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Abstract: In this paper, the structure and photoelectric characteristics of zincblende InxGa1−xN alloys
are systematically calculated and analyzed based on the density functional theory, including the
lattice constant, band structure, distribution of electronic states, dielectric function, and absorption
coefficient. The calculation results show that with the increase in x, the lattice constants and the
supercell volume increase, whereas the bandgap tends to decrease, and InxGa1−xN alloys are direct
band gap semiconductor materials. In addition, the imaginary part of the dielectric function and
the absorption coefficient are found to redshift with the increase in indium composition, expanding
the absorption range of visible light. By analyzing the lattice constants, polarization characteristics,
and photoelectric properties of the InxGa1−xN systems, it is observed that zincblende InxGa1−xN can
be used as an alternative material to replace the channel layer of wurtzite InxGa1−xN heterojunction
high electron mobility transistor (HEMT) devices to achieve the manufacture of HEMT devices with
higher power and higher frequency. In addition, it also provides a theoretical reference for the
practical application of InxGa1−xN systems in optoelectronic devices.

Keywords: first principles; zincblende InxGa1−xN alloy; electric characteristics; optical characteristic

1. Introduction

GaN, as a representative of third-generation semiconductors with a wide bandgap, has numerous
advantages, such as direct bandgap, high-temperature resistance, and easy formation of heterostructures.
It has significant military and commercial value for meeting the working requirements of high-power,
high-frequency, and anti-radiation semiconductor devices [1]. To further improve the performance
of GaN and broaden its applications, an increasing amount of research has been published on the
optoelectronic properties of doped GaN structures in experiments and theoretical calculations in recent
years [2–5]. Studies have indicated a shift in focus towards InxGa1−xN alloys because they can be
used as a candidate material for optoelectronic devices. This was illustrated by Lu, who prepared an
ultraviolet detector that showed a good response in the ultraviolet 360–390 nm region, with a peak
response rate of 0.15 A/W [6]. Furthermore, the band gap of InxGa1−xN alloys can continuously change
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from 0.7 to 3.4 eV with the change of x, which is almost perfectly matched to the solar spectrum.
Taking this into account, InxGa1−xN alloys have now begun to attract widespread attention as new
type of solar cell material [7–12].

For InxGa1−xN, the wurtzite structure is more stable than the zincblende structure. Furthermore,
and it is difficult to achieve high-quality growth of zincblende structure. Thus, current research mainly
focuses on the wurtzite structure. However, due to the strong polarization effect of the wurtzite structure,
it is difficult to use zincblende InxGa1−xN to prepare enhanced mode high electron mobility transistor
(HEMT) and high-reliability devices compared with the second-generation semiconductor materials,
such as III–V compound semiconductors. In addition, the zincblende InxGa1−xN does not have
spontaneous polarization, and its smaller effective mass of electrons at the minimum of the conduction
band (CB) is beneficial in enhancing the frequency and power of the device [13–15]. Mullhauser used
radio frequency plasma-assisted molecular beam epitaxy to grow zincblende In0.4Ga0.6N, of which the
band gap was 2.46 eV [16]. Goldhahn studied the refractive index and energy gap of InxGa1−xN and
suggested that the band gap bowing parameter of InxGa1−xN is different when the x is different [17].
In terms of theoretical research, a growing number of groups have conducted research on the band
gap bowing parameter of zincblende InxGa1−xN [18–24], but few reports have been published that
discuss in detail the lattice constant, the change of bandgap, density of state, and optical properties.
These physical properties are relevant for InxGa1−xN alloy-based heterojunction electronic devices
and optoelectronic devices. Furthermore, zincblende InxGa1−xN without the Stark effect helps to
improve the luminescence efficiency of optoelectronic devices. Therefore, it is necessary to explore the
zincblende InxGa1−xN.

In this paper, we calculate the basic physical properties of InxGa1−xN using the first principles,
and analyzed the lattice constant, polarization characteristics, the change of bandgap, and optical
characteristics. This could provide a theoretical reference for the experimental research of full-spectrum
solar cells and HEMT devices with higher frequency and higher power.

