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Abstract: Lead halide perovskites have gained more and more attention because of their ease of
synthesis and excellent photoelectric properties including a large absorption coefficient, long carrier
lifetime, long carrier diffusion length, and high carrier mobility. However, their toxicity, instability,
and phase degradation in ambient environments impede their large-scale applications. To address
these concerns, it is desirable to find stable alternative halide perovskites without toxicity and with
comparable optoelectronic properties to lead-based perovskites. Over the years, a considerable
number of lead-free halide perovskites have been added to this family of materials, including
A2B’B”X6, A2BX6, and A3B2X9 type perovskites. Among these, double perovskites with the general
formula A2B’B”X6 are deemed to be a potential alternative to lead halide perovskites as they
possess good stability under ambient conditions and excellent optoelectronic properties. In this
review, recent progress in exploring Pb-free halide double perovskites is highlighted. The synthesis,
composition-tuning, physical properties, and applications of representative 3D, 2D, and nanocrystal
A2B’B”X6 double perovskites are introduced. In addition, perspectives about current challenges and
solutions in this field are also provided.
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1. Introduction

Lead halide perovskites with the general formula APbX3 where A = CH3NH3
+ (MA), CH(NH2)2

+

(FA) or Cs+ and X = Cl−, Br−, or I− have emerged as a class of materials with promising photophysical
properties in the last 10 years. They have shown superior potential in various applications like
photodetectors, solar cells, light emitting diodes (LEDs), nuclear radiation detectors, optical fibers,
lasers, and photocatalysts etc. [1–8]. Initially, lead-halide perovskite was used in dye-sensitized
solar cells as an optical sensitizer with liquid electrolyte, and this solar cell showed low efficiency
(3.8%) [9]. In subsequent years, the effiapporciency of lead-based perovskite solar cells was improved
and gained an intensive research focus around the world. So far, the power conversion efficiency (PCE)
of perovskite solar cells has increased from 9% in 2012 to 25.2% in 2019 [10–18].

The main drawbacks of these materials are their toxicity and instability under ambient conditions.
Lead-based halide perovskites still dominate, though they appear to be non-satisfactory for large-scale
application because of these drawbacks. Researchers have made a significant effort to search for less
toxic and more stable alternative perovskites with good photophysical properties [19–21]. To reduce
toxicity, efforts have been made which have started in the last few years to replace Pb with another
divalent non-toxic metal cation while retaining the ABX3 structure. The group-IVA elements in the
periodic table like Sn and Ge appear to be the most suitable alternatives for Pb in a perovskite ABX3

structure. It has been observed that non-toxic Sn-based halide perovskites are less stable than Pb-based
perovskites and degrade very rapidly when exposed to air, mainly because of the +2 oxidation state
of Sn [22]. The Ge-based lead-free perovskites possess low photovoltaic performance because of the
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reduced absorption of light, reduced dielectric constant, and low optical conductivity [23]. Other
divalent elements in the periodic table have also been tried as a replacement for lead in the ABX3, but
these materials also possess reduced optoelectronic properties due to a high value of bandgap, large
carrier effective masses, and low absorption [24,25].

Recently, it has been proposed that two divalent lead ions may be substituted by combining one
monovalent ion and one trivalent metal ion, or one tetravalent metal ion, to yield the same overall
charge balance as the conventional APbX3 perovskites. This new substitution strategy results in
halide double perovskites with the general formula A2B’B”X6 and vacancy-ordered halide double
perovskites with the general formula A2BX6, as shown in Figure 1. Similarly, three divalent lead ions
can be substituted by two trivalent metal ions, forming another derivative perovskite structure with
the general formula A3B2X9. Among these, A2B’B”X6 halide double perovskites are deemed to be a
potential alternative to lead halide perovskites as they possess good stability under ambient conditions
and excellent optoelectronic properties. The past several years has witnessed a rapid development
in the synthesis, study of properties, and optoelectronic applications of a variety of halide double
perovskites with the formula A2B’B”X6. Although a general overview of double perovskites has been
highlighted in some previous reviews [2,26–31], a specific review on recent advancements in A2B’B”X6

halide double perovskites has not yet been published. This review summarizes recent advances in
searching for new halide double perovskites. Essential results of representative 3D, 2D, and nanocrystal
halide double perovskites are highlighted.

2. Structural Insight Into Halide Double Perovskites

Halide double perovskites are an important derivative of the conventional halide single perovskite.
Metal halide single perovskites have the general formula ABX3 and generally crystallize out in solution
with a cubic system which has a Pm3m Pm3m space group. The metal (B) and halide group (X) form
a continuous BX6 octahedra connected by shared corners and the cation (A) occupies the vacant
cubo-octahedral interstices. The halide double perovskites have the general formula A2B’B”X6, where
A represents the cation, as in ABX3, but is mostly Cs+, contrary to ABX3, which generally has a cation
of a hybrid nature. The B’ and B” represent monovalent and trivalent metals, respectively, and X is any
halogen atom. A2B’B”X6 perovskites generally crystallize in a cubic geometry with an Fm3m Fm3m
space group. In the crystal lattice the octahedra B’X6 and B”X6 are aligned along each other with
shared corners, as shown in Figure 1.
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Figure 1. Pb-based perovskites toward Pb-free halide double perovskites. Reproduced with 
permission from [26,32]. 

The 3D structure of perovskites is determined by several factors, including ionic radius, the 
valency of ions, and the coordination type of A, B, and X ions. To maintain a stable 3D perovskite 
structure, the ionic radii of A, B, and X ions, i.e. RA, RB, and RX, should meet the requirement of 
Goldschmidt’s tolerance factor (t) [33] and octahedral factor (O.F.). t is calculated using the formula 𝑡 = ሺ𝑅 + 𝑅ሻሾ√2ሺ𝑅 + 𝑅ሻሿ     (1) 

For a halide double perovskite with the general formula A2B'B''X6, RB is calculated using the 
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The O.F. for predicting the structure parameters is calculated by the formula 𝑂. 𝐹. =  𝑅𝑅  (3) 

In order to attain the 3D structure of perovskites, the range for t should be 0.813 to 1.107 and the 
range for O.F. should be 0.44 to 0.90 [34]. The t value can also predict the extent of symmetry. If the t 
value approaches or is closer to 1, then the structure is expected to have high symmetry. To obtain 

Figure 1. Pb-based perovskites toward Pb-free halide double perovskites. Reproduced with permission
from [26,32].

