kozioł-Rachwał, A.; Tsujikawa, M.; Shiota, Y.; Xu, X.; Ohkubo, T.; Tsukahara, T.; Miwa, S.; Suzuki, M.; Tamaru, S.; et al. Highly efficient voltage control of spin and enhanced interfacial perpendicular magnetic anisotropy in iridium-doped Fe/MgO magnetic tunnel junctions. Npg Asia Mater. 2017, 4, e451. [Google Scholar] [CrossRef] [Green Version]
- Skowroński, W.; Nozaki, T.; Lam, D.D.; Shiota, Y.; Yakushiji, K.; Kubota, H.; Fukushima, A.; Yuasa, S.; Suzuki, Y. Underlayer material influence on electric-field controlled perpendicular magnetic anisotropy in CoFeB/MgO magnetic tunnel junctions. Phys. Rev. B Cond. Matter Mater. Phys. 2015, 91, 1–6. [Google Scholar] [CrossRef]
- Miwa, S.; Fujimoto, J.; Risius, P.; Nawaoka, K.; Goto, M.; Suzuki, Y. Strong bias effect on Voltage-driven torque at epitaxial Fe-MgO interface. Phys. Rev. X 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Ong, P.V.; Kioussis, N.; Odkhuu, D.; Khalili Amiri, P.; Wang, K.L.; Carman, G.P. Giant voltage modulation of magnetic anisotropy in strained heavy metal/magnet/insulator heterostructures. Phys. Rev. B 2015, 92, 020407. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Yoda, H.; Saito, Y.; Okawa, S.; Fuji, K.; Yoshiki, M.; Koi, K.; Sugiyama, H.; Ishikawa, M.; Inokuchi, T.; et al. Giant voltage-controlled magnetic anisotropy effect in a crystallographically strained CoFe system. Appl. Phys. Express 2018, 11, 053007. [Google Scholar] [CrossRef]
- Kozioł-Rachwał, A.; Nozaki, T.; Freindl, K.; Korecki, J.; Yuasa, S.; Suzuki, Y. Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in Cr/Fe/MgO. Sci. Rep. 2017, 7, 5993. [Google Scholar] [CrossRef] [PubMed]
- Kozioł-Rachwał, A.; Nozaki, T.; Zayets, V.; Kubota, H.; Fukushima, A.; Yuasa, S.; Suzuki, Y. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001). J. Appl. Phys. 2016, 120, 085303. [Google Scholar] [CrossRef]
- Von Barth, U.; Hedin, L. A local exchange-correlation potential for the spin polarized case. J. Phys. C 1972, 5, 1629. [Google Scholar] [CrossRef]
- Oda, T.; Hosokawa, A. Fully relativistic two-component-spinor approach in the ultrasoft-pseudopotential plane-wave method. Phys. Rev. B 2005, 72, 224428. [Google Scholar] [CrossRef] [Green Version]
- Oda, T.; Pasquarello, A.; Car, R. Fully unconstrained approach to noncollinear magnetism: Application to small Fe clusters. Phys. Rev. Lett. 1998, 80, 3622. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 11, 6671. [Google Scholar] [CrossRef] [PubMed]
- Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 1993, 47, 10142–10153. [Google Scholar] [CrossRef] [PubMed]
- Pardede, I.; Yoshikawa, D.; Kanagawa, T.; Ikhsan, N.; Murata, I.; Obata, M.; Oda, T. Anatomy of large perpendicular magnetic anisotropy in free-standing Co/Ni (1 1 1) multilayer. J. Magn. Magn. Mater. 2020, 500, 166357. [Google Scholar] [CrossRef]
- Oda, T.; Obata, M. Implementation of Magnetic Dipole Interaction in the Planewave-Basis Approach for Slab Systems. J. Phys. Soc. Jpn. 2018, 87, 064803. [Google Scholar] [CrossRef]
- Otani, M.; Sugino, O. First-principles calculations of charged surfaces and interfaces: A plane-wave non repeated slab approach. Phys. Rev. B 2006, 73, 115407. [Google Scholar] [CrossRef]