2. Method of Calculation

The GaN crystal was confirmed with three stable phases, namely, zincblende, wurtzite, and rock
salt structure. The zincblende GaN used in this paper belongs to cubic crystal (F43M) space group;
its lattice constant is a = b = c = 0.452 nm and the crystal angle is α = β = γ = 90◦ [25]. The structure
used for calculation is a 2 × 1 × 1 supercell obtained by extending twice along the a-axis of the
zincblende GaN primitive cell, which contains 8 nitrogen and 8 gallium atoms as shown in Figure 1a.
Indium atoms are doped into the GaN bulk to replace the positions of gallium atoms to obtain ternary
InxGa1−xN, where x is set as 0, 0.125, 0.25, 0.5, 0.75, and 1. To acquire the lattice mismatch of the
close-packed planes of zincblende and wurtzite InxGa1−xN, we also calculate the lattice constants of
wurtzite InxGa1−xN when x = 0, 0.125, 0.25, 0.5, 0.75, and 1; the calculated structures are shown in
Figure 1b–g.

All calculations in this paper were completed using the Cambridge sequential total energy package
(CASTEP) module in material studio 4.0 developed by Accelrys. In this calculation, when both the
zincblende and wurtzite InxGa1−xN alloys were optimized. The Perdew–Burke–Ernzerhof (PBE)
was chosen as the exchange-correlation function and the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm was adopted. The optimization parameters of the maximum interaction force between
atoms, the convergence criterion of the maximum displacement, the maximum stress acting on each
atom, and the self-consistent accuracy were set as: 0.01 eV/Å, 5.0 × 10−5 nm, 0.01 Gpa, and 5.0 × 10−6

eV, respectively. Because the calculation structures of zincblende and wurtzite InxGa1−xN are different,
the setting of their energy cut-off and k-point density are different. For the zincblende InxGa1−xN,
energy cut-off was set as 600 eV and k-point density was 3 × 6 × 6. For wurtzite InxGa1−xN, energy
cut-off was set as 600 eV and the k-point densities were set as 4 × 4 × 5 for GaN, In0.125Ga0.875N,
In0.25Ga0.75N and InN, and 8 × 8 × 2 for In0.5Ga0.5N and In0.75Ga0.25N.
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structure of 1 × 1 × 2;(f) In0.75Ga0.25N structure of 1 × 1 × 2; (g) InN structure of 2 × 2 × 1. (From (b) to (g) 
is wurtzite In𝑥Ga1−𝑥N alloys). 
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in Figure 2 is the supercell volume of In𝑥Ga1−𝑥N. It can be observed that the supercell volume of 
In𝑥Ga1−𝑥N increases linearly with the increase in 𝑥, which is caused by the indium atomic radius being 
larger than that of gallium. The broken line formed by the magenta square points shows the lattice 
constants obtained according to Vegard’s law [26], which can be described via the following equation:  𝑎ூೣீభషೣே = 𝑥 ⋅ 𝑎ூே + (1 + 𝑥)𝑎ீே (1) 
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In𝑥Ga1−𝑥N systems. The optimized lattice constant of GaN is 0.4548 nm, which has an error of less 
than 1% from the experimental lattice constant value of GaN of .4520 nm [25]. For other In𝑥Ga1-𝑥N 
structures, the errors between the calculated lattice constants of In𝑥Ga1−𝑥N and Vegard's law are less 
than 2%, which is related to the pseudopotential used in this calculation.  
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Figure 1. Supercell structure of InxGa1−xN: (a) zincblende GaN structure of 2 × 1 × 1; (b) GaN
structure of 2 × 2 × 1; (c) In0.125Ga0.875N structure of 2 × 2 × 1; (d) In0.25Ga0.75N structure of 2 × 2 × 1;
(e) In0.5Ga0.5N structure of 1 × 1 × 2; (f) In0.75Ga0.25N structure of 1 × 1 × 2; (g) InN structure of 2 × 2 × 1.
(From (b) to (g) is wurtzite InxGa1−xN alloys).