The 3D structure of perovskites is determined by several factors, including ionic radius, the
valency of ions, and the coordination type of A, B, and X ions. To maintain a stable 3D perovskite
structure, the ionic radii of A, B, and X ions, i.e. RA, RB, and RX, should meet the requirement of
Goldschmidt’s tolerance factor (t) [33] and octahedral factor (O.F.). t is calculated using the formula

t =
(RA + RB)[√
2(RB + RX)

] (1)

For a halide double perovskite with the general formula A2B’B”X6, RB is calculated using
the formula

RB =
RB′ + RB′′

2
(2)

The O.F. for predicting the structure parameters is calculated by the formula

O.F. =
RB

RX
(3)
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In order to attain the 3D structure of perovskites, the range for t should be 0.813 to 1.107 and the
range for O.F. should be 0.44 to 0.90 [34]. The t value can also predict the extent of symmetry. If the t
value approaches or is closer to 1, then the structure is expected to have high symmetry. To obtain
highly symmetrical structures, A, B, and X ions with more suitable radii can be selected, or, firstly, we
can select B and X, and then we can select an A ion with an RA value such that a t value equal to 1 or
close to 1 is obtained [35].

Additionally, a fitness factor (Φ) is used to distinguish different crystal systems of double
perovskites [36]. Φ can be calculated using the formula

Φ =
√2

RA
RB + RX

(4)

A cubic crystal system occurs at a fitness ofΦ > 1 while a tetragonal system occurs at 0.93 < Φ < 1;
0.90 < Φ < 0.93 indicates an orthorhombic system and Φ < 0.90 indicates a monoclinic system.

Currently, the most popular approach is to replace two Pb2+ cations with B+ and B3+ metal cations
or with a B4+ metal cation to yield the double perovskites A2B’B”X6 and A2B(IV)X6, respectively [21,37].
The successful heterovalent replacement of Pb in double perovskites has explosively attracted research
intentions and this field has been extensively studied in recent years. Compared with traditional
APbX3 single perovskites, A2B’B”X6 halide double perovskites offer long-term stability, environment
friendliness, and good optoelectronic properties, structure, and bandgap tunability [19,38–42]. Single
crystal perovskites are preferred for device applications because they offer no grain boundaries,
domains of continuous crystalline nature, and low trap density. In the following sections, recent
advances in single crystal growth, exploration of properties and application of 3D and 2D A2B’B”X6

halide double perovskites are introduced. In addition, nanocrystals of A2B’B”X6 halide double
perovskites are observed to show unique properties compared with their bulk counterparts. Recent
progress on the synthesis and applications of A2B’B”X6 nanocrystals is also highlighted.

3. 3D Halide Double Perovskites

3.1. Cs2NaBiCl6

This type of A2B’B”X6 structure has been known of since 1968, when Cs2NaAmCl6 was first
reported [43]. However, there had been no such term as “double perovskite” at that time. Hence, early
research on A2B’B”X6 compounds mainly focused on structural investigation, and the optoelectronic
properties of A2B’B”X6 compounds were seldom noticed. Cs2NaBiCl6 was first prepared in 1970
through dissolving precursors in concentrated 2 M HCl and subsequent evaporating the solvent [44].
A single crystal ~1 cm in length was grown using the melt growth method. Subsequently, a series
of Cs2NaB”Cl6 compounds were also synthesized. B” represents a trivalent metal, which could be
Fe, Bi, Tl, Ti, In, Sc, or a lanthanide, etc. In 1972, the crystal structure of Cs2NaBiCl6 was found to be
cubic and to have an Fm3m space group [45]. In 1978, Pelle et al. first studied the optical properties of
Cs2NaBiCl6 [46]. The intense absorption peaks were observed at 323 and 350 nm and low intense peaks
were observed at around 375 nm and 200–260 nm (four shoulders) at a temperature of 7 K. Increasing
the temperature split the 323 nm peak into two further peaks at 315 nm and 327 nm. The peak at 375 nm
remained intact with increasing temperature and the 260 nm shoulder became more intense with an
initial temperature increase and then remained intact at higher temperatures. Steady state and pulsed
fluorescence spectra results depicted that at excitation wavelengths 253, 337, and 375 nm, emission
peaks at 620, 720, and ~720 nm, respectively, were observed at lower temperatures, which altered with
a change in temperature. It was also found that Cs2NaBiCl6 distorts the crystalline phase from cubic at
room temperature to tetragonal below 90 K [47]. Cs2NaBiCl6 doped with Mn2+ was reported recently
which increased its photoluminescence (PL). PL increased from weak emission in the undoped product
to an intense PL peak in the orange–red region of the visible spectrum for the doped product [48]. It was
synthesized using a hydrothermal approach by dissolving the precursors in HCl and heating to 80 ◦C.
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The freshly obtained product was ground and calcined to 210 ◦C for 10 h to increase the homogeneous
incorporation of Mn2+. The oxidation state of doped Mn2+ was confirmed by electron paramagnetic
resonance (EPR) spectra. Mn2+ doping decreased the thermal stability of this double perovskite
irrespective of its concentration. It was speculated that the Cs2NaBiCl6 absorbance phenomenon could
be explained by taking as an example the absorption behavior of Bi3+-doped Cs2SnCl6, which depicted
a strong blue luminescent peak at 455 nm with a photoluminescence quantum yield (PLQY) which
reached 80% [42].