- Yoshikawa, D.; Obata, M.; Taguchi, T.; Haraguchi, S.; Oda, T. Possible origin of nonlinear magnetic anisotropy variation in electric field effect in a double interface system. Appl. Phys. Express 2014, 7, 113005. [Google Scholar] [CrossRef] [Green Version]
- Hallal, A.; Yang, H.X.; Dieny, B.; Chshiev, M. Anatomy of perpendicular magnetic anisotropy in Fe/MgO magnetic tunnel junctions: First-principles insight. Phys. Rev. B 2013, 88, 184423. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Z.; Jiang, L.N.; Yan, Z.R.; Zhu, Y.; Wan, C.H.; Han, X.F. Origin of the large voltage-controlled magnetic anisotropy in a Cr/Fe/MgO junction with an ultrathin Fe layer: First-principles investigation. Phys. Rev. B 2020, 101, 144434. [Google Scholar] [CrossRef]
- Wang, D.S.; Wu, R.; Freeman, A.J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B 1993, 47, 14932. [Google Scholar] [CrossRef]
- Zhang, J.; Lukashev, P.V.; Jaswal, S.S.; Tysmbal, E.Y. Model of populations for voltage-controlled magnetic anisotropy in transition-metal thin films. Phys. Rev. B 2017, 96, 014435. [Google Scholar] [CrossRef] [Green Version]
Structure | MCAE (mJ/m) | SMAE (mJ/m) | MAE (MCAE+SMAE) (mJ/m) | |||
---|---|---|---|---|---|---|
TE | GCFT | DA | SDA | TE + DA | TE + SDA | |
I | 0.586 | 0.584 | −1.353 | −1.336 | −0.767 | −0.750 |
II | 1.280 | 1.261 | −1.097 | −1.053 | 0.183 | 0.227 |
Exp. [39] | - | - | - | - | - | ∼ 0.5 |
Atom | MCAE (mJ/) | |||
---|---|---|---|---|
s | p | d | Total | |
Fe | 0.0025 | −0.0218 | 0.5987 | 0.5794 |
Fe | 0.0048 | 0.0033 | 0.2667 | 0.2748 |
Fe | −0.0031 | −0.0040 | −0.2126 | −0.2197 |
Fe | −0.0085 | −0.0025 | −0.0950 | −0.1010 |
Atom | MCAE (mJ/) | |||
---|---|---|---|---|
s | p | d | Total | |
Fe | 0.00144 | −0.0145 | 1.1119 | 1.1118 |
Fe | 0.0051 | 0.0150 | 0.2742 | 0.2943 |
Fe | −0.0050 | −0.0051 | −0.1085 | −0.1086 |
Fe | −0.0016 | −0.0171 | −0.0281 | −0.0094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardede, I.; Yoshikawa, D.; Kanagawa, T.; Ikhsan, N.; Obata, M.; Oda, T. Anatomy of Magnetic Anisotropy and Voltage-Controlled Magnetic Anisotropy in Metal Oxide Heterostructure from First Principles. Crystals 2020, 10, 1118. https://doi.org/10.3390/cryst10121118
Pardede I, Yoshikawa D, Kanagawa T, Ikhsan N, Obata M, Oda T. Anatomy of Magnetic Anisotropy and Voltage-Controlled Magnetic Anisotropy in Metal Oxide Heterostructure from First Principles. Crystals. 2020; 10(12):1118. https://doi.org/10.3390/cryst10121118
Chicago/Turabian StylePardede, Indra, Daiki Yoshikawa, Tomosato Kanagawa, Nurul Ikhsan, Masao Obata, and Tatsuki Oda. 2020. "Anatomy of Magnetic Anisotropy and Voltage-Controlled Magnetic Anisotropy in Metal Oxide Heterostructure from First Principles" Crystals 10, no. 12: 1118. https://doi.org/10.3390/cryst10121118
APA StylePardede, I., Yoshikawa, D., Kanagawa, T., Ikhsan, N., Obata, M., & Oda, T. (2020). Anatomy of Magnetic Anisotropy and Voltage-Controlled Magnetic Anisotropy in Metal Oxide Heterostructure from First Principles. Crystals, 10(12), 1118. https://doi.org/10.3390/cryst10121118