3. Results and Discussion

3.1. Lattice Constant

Figure 2 illustrates the optimized lattice constants and supercell volume of the zincblende
InxGa1−xN when x is set as 0, 0.125, 0.25, 0.5, 0.75, and 1. The broken line formed by the green triangles
in Figure 2 is the supercell volume of InxGa1−xN. It can be observed that the supercell volume of
InxGa1−xN increases linearly with the increase in x, which is caused by the indium atomic radius being
larger than that of gallium. The broken line formed by the magenta square points shows the lattice
constants obtained according to Vegard’s law [26], which can be described via the following equation:

aInxGa1−xN = xaInN + (1 + x)aGaN (1)

where aInxGa1−xN, aInN, aGaN are the lattice constants of InxGa1−xN, InN, and GaN, respectively.
The broken line formed by purple dots represents the optimized lattice constant of the zincblende
InxGa1−xN systems. The optimized lattice constant of GaN is 0.4548 nm, which has an error of less
than 1% from the experimental lattice constant value of GaN of 0.4520 nm [25]. For other InxGa1−xN
structures, the errors between the calculated lattice constants of InxGa1−xN and Vegard’s law are less
than 2%, which is related to the pseudopotential used in this calculation.

Figure 3 demonstrates the optimized lattice constants of the wurtzite InxGa1−xN. The blue, green,
and orange curves are the a, c, and ideal axis c0 (c0 = 1.63a) lattice constants of InxGa1−xN, respectively,
and all obviously increase with the increase in indium composition. The calculated lattice constants of
wurtzite GaN are a = 0.323 nm, c = 0.525 nm, and c/a = 1.626; the differences between these calculated
values and the experimental values are: 1.24%, 1.16%, and 0.062%, respectively [27]. In other indium
compositions, the lattice constants that are calculated in this paper are consistent with those of the
literature [28–30]. As evident from the illustration, the lattice constant c is different from the ideal
lattice constant c0, leading to the spontaneous polarization of the wurtzite InxGa1−xN alloys. Moreover,
the spontaneous polarization direction of wurtzite In0.5Ga0.5N is opposite to that of wurtzite GaN,
In0.25Ga0.75N, In0.75Ga0.25N, and InN, because when indium composition is 0.5, c is greater than c0,
and c is less than c0 for other indium compositions.
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According to the definition of spontaneous polarization [31], we deduce the calculated equation
of the spontaneous polarization intensity of wurtzite InxGa1−xN:

PSP =
4
√

3
e
( 1

4a2 +
1

3c2

)
(3 sinθ− 1) (2)

sinθ =
3k2
− 4

3k2 + 4
(3)

k =
c
a

(4)

where θ is the angle between the bonds not parallel to
⇀
c in the wurtzite InxGa1−xN and the plane

formed by
⇀
a 1 and

⇀
a 2. The detailed derivation of spontaneous polarization in InxGa1−xN is described

in the Supporting Information (SI).
According to Equations (2)–(4), the spontaneous polarization intensity PSP of wurtzite InxGa1−xN

was calculated and the results are shown in Table 1. As shown, the spontaneous polarization intensity of
wurtzite GaN is −0.030 C/m2, which only differs from the value in the literatures by −0.001 C/m2 [32,33].
The performance of wurtzite InxGa1−xN heterojunction HEMT devices is limited by the spontaneous
polarization in wurtzite InxGa1−xN. Thus, replacing the wurtzite InxGa1−xN channel layer with
nonpolarized zincblende InxGa1−xN is a potential choice. However, the difference in lattice constant
between wurtzite and zincblende InxGa1−xN must be considered. Thus, we further calculated the
close-packed plane lattice constants of the two structures, as shown in Table 1. The results show a
negligible (0.23%) variation in lattice constants under all indium compositions. Hence, theoretically,
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the wurtzite InxGa1−xN channel layer can be replaced with zincblende InxGa1−xN without spontaneous
polarization to further improve the performance of HEMT devices.

Table 1. Spontaneous polarization intensity of wurtzite InxGa1−xN (PSP), close-packed plane lattice
constants of wurtzite and zincblende InxGa1−xN, and the difference (4L) in lattice constant of
close-packed plane wurtzite and zincblende InxGa1−xN with different indium compositions.