3.2. Cs2AgBiX6 (X = Cl, Br)

The optoelectronic properties of Cs2B’B”X6 were known in early studies when A2B’B”X6 structured
compounds were explored. Over the past several years, the need for toxicity-free and stable lead-free
alternative perovskites has directed researchers’ efforts to relate structural and photoresponsive features
of these double perovskites with those of lead-based halide perovskites. Among these, Cs2AgBiBr6

has been extensively explored. Cs2AgBiBr6 together with Cs2AgBiCl6 were reported in 2016 to have
bandgaps of 2.19 eV and 2.77 eV, respectively (Figure 2) [20]. These two double perovskites exist in a
cubic crystal system with Fm3m space groups. These double perovskites are able to be synthesized
with two different methods, i.e., the hydrothermal method and solid-state method. Initially, these
perovskites were found to be stable in air, but it was found that Cs2AgBiBr6 was only stable for a few
weeks [20]. Later on, Cs2AgBiBr6 crystal size and quality were improved. A single crystal 4 mm in size
was grown by Slavney et al., as shown in Figure 3 [49]. Similarly, a Cs2AgBiBr6 single crystal ~4 mm in
size was also grown using a solution cooling method in 2017, which was mistakenly mentioned as
inverse temperature crystallization [50].
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Figure 2. Band structures of Cs2BiAgCl6 (a) and Cs2BiAgBr6 (b). The calculations were performed
with (blue lines) and without (red lines) spin–orbit coupling. The light blue shading highlights the
width of the lowest conduction band: 0.6 eV for Cs2BiAgCl6 and 0.9 eV for Cs2BiAgBr6. Single crystals
of Cs2BiAgCl6 (c) and Cs2BiAgBr6 (d). Reproduced with permission from [20].
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Ag, Cs, and Br atoms, respectively. (b) Photograph of a Cs2AgBiBr6 single crystal. (c) The edge-sharing
tetrahedra of a Bi3+ face-centered-cubic sublattice. Reproduced with permission from [49].

Theoretical investigation of Cs2AgBiBr6 was carried out further by Savory et al. in their attempt
to explore the suitability of double perovskites for photovoltaic applications. They investigated the
electronic structure and stability of this kind of compound and assessed it as a lead alternative for
optoelectronic application using density functional theory within periodic boundary conditions through
the Vienna Ab Initio Simulation Package and Generalized Gradient Approximation approach [51].
They revealed that the Ag d orbital and Bi s orbital are mismatched fundamentally, which results in
an indirect large bandgap because of a reduction in the conduction bandwidth. If the Ag is replaced
by other metals with ns2 orbitals like Tl+, then the s–s interactions of cations can result in a direct
bandgap. The spectroscopic limited maximum efficiencies of the Ag- and Bi-based double perovskites
are low due to a large indirect bandgap. Thermodynamic stability of Ag- and Bi-based double
perovskites is also an issue, and only chlorides and bromides are stable out of the majority. It is
favorable to synthesize double perovskites with matching ns2 in cations to achieve similar properties
to MAPbI3 perovskite [51]. Theoretical calculations showed that the valence band could be adjusted to
an indirect band by Ag 4d orbitals and halide 3p/4p orbitals [21]. In another attempt, Xiao et al. studied
theoretically the thermodynamic stability and the defect chemistry of Cs2AgBiBr6. They revealed that
the deep acceptors, Bi vacancies and AgBi, are the main points of deep defects under Br-rich conditions.
The coupling of the 6s of Bi and the 6p of Br orbitals is not as strong as in Pb-based perovskites, and it
contributes less to the valence band maximum (VBM) in double perovskites. The VBM is constituted by
Ag 4d and B 4p orbitals. Thus, the Ag vacancy is easily formed and can act as a shallow acceptor [52].
It was predicted that for crystal growth bromine-poor and bismuth-rich environments in a solvent
were most suitable to decrease deep defect formation and to improve photovoltaic applications.

Schade et al. studied temperature-dependent crystalline phase transitions in Cs2AgBiBr6. They
synthesized a single Cs2AgBiBr6 crystal of about 1 mm in size through the hydrothermal method
in DMSO, and then used HBr for large single crystal growth. The crystalline phase changed from a
low temperature tetragonal phase to a high temperature cubic phase at ∼122 K. The photophysical
properties of Cs2AgBiBr6 were correlated with the tetragonal and cubic phases. The PL peak was
observed at ∼1.97 eV at 25 K and a 398 nm excitation wavelength with a full width at half maximum of
∼0.2 eV. Upon increasing the temperature, the width of the PL peak increased to ∼0.9 eV with a very
small shift in peak position. The indirect bandgap values varied from 1.83 eV to ∼1.97 eV at room
temperature and 25 K, respectively. This change in bandgap with temperature is a phenomenon which
is contrary to lead-based halide perovskites [53]. Lan et al. studied halide migration in Cs2AgBiX6 [54].
It was found that the vacancy formation energy and migration barrier for Br are lower than for Cl.
Hence, Br ion migration is higher in Cs2AgBiBr6.
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In addition to these studies on Cs2AgBiBr6, Steele et al. studied the charge carrier and conduction
band properties of Cs2AgBiBr6 by using instrumental techniques (single crystal XRD, optical excitation
and temperature-dependent emission spectroscopy, and Raman scattering) and a theoretical approach.
The deep conduction band energy levels were identified and the Fröhlich coupling constant was found
to be around 230 meV from the temperature-dependent PL emission linewidth analysis, a value which
was much higher than that of lead halide perovskites (40 to 60 meV). Fine XRD analysis showed that
an AgBr6

5− type of octahedral dominated the internal bonding and Raman spectrum revealed that
these AgBr6

5− octahedra vibrate and dominate in lattice dynamics. It was depicted by excitation
spectroscopy that metal orbital-induced energy levels are present in the region above the conduction
band (CB). Quasi-resonant Raman studies confirmed these levels and depicted longitudinal optical
multiphonon combinations up to the fourth order. The bandgap calculated from diffuse reflectance
spectroscopy data using the Kubelka Munk function F(R) was 2.25 eV (indirect) and 2.41 (direct) [55].