Indium Compositions PSP/(C/m2) Zincblende(nm) Wurtzite(nm) 4L

0 −0.030, −0.029 [32,33] 0.3217 0.3229 0.12%
0.125 −0.031 0.3262 0.3274 0.12%
0.25 −0.009 0.3297 0.3309 0.12%
0.5 0.037 0.3394 0.3401 0.07%

0.75 −0.011 0.3476 0.3499 0.23%
1 −0.029, −0.032 [32,33] 0.3573 0.3585 0.12%

3.2. Band Structure

3.2.1. Correction of the Energy Gap

Figure 4 demonstrates the bandgap of the zincblende InxGa1−xN alloys with different indium
compositions. The green curve in the figure shows the calculated bandgap; the bandgap of GaN
is 1.536 eV, which is consistent with the value calculated by Mathieu Cesar et al. using PBE
approximation [34]. Note that our calculated band gap of zincblende GaN is different from the 1.69 eV
calculated by Poul Georg Moses et al. using PBE approximation [35], this may be due to the structure
calculated by Poul Georg Moses et al. is wurtzite GaN structure, while the structure calculated in this
paper is zincblende GaN. It is worth mentioning that the calculated band gap of GaN in this paper
is smaller than the experimental value of 3.30 eV [12], this is because of the overestimation of the
energy of the gallium d state in the calculation, leading to the enhanced interaction between gallium d
and nitrogen p orbitals and resulting in broadening of the valence band (VB) [36]. Although this is
a common phenomenon in the selection of GGA-PBE exchange-correlation functional calculations,
the accurate calculation of the band gap is not important in trend analysis. To be specific, the main topic
of this article concerns the same structural system and only changes the incorporation composition of
indium [37,38]. Hence, the calculated series of band gaps are still comparable. To make the calculated
band gaps of InxGa1−xN alloys closer to the experimental values, the calculated band gaps were
corrected based on the experimental values of zincblende GaN and InN [12] using the correction
formula as follows [38]:

Ecor
g,InxGa1−xN = Ecal

g,InxGa1−xN+x
(
Eexp

g,InN − Ecal
g,InN

)
+(1− x)

(
Eexp

g,GaN − Ecal
g,GaN

)
(5)

where Ecor
g,InxGa1−xN is the corrected band gap, Ecal

g,InxGa1−xN, Ecal
g,InN, and Ecal

g,GaN are the calculated band

gaps of InxGa1−xN, InN, and GaN in this work, respectively; and Eexp
g,InN and Eexp

g,GaN are the experimental
band gaps of InN and GaN, respectively. The corrected results are shown by the curve composed of
yellow triangles in Figure 4.

The modified band structures of the InxGa1−xN systems are plotted in Figure 5. The discussion of
the energy band diagram is divided into the following points. (1) Type of band gap: According to
Figure 5a, we conclude that GaN is a direct band gap semiconductor material; after the indium atoms
are doped into GaN, the type of band gap of InxGa1−xN is still a direct gap, and the minimum of the CB
and the maximum of the VB are located at the same Γ point in the Brillouin zone (BZ). (2) Degeneracy:
Compared with Figure 5a,f, Figure 5 b–f shows an impurity energy level in both the CB and VB,
increasing the degeneracy of InxGa1−xN. This is mainly due to the contribution of SP3 hybridization
of gallium s/p and indium s/p orbitals. (3) Band gap: It can be clearly seen from Figure 4 that the
band gap of InxGa1−xN decrease with the increase in x, which is caused by gallium s/p and indium
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s/p orbitals in the CB approaching the energy reference point as the indium compositions increase.
In addition, it can be seen from Figure 5 that the band gaps of GaN and InN are 3.30 eV and 0.78 eV,
respectively; hence, the band gap of InxGa1−xN alloys can continuously vary from 0.78 to 3.30 eV by
adjusting the indium compositions. This is almost perfectly matched to the solar energy spectrum,
and means that InxGa1−xN can be used to produce photovoltaic devices such as full-spectrum solar
cells, by a combination of InxGa1−xN solar cells with various bandgaps.
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3.2.2. Mechanism of Bandgap Reduction and Bandgap Bowing Parameter

From Figures 4 and 5 it can be concluded that the band gap decreases with the increase in indium
composition. To explore the cause of this phenomenon, the distribution of electron density difference
of the InxGa1−xN systems was calculated, and the results are shown in Figure 6; blue indicates low
electron density and red indicates high electron density. It can be seen from Figure 6b that when
indium atoms replace the gallium atoms, there is an electron enrichment phenomenon around the
indium atoms. This indicates that the indium has a stronger ability to bind electrons, which is due to
the electronegativity of indium atoms being greater than that of gallium (according to Pauling’s rule,
the electronegativities of gallium and indium are 1.6 and 1.7, respectively). Thus, more covalent bond
components of indium–nitrogen and the ionic bond components decrease after indium atoms replace
gallium. Furthermore, more covalent bond components of the SP3 hybrid bond of indium–nitrogen
results in a smaller bond energy of indium–nitrogen compared with the gallium-nitrogen bond, thus,
the band gap decreases with the increase in indium compositions.
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The bandgap bowing parameter is integral in adjusting the energy gap of InxGa1−xN
systems [35,39], therefore, here we discuss and analyze the value and origin of the bowing parameter.
The relationship between the energy gap of the ternary alloy and the doping compositions can be
expressed by the semi-empirical formula [40]:

Ecor
g,InxGa1−xN = xEexp

g,InN + (1− x)Eexp
g,GaN − bx(1− x) (6)

where b is the bandgap bowing parameter. We fitted the modified energy gap of the InxGa1−xN
using Equation (3) and obtained b = 2.1 ± 0.14 eV as the average bowing parameter when the
indium compositions are 0–1, which is caused by the volume deformation, structural relaxation,
and charge exchange after the doping of indium atoms into the GaN system. The band gap bowing
parameter obtained in this calculation is slightly different from the result in the literature, which is
b = 1.9 ± 0.09 eV [19].

3.3. Density of States

Figure 7 shows the total density of states (TDOS) of zincblende InxGa1–xN and the partial density
of states of indium, gallium, and nitrogen. Combining Figure 7b–d, the total density of states of
Figure 7a is divided into three parts for discussion, namely: −10 to 5 eV, −5 to 0 eV, and CB. In the range
of −10 to 5 eV, its main contribution comes from nitrogen p orbitals and gallium s orbitals. When the
indium compositions in the InxGa1−xN systems increase, the electronic states of the gallium s orbitals
decrease, while the electronic state of nitrogen p orbitals is almost unchanged, so the TDOS decreases
in this range. The density of states in the energy range of −5 to 0 eV is mainly due to the contribution
of the nitrogen p orbital and does not change with the increase in doping x. The TDOS in the CB is
mainly affected by the SP3 hybridization of gallium s/p orbitals and indium s/p orbitals. Apparently,
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with the increase in indium compositions, gallium s/p orbitals and indium s/p orbitals move to lower
energy, causing the TDOS of the CB to move to the energy reference point and the InxGa1−xN systems
to undergo redshift, which is consistent with the conclusion of the band structure.Crystals 2020, 10, x FOR PEER REVIEW 8 of 12 
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3.4. Optical Properties

Theoretically, the dielectric function can reflect the material’s response to electromagnetic signals
and describe other optical parameters of the crystal. In the range of the linear response, the equations
of the dielectric function are the following [41]:

ε(ω) = ε1(ω) + iε2(ω) (7)

N(ω) = n(ω) + ik(ω) (8)

ε1 = n2 + k2 (9)

ε2 = 2nk (10)
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where ε1 and ε2 are real and imaginary parts of the dielectric function, respectively, and n
and k are refractive index and extinction coefficient, respectively. InxGa1−xN alloys are direct
bandgap semiconductor materials, therefore, the dielectric function and absorption parameter α(ω)
can be derived using the definition of the direct transition probability and the Kramers-Kronig
relationship [42–44].