Experimental calculations of the bandgap of double perovskites from optical data predict that
double perovskites have a variable bandgap. Theoretical studies of bandgap structures also reveal this
feature. However, most electronic transitions in double perovskites lead to an indirect bandgap, as
shown in Figure 4. The bandgap of double perovskites can be selectively varied from direct to indirect
by tuning the conduction band and retaining the valence band. The double perovskite structure with
the general formula A2BB’X6 can be tuned by selecting a d10 B metal for the valence band states. For
conduction band construction, an s/p orbital can be provided by the B’ metal. The conduction band
can be lowered by tuning B’ with s0 to s2.
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Du et al. engineered compositional changes at the B site in ABX3 perovskites by incorporating
AgIBiIII and AgISbIII [39]. This opened up a new dimension in synthesizing new perovskites as
an alternative to toxic lead perovskites. Powder XRD peaks shifted in the heterovalent substituted
perovskite structures because of the synergistic effect between the Ag and Bi (or Sb). Density functional
theory has also supported the blue shift in the photoluminescence. The new product was found to have
a direct bandgap. Furthermore, the bandgap was reduced due to heterovalent substitution. It was also
stated that the ordering in the double perovskite lattice affects the band structure. The ordered system
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may result in an indirect bandgap, and a pseudo-direct bandgap shows a randomly ordered system.
A narrow bandgap arises from an ordered system with less Bi-on-Ag or less Ag-on-Bi [39].

Cs2AgBiBr6 is comparatively more stable than other halide perovskites but it is a material of an
indirect bandgap. Hence, the other aim is to alter its bandgap transition to a direct bandgap transition
by substitution of monovalent or trivalent metals or synthesizing other similar structured materials.
The Bi3+ in Cs2AgBiBr6 offers a wide range of substitutions to trivalent metals to engineer the bandgap
of double perovskites (Figure 5) [57]. Du et al. alloyed trivalent metals (In and Sb) in Cs2AgBiBr6 in
2017 [58]. The new combinations Cs2AgBi1–xMxBr6 (M = Sb, In) could retain the parent crystalline
phase by accommodating up to 75% InIII and 37.5% SbIII. With an increase in substitution the lattice
parameters altered because of the difference in the atomic radii of BiIII (117 pm), InIII (94 pm), and SbIII
(90 pm) according to Vegard’s law [59]. Alloying of above 75% InIII and 37.5% SbIII led to instability in
the structure. Density functional theory calculations suggested that Sb and In alloying introduced
different orbitals in the valence and conduction bands. Because of different electronic configurations,
InIII alloying increased the bandgap (2.12 eV to 2.27 eV) and SbIII alloying decreased the bandgap
(2.12 eV to 1.86 eV). However, the bandgap remained indirect. Nevertheless, it opened up a wide
range of substitution of Bi3+ and also showed the complexity and unique behavior of each different
metal [58]. The reduction in the bandgap of Cs2AgBiBr6 by pnictogen alloying was also studied
using another effort. Sb alloying in Cs2AgBiBr6 reduced the bandgap, and the alloyed mixed halide
double perovskite, Cs2AgBi1–xSbxBr6 showed a 1.6 eV bandgap [57]. Thallium was also alloyed in
Cs2AgBiBr6 double perovskite. Tl alloying reduced the bandgap to the range of photovoltaic absorbers.
It was the first lead-free double perovskite that had a bandgap energy and carrier lifetime in line with
that of MAPbI3. The Cs2AgBiBr6 orange truncated octahedral product changed to an opaque black
octahedral product upon TlBr addition in the solution. The resulting compound Cs2(Ag1–aBi1–b)TlxBr6

(0.003 < x = a + b < 0.075) contained Tl atomic content ranging 0.03–0.075% and showed an almost
similar bandgap energy and carrier lifetime to that of MAPbI3. The bandgap of Cs2AgBiBr6 (1.95 eV)
was reduced by 0.5 eV by Tl alloying. It has been observed that at higher Tl concentration, the
preferred alloying occurs by substituting the Ag, and dilute alloying prefers the substitution of Bi by
Tl. The larger lattice of a double perovskite can accommodate Tl+ alloying, and the smaller lattice of a
perovskite structure prefers a Tl3+ substitution where atmospheric oxygen plays a role in oxidizing Tl+

to Tl3+. X-ray photoelectron spectroscopy studies have confirmed the uniform distribution of Tl in the
perovskite structure. Tl doping results in substitution of Ag+ ions by Tl+ at the concentrated Tl level
and forms (MA)2(Tl1–aBi1–b)AgxBr6. Substitution of Bi3+ by Tl3+ in a lower concentration of Tl forms
Cs2(Ag1–aBi1–b)TlxBr6. This opens up the possibility of further incorporation of metals within lead-free
double perovskites to reduce the bandgap and for direct bandgap transitions [60].
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Cs2AgBiCl6 double perovskite was explored by a combined synthetic and theoretical approach [61].
Firstly, by using first principles calculations a tunable bandgap and low carrier effective masses, which
are a sign of good optoelectronic properties, were predicted. Cs2AgBiCl6 single phase product was
synthesized using a solid-state approach. The crystal has an Fm3m space group with a face-centered
cubic structure which has alternating AgCl6 and BiCl6 octahedra. Similarly to the extensively studied
Cs2AgBiCl6, this double perovskite was found to possess an indirect bandgap of 2.2 eV. It also possessed
good stability for weeks and had a persistent bright yellow color, as well as good optical properties [61].

3.3. Cs2AgSbX6 (X = Cl, Br)

Pnictogens like Sb have also been incorporated at the B3+ site in halide double perovskites.
The double perovskite Cs2AgSbBr6 was successfully explored using an experimental approach recently
(in 2019) [62]. The perovskite phase was formed after prolonged hydrothermal reaction. Small black
crystals of Cs2AgSbBr6 were collected on the surface of large yellow phases and impure phases like
Cs3Sb2Br9 and Cs2SbBr6. One-millimeter-sized crystals could be harvested after one month of heating.
The black crystals at room temperature turned brown on heating in a vacuum or N2 environment.
It was observed that Sb5+ was present in the black-colored compound from the XPS results shown in
Figure 6. A sufficient charge transfer between Sb3+ and Sb5+ resulted in a darker color. Theoretical
calculations showed that the reduction in the bandgap from Cs2AgBiBr6 to Cs2AgSbBr6 was due to the
5s5p of Sb, which lowered the conduction band. The crystal structure of the compound showed that it
has a cubic system with an Fm3m space group. A UV–visible absorption base of crystals appeared at
~1.64 eV. The solar cell based on Cs2AgSbBr6 showed an open-circuit voltage of 353.29 mV, short-circuit
current density of 0.08 mA/cm2, fill factor of 35.9%, and PCE of 0.01% [62]. The low efficiency of
the device was attributed to the impurity phases present in the product. However, the same device
structure with Bi showed an efficiency of 0.06%, which indicated that the device structure was also a
factor in low efficiency. Hence, more improvement in film formation and checking the suitability of the
interface may improve the solar cell performance.
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defect sites. The low doping concentration of Cu2+ resulted in a localized transition. This perovskite 
material offers the additional benefit of long-term stability lasting about 365 days [40]. 
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Cs2AgSbBr6, and (c) absorption spectra of Cs2AgSbBr6 and Cs2AgBiBr6. Reproduced with permission
from [62].

A Cl analogue of Cs2AgSbBr6 was reported by Deng et al. in 2017. They used a hydrothermal
approach to synthesize Cs2AgSbCl6, which was also a double perovskite with an indirect bandgap [63].
This double perovskite showed absorption near the UV region from 200 to 420 nm. The bandgap as
calculated from UV–visible data and a Tauc plot was 2.60 eV. They also synthesized nanoparticles
of Cs2AgSbCl6/TiO2. This heterostructure absorbed strongly in the visible region of light and the
TiO2 heterojunction increased the separation of carriers generated by light and also enhanced the
light absorption ability [63]. Karmakar et al. reported in 2018 a new lead-free copper-doped double
perovskite structure with the formula (Cu)Cs2SbAgCl6. The bandgap of this new perovskite was
considerably decreased by copper doping from an un-doped structure with a bandgap of 2.65 eV to a
doped structure with a bandgap of about 1.02 eV. The characterization results showed a cubic geometry
for (Cu)Cs2SbAgCl6. Cu2+ substituted the Ag+ ions in the lattice and resulted in multiple defect sites.
The low doping concentration of Cu2+ resulted in a localized transition. This perovskite material offers
the additional benefit of long-term stability lasting about 365 days [40].
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3.4. Cs2AgInX6 (X = Cl, Br)

Trivalent metals of group-IIIA in the periodic table can completely substitute Bi3+ in Cs2AgInCl6.
Indium is a suitable trivalent alternative of Bi because of its electronic configuration. In 2017,
Volonakis et al. reported a halide double perovskite with In3+ and Ag+ at the B sites and Cs+ at the A
site (Figure 7) [64]. The double perovskite Cs2AgInCl6 was found to be photosensitive with a bandgap
of 3.3 eV. XRD data analysis showed that its space group was Fm3m. Photoluminescence was found at
around 2.1 eV and reversible color change behavior (white to orange) was also observed under UV
light illumination (Figure 7). It was also reported that the optical properties and bandgap could be
tuned by synthesizing Cl or Br alternatives of Cs2AgInX6 or by using a mixed halide composition.
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Figure 7. (a–d) Structural and optical characterization of Cs2InAgCl6. Reproduced with permission
from [64]. Legend: PL, photoluminescence; DFT: density functional theory.

The synthesis of double perovskites with group-IIIA metal ions further expands the class of
lead-free environment-friendly perovskites with potential photovoltaic application. The theoretical
prediction of the bandgap of Cs2AgInX6 by performing first principles calculations concluded that
these perovskites would have a direct bandgap. Tran et al. proposed a strategy with which to tune
the bandgap from a direct to an indirect nature which involved compositionally engineering the
conduction and valence bands [65]. The crystal momentum determination of the conduction band
and valence band indicated that in the cubic Brilluoin region, the energy rises in bands derived from
the s orbital (Г to Х) and decreases in bands derived from the p orbital. This crystal momentum of s-
and porbital-derived bands has already been described in the literature for MAPbI3 by Hutter and
co-workers (Figure 8) [66].



Crystals 2020, 10, 62 12 of 31
Crystals 2020, 10, 62 12 of 32 
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bands, and (c) band structure for p-orbital-derived bands. (d) Tauc plots for Cs2AgSbCl6, 
Cs2AgSb0.5In0.5Cl6, Cs2AgSb0.4In0.6Cl6, Cs2AgSb0.2In0.8Cl6, and Cs2AgInCl6. The plots show a transition 
from an indirect to a direct bandgap. (e) Phase diagram for Cs2AgSbxAg1−xCl6. Single crystals (f,g) of 
double perovskites Cs2AgSbCl6 and Cs2AgInCl6. Reproduced with permission from [65]. 

The value of the Cs2AgInCl6 bandgap is variable across different literature reports. Zhou et al. 
found that Cs2AgInCl6 has a direct bandgap by theoretical calculation (3.33 eV) and by using an 
experimental approach (3.23 eV) [67]. Crystals 1.5 to 5 mm in size were grown and the crystal 
structure of Cs2AgInCl6 showed that [AgCl6] and [InCl6] octahedra alternate with each other in the 
unit cell lattice and that AgIn forms a similar lattice to rock salt (NaCl) (Figure 9). This double 
perovskite depicted a broad PL peak at 635 nm upon irradiation with a 370 nm laser. The crystal was 
stable and showed the same optical behavior when placed under ambient conditions for 26 days. 
Thermally, the structure was stable up to 400 °C and started decomposing at 539 °C with the expected 
decomposition product of CsAgCl2 and CsInCl4. 
  

Figure 8. (a) Proposed band diagram for tetragonal MAPbI3, (b) band structure for s-orbital-derived
bands, and (c) band structure for p-orbital-derived bands. (d) Tauc plots for Cs2AgSbCl6,
Cs2AgSb0.5In0.5Cl6, Cs2AgSb0.4In0.6Cl6, Cs2AgSb0.2In0.8Cl6, and Cs2AgInCl6. The plots show a
transition from an indirect to a direct bandgap. (e) Phase diagram for Cs2AgSbxAg1−xCl6. Single
crystals (f,g) of double perovskites Cs2AgSbCl6 and Cs2AgInCl6. Reproduced with permission
from [65].

The value of the Cs2AgInCl6 bandgap is variable across different literature reports. Zhou et al.
found that Cs2AgInCl6 has a direct bandgap by theoretical calculation (3.33 eV) and by using an
experimental approach (3.23 eV) [67]. Crystals 1.5 to 5 mm in size were grown and the crystal structure
of Cs2AgInCl6 showed that [AgCl6] and [InCl6] octahedra alternate with each other in the unit cell
lattice and that AgIn forms a similar lattice to rock salt (NaCl) (Figure 9). This double perovskite
depicted a broad PL peak at 635 nm upon irradiation with a 370 nm laser. The crystal was stable and
showed the same optical behavior when placed under ambient conditions for 26 days. Thermally, the
structure was stable up to 400 ◦C and started decomposing at 539 ◦C with the expected decomposition
product of CsAgCl2 and CsInCl4.
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Later in 2018, Luo et al. systematically studied the crystal growth and structural and 
optoelectronic properties of Cs2AgInCl6 [68]. Cs2AgInCl6 crystals were grown using a combination of 
a hydrothermal method and a solution temperature lowering method. Small Cs2AgInCl6 crystals 
were synthesized using the hydrothermal method at 180 °C. Large, good-quality crystals were grown 
by lowering the temperature at a rate of 0.5 °C/hour in a Teflon autoclave. It was observed that 
nucleation occurs in the solution. A single crystal 2.88 mm × 2.81 mm × 1.95 mm in size could be 
harvested. The crystal was of good quality and a low trap state density of 8.6 × 108 cm–3 was achieved. 
This trap state density value was comparatively lower than that of a conventional Pb-based 
perovskite, with 1.8 × 109 cm–3 observed for a single crystal of MAPbI3(Cl) [7]. The crystal was stable 
for more than five months under ambient conditions and could tolerate a temperature of up to 507 
°C. In addition, this single crystal was shown to have a concentration-dependent trap state density. 
Crystals obtained from 0.067 molar and 0.05 molar solutions showed trap state densities of 8.6 × 108 
cm–3 and 7.3 × 109 cm–3, and carrier mobilities of 3.31 cm2 V–1 s−1 and 2.29 cm2 V–1 s–1, respectively. The 
single crystal showed different resistances in a vacuum (5.7 × 1011 Ω) and air (2.7 × 1010 Ω), which 
might be because of conductance caused by surface oxygen. Parity-forbidden transitions were 
observed from the conduction band minimum to the valence band maximum. The PL emission peak 
was obtained at 595 nm when the laser beam was focused on the crystal surface. When a laser with a 
power of ∼25 mJ cm–2 penetrated inside the crystal, two PL peaks were observed, with the stronger 
at 595 nm and the weaker at 425 nm. The single crystal showed a comparatively long PL lifetime at 
595 nm. The UV detector based on Cs2AgInCl6 showed comparative device properties to those of 
already-reported UV detectors [69]. Dark current, detectivity, response time, and detectivity to 
response time ratio values were found to be 0.01 nA, ~1012 Jones, 0.97 ms, and ~1012, respectively 
[68]. Cs2AgInCl6 could also be synthesized using a solid-state reaction method in 2017, and single 
crystals were grown using a slow cooling method [65].  

In double perovskites it is possible to achieve a direct to indirect bandgap transition by 
chemically adjusting the desired composition to modify the conduction band and its optoelectronic 
properties. For example, the incorporation of Na into Cs2AgInCl6 has been found to lead to an 
increase in PL by three orders of magnitude [38]. A device based on Cs2Ag0.60Na0.40InCl6 (Bi doped: 
0.04%) showed a PLQY of 86 (± 5)%, which was the highest PLQY for the already-reported white-
light-emitting materials. Cs2Ag0.60Na0.40InCl6 resulted in a bright and broad PL emission peak around 
550 nm which covered a large region of the visible spectrum. This material with 40% Na was stable 
and could work for over 1000 hours. Upon further increasing the Na content, the efficiency decreased, 
which may be due to the decreased transition dipole moment and enhancement of non-radiative loss 
of photoexcited electrons through recombination with holes [38]. Visible light emission properties of 
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ABX3 perovskite-type compounds; the general design principle of chemical unit substitution is also
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Later in 2018, Luo et al. systematically studied the crystal growth and structural and optoelectronic
properties of Cs2AgInCl6 [68]. Cs2AgInCl6 crystals were grown using a combination of a hydrothermal
method and a solution temperature lowering method. Small Cs2AgInCl6 crystals were synthesized
using the hydrothermal method at 180 ◦C. Large, good-quality crystals were grown by lowering the
temperature at a rate of 0.5 ◦C/hour in a Teflon autoclave. It was observed that nucleation occurs in the
solution. A single crystal 2.88 mm × 2.81 mm × 1.95 mm in size could be harvested. The crystal was of
good quality and a low trap state density of 8.6 × 108 cm–3 was achieved. This trap state density value
was comparatively lower than that of a conventional Pb-based perovskite, with 1.8 × 109 cm–3 observed
for a single crystal of MAPbI3(Cl) [7]. The crystal was stable for more than five months under ambient
conditions and could tolerate a temperature of up to 507 ◦C. In addition, this single crystal was shown
to have a concentration-dependent trap state density. Crystals obtained from 0.067 molar and 0.05
molar solutions showed trap state densities of 8.6 × 108 cm–3 and 7.3 × 109 cm–3, and carrier mobilities
of 3.31 cm2 V–1 s−1 and 2.29 cm2 V–1 s–1, respectively. The single crystal showed different resistances in
a vacuum (5.7 × 1011 Ω) and air (2.7 × 1010 Ω), which might be because of conductance caused by
surface oxygen. Parity-forbidden transitions were observed from the conduction band minimum to
the valence band maximum. The PL emission peak was obtained at 595 nm when the laser beam was
focused on the crystal surface. When a laser with a power of ∼25 mJ cm–2 penetrated inside the crystal,
two PL peaks were observed, with the stronger at 595 nm and the weaker at 425 nm. The single crystal
showed a comparatively long PL lifetime at 595 nm. The UV detector based on Cs2AgInCl6 showed
comparative device properties to those of already-reported UV detectors [69]. Dark current, detectivity,
response time, and detectivity to response time ratio values were found to be 0.01 nA, ~1012 Jones,
0.97 ms, and ~1012, respectively [68]. Cs2AgInCl6 could also be synthesized using a solid-state reaction
method in 2017, and single crystals were grown using a slow cooling method [65].

In double perovskites it is possible to achieve a direct to indirect bandgap transition by chemically
adjusting the desired composition to modify the conduction band and its optoelectronic properties.
For example, the incorporation of Na into Cs2AgInCl6 has been found to lead to an increase in PL by
three orders of magnitude [38]. A device based on Cs2Ag0.60Na0.40InCl6 (Bi doped: 0.04%) showed
a PLQY of 86 (± 5)%, which was the highest PLQY for the already-reported white-light-emitting
materials. Cs2Ag0.60Na0.40InCl6 resulted in a bright and broad PL emission peak around 550 nm which
covered a large region of the visible spectrum. This material with 40% Na was stable and could work
for over 1000 hours. Upon further increasing the Na content, the efficiency decreased, which may be
due to the decreased transition dipole moment and enhancement of non-radiative loss of photoexcited
electrons through recombination with holes [38]. Visible light emission properties of Cs2AgInCl6
were also improved by Mn doping [70]. The doped product showed strong PL emission at ~632 nm
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(Figure 10a,b). PL intensity increased linearly by increasing the concentration of Mn from 0.1% to 0.9%.
There was no change in the bandgap in Mn-doped Cs2AgInCl6. The doped perovskite exhibited a
face-centered cubic geometry group. It showed thermal stability up to 525 ◦C. Thus, lattice ion doping
in Cs2AgInCl6 can enhance its optical emission properties. Lattice ion doping of other transition
elements is also believed to be able to tune up the bandgap and photophysical properties.
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Figure 10. (a) UV–visible absorption of Mn-doped Cs2AgInCl6 with different Mn contents. Insets
show photographs of white-colored powder samples under visible light. (b) PL spectra of Mn-doped
Cs2AgInCl6 with different Mn contents after excitation with 340 nm light. Insets show photographs of
luminescence from the powder samples under UV light. Reproduced with permission from [70].

Double perovskites possess inversion symmetry, as depicted by their crystal structure. Generally,
the compounds with inversion symmetry show parity-forbidden transitions between the conduction
and valence band. Detailed studies on semiconducting materials like CuM2+O2 (M2+ = In, Ga, Al) [71],
In2O3 [72], Tl2O3 [73] and SnO2 [74] suggest that these materials possess inversion symmetry which
leads to parity-forbidden transitions, which explains their large bandgaps. The inversion symmetry
of double perovskites has provoked research efforts to find the parity-forbidden transitions in direct
bandgap double perovskites and their relationships to the perovskites’ optical properties. Studies on
the direct bandgap material Cs2AgInCl6 explain the difference between its bandgap value (∼3.3 eV)
and the PL peak, which was observed at 608 nm (2.0 eV). The PL peak of white-colored Cs2AgInCl6
at 608 nm suggests that the product should be an orange color. This phenomenon can be explained
by the parity-forbidden transitions between conduction band minimum and valence band maximum
at the Γ point and the low matrix elements at this point Γ leading to a weak PL emission. Thus,
the difference in the bandgap and PL emission peak has been found to be due to parity-forbidden
transitions. These transitions may also increase the carrier lifetime of double perovskites, as in
Cs2AgInCl6 (6 µs) [75]. Thus, double perovskites which have parity-forbidden transitions in the band
structure show weak disrupted PL emissions and longer carrier lifetimes than double perovskites
with parity-allowed-transitions. The study of anion diffusion in Cs2AgInCl6 revealed that it has low
Cl vacancy formation energy. This energy is lowered by an empty s orbital of In3+, as shown in
Figure 11 [54]. Hence, the electronic configuration of the metal cation at the B site should be considered
a barrier in halide ion diffusion in double perovskites. Halide diffusion studies of double perovskites
may support understanding of their optoelectronic properties.
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3.5. Cs2AgTlX6 (X = Cl, Br)

Incorporation of Tl as a trivalent metal into A2B’B”X6 could also tune the bandgap and increase
the stability. Cs2AgTlBr6 and Cs2AgTlCl6 were synthesized using a hydrothermal approach [76].
The crystals were grown by slow cooling of preheated clear solutions from 100 ◦C to room temperature.
These double perovskites crystallize in a cubic system with Fm3m symmetry. The Ag–X bond distances
are similar to Ag–X bonds in Cs2AgBiX6 perovskites. However, Tl–X bonds are 0.1 Å shorter in length
than Bi–X bonds. Cs2AgTlBr6 has a 2.0 eV direct bandgap while Cs2AgTlCl6 has the lowest direct
bandgap value of 0.95 eV. These compounds showed a lack of PL phenomena. It was also shown
that Cs2AgTlBr6 crystals grown in a bromine-free environment show more conductivity than crystals
grown in a bromine environment. Cs2AgTlBr6 was found to be stable for more than 40 days under
ambient conditions.

3.6. Cs2NaVCl6

Very recently Cs2NaVCl6 was synthesized using a solid-state reaction method. Crystals ~1 mm
in size were grown using a hydrothermal approach in HCl [77]. This new double perovskite with
vanadium (III) in the B position and Na in the B’ position was synthesized from VCl/V2O3, CsCl, and
NaCl precursors. The solution was heated for hydrothermal product formation at a temperature of
150 ◦C in a Teflon-lined autoclave for 2–4 h. This double perovskite had a bandgap of ~2.64 eV as
calculated from UV–visible diffuse reflectance spectra, which showed two strong peaks at 558 and
900 nm. These two absorption peaks were attributed to the electronic states and transitions of V3+ and
seemed to be the characteristic peaks of the Cs2NaVCl6 double perovskite only. This double perovskite
was found to be thermally stable up to 650 ◦C and to decompose through two different pathways.
It was also stable under ambient conditions and was relatively more stable than hybrid perovskites.

3.7. Organic–Inorganic Hybrid Halide Double Perovskites

In 2016, Deng et al. tried to explore new double perovskites that have a similar bandgap to
lead perovskites. By using density functional theory, they predicted that organic–inorganic hybrid
(MA)2B’BiX6 type structures could be synthesized if K, Cu, Tl, or Ag is incorporated at the B’
position and Br, Cl, or I at the X position. (MA)2B’BiX6 has a similar bandgap to MAPbX3. They
succeeded in the synthesis of (MA)2TlBiBr6, which was found to have a bandgap of ~2.0 eV, by using a
hydrothermal method, as shown in Figure 12. This dark-red-colored double perovskite crystal has Tl+

and Bi3+ alternating at the octahedral positions like Pb2+ in MAPbX3. This opens up the possibility of
synthesizing lead-alternative perovskites with similar properties to MAPbX3 [78].
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with an R3തm space group, as shown in Figure 13. The compound was stable up to 503 K as evidenced 
by TGA testing. Li et al. synthesized the hybrid double perovskite (MA)2AgSbI6 in 2017 using a solid-
state reaction [81]. This perovskite absorbed in the 200–600 nm UV–visible range and had a 1.93 eV 
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MAPbI3.  
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Figure 12. (a) Reflectance spectra. (b) Bandgap. (c) Computed bandgaps of (MA)2BIBiX6 where BI = K,
Tl, Cu, or Ag as a function of the X anion radius, including the MAPbX3 reference structures. (d) Crystal
structure of (MA)2BIBIIIX6. Blue: BI; red: BIII; pink: H; brown: C; grey: N; green: X. BIX6 and BIIIX6
octahedra are shown in blue and red, respectively. Reproduced with permission from [78].

Lead-based perovskites and halide double perovskites mostly crystallize in a cubic unit cell lattice.
However, they can exist in other crystal systems, e.g., rhombohedral geometry [79]. Wei et al. reported
the hybrid double perovskite (MA)2KBiCl6 with an indirect bandgap of 3.04 eV [80]. It was synthesized
using a hydrothermal method and its crystal structure depicted rhombohedral geometry with an R3m
space group, as shown in Figure 13. The compound was stable up to 503 K as evidenced by TGA testing.
Li et al. synthesized the hybrid double perovskite (MA)2AgSbI6 in 2017 using a solid-state reaction [81].
This perovskite absorbed in the 200–600 nm UV–visible range and had a 1.93 eV indirect bandgap.
The (MA)2AgSbI6 was stable for 370 days under ambient conditions and started decomposition at
260 ◦C. It showed better stability than the corresponding Pb-based perovskite MAPbI3.
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Volonakis et al. found (theoretically) some potential organic–inorganic hybrid double perovskites
which could be MAPbI3 alternatives [82]. Hypothetical double perovskites with structures MA2InBiBr6,
FA2InBiBr6, and mixed-cation (Cs/MA/FA)2InBiBr6 were proposed. Increasing the size of the cation by
alternating Cs+ with MA+/ FA+ in double perovskites can enhance stability. It can control the oxidation
of unstable B+ (In+) to the B3+(In3+) metal cation (Figure 14). This approach could prove hybrid double
perovskites to be a stable and non-toxic alternative toMAPbI3. Unfortunately, some efforts regarding
the synthesis of organic–inorganic hybrid A2InBiBr6 (A = MA, FA) were not successful. The successful
synthesis of direct bandgapped stable hybrid double perovskites is expected to largely expand the
family of halide double perovskites.
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Figure 14. Electronic and optical properties of hypothetical halide double perovskites MA2InBiBr6,
(Cs/MA)2InBiBr6, and (MA/FA)2InBiBr6. (a) Ball–stick octahedra models of the optimized structures
and band structures of MA2InBiBr6 (left) and MAPbI3 (right). (b) Calculated optical absorption
coefficients of MA2InBiBr6 (red), Si (purple), GaAs (black), and MAPbI3 (green). (c) Same as in (a) but
for (Cs/MA)2InBiBr6 and (MA/FA)2InBiBr6. Reproduced with permission from [82].
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4. 2D Halide Double Perovskites

Electronic and physical properties of halide double perovskites depend on the dimensionality
of their structure. It was found that the 3D structure of double perovskites can be altered into a 2D
layered structure by introduction of some spacers. The layered structure belongs to either of the two
types, namely, the Ruddlesden–Popper or Dion–Jacobson ordering, as shown in Figure 15 [83]. The 2D
double perovskites’ properties are different from those of their 3D analogues. Generally, 2D halide
double perovskites have a direct bandgap, electronic diversity, and composition tunability. It was also
found (theoretically) that hybridization control of the d orbital of the metal and the p orbital of the
halide can result in constructing 2D electronic structures in the 3D structure of perovskites [84].
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size were grown using a slow temperature lowering method as depicted in Figure 16 [86]. 
(BA)2CsAgBiBr7 was found to have an optical absorption bandgap of 2.38 eV and a trap state density 
of 4.2 × 1010 cm−3. The X-ray detector based on this double perovskite showed a marvelous sensitivity 
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In 2018, Karunadasa et al. synthesized 2D analogues of 3D Cs2AgBiBr6 and studied the effects of
reducing the dimensions [85]. They replaced Cs with the organic ligand BA (BA = CH3(CH2)3NH3+).
The newly synthesized 2D (BA)4AgBiBr8 and (BA)2CsAgBiBr7 showed a direct bandgap due to the
reduction in dimensions. This strategy increased the diversity and volume of the library of perovskites.
This approach also opened up the possibility of replacement of inorganic cations with organic parts to
confine the dimensions. Recently, large (BA)2CsAgBiBr7 crystals 10 × 10 × 3 mm3 in size were grown
using a slow temperature lowering method as depicted in Figure 16 [86]. (BA)2CsAgBiBr7 was found
to have an optical absorption bandgap of 2.38 eV and a trap state density of 4.2 × 1010 cm−3. The X-ray
detector based on this double perovskite showed a marvelous sensitivity of 4.2µC Gyair−1 cm−2.
Fang et al. studied the effect of pressure on the optical properties of 2D (BA)4AgBiBr8 [87]. Optical
properties varied with increasing pressure. PL intensity increased when raising the pressure to 8.2 GPa.
Pressure above 8.2 GPa resulted in a decrease in PL intensity and the PL peak completely disappeared
at 24 GPa. This result showed that 2D halide double perovskites could be optically activated by
increasing the pressure.
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Recently, seven new double perovskites, namely, PA4AgInCl8, PA4AgBiBr8, and 
PA4AgInBr8,where PA stands for propyl-ammonium