ε1(ω) = 1 +
2e
ε0m2 ·

∑
V,C

∫
BZ

2dK

(2π)3

∣∣∣a ·MV,C(K)
∣∣∣2

[EC(K) − EV(K)]/}
·

1

[EC(K) − EV(K)]2/}2 −ω2
(11)

ε2(ω) =
π
ε0

( e
mω

)2
·

∑
V,C


∫
BZ

2dK

(2π)3

∣∣∣a ·MV,C(K)
∣∣∣2δ[EC(K) − EV(K) − }ω]

 (12)

α(ω) =
√

2ω
{[
ε2

1(ω) − ε
2
2(ω)

] 1
2
− ε1(ω)

} 1
2

(13)

where ε2 and λ0 are the dielectric constant and wavelength in vacuum, respectively, footnotes C and V
represent the CB and VB, BZ is the Brillouin zone, K is the electronic wave vector, EC(K) and EV(K)

are the intrinsic energy level of CB and VB, respectively, } is the Planck constant, a is the unit vector of
the vector potential A, and MV.C is transition matrix element.

We calculated the dielectric function of zincblende InxGa1−xN alloys when the indium compositions
were changed to 0, 0.125, 0.25, 0.5, 0.75, and 1. The calculated results of the imaginary part ε2 of the
dielectric function are shown in Figure 8. It is evident from the figure that the ε2 curve of GaN has three
peaks, namely C1, C2, and C3, which are located near 8.4, 11, and 13 eV, respectively. Absorption peaks
C2 and C3 are primarily caused by the transition of electrons in gallium s/p states to the unoccupied
states. The absorption peak C1 reaches the maximum value, which is caused by the direct transition.
It can be observed in the graph that the ε2 of InxGa1−xN alloys shift to low energy with the increase
in indium atoms. This indicates that the electrons in the InxGa1−xN can undergo transitions even if
they absorb photons with lower energy. Additionally, there is an absorption peak near 4 eV energy,
which increases and moves to the lower energy direction with the increase in indium compositions.
This may be due to the transition of indium s/p state electrons to the unoccupied state.
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Figure 9 shows the absorption coefficient of InxGa1−xN alloys. There are four peaks, D1, D2, D3,

and D4, in the absorption spectrum of GaN. Absorption peaks D1, D2, and D3 are located near 8, 11,
and 13 eV, respectively. This is mainly due to the contribution of gallium s/p orbital electronic states.
Therefore, the values of the three absorption peaks all decrease when the indium compositions increase.
Another absorption peak D4 is located near 26 eV, whose main contribution comes from the gallium s
orbital. However, when an indium atom is added, the influence of indium s/p orbitals is greater than
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that of the gallium s orbital. Hence, with the increase in indium compositions, the peak value increases.
The absorption coefficient curve of InxGa1−xN alloys shifts in the low energy direction as x increases.
This indicates that the doping of indium atoms improves the absorption of zincblende GaN for visible
light, which is consistent with the result of the imaginary part of the dielectric function.Crystals 2020, 10, x FOR PEER REVIEW 10 of 12 
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4. Conclusions

In this paper, the geometric parameters were optimized and the electronic structure and optical
properties of zincblende InxGa1−xN (x = 0, 0.125, 0.25, 0.5, 0.75, 1) were calculated based on the density
functional theory. The calculated results demonstrate that, after doping indium atoms, the nature
of the direct bandgap of zincblende InxGa1−xN does not alter and the indium s/p electronic states
are introduced near the energy reference point so that the bandgap decreases with the increase in x.
By fitting the corrected bandgap, the average energy gap bowing parameter is obtained as b = 2.10 eV.
Furthermore, as the indium compositions increases, the indium s/p and gallium s/p orbitals of the CB
move to the energy reference point, resulting in a narrowing of the energy window in which electronic
states cannot exist. In addition, the imaginary part of the dielectric function and the absorption
coefficient of the InxGa1−xN structures shifts to low energy with the increase in x. This enhances the
absorption of visible light and provides a theoretical reference for the application of InxGa1−xN alloys
in the field of photovoltaic devices such as solar cells.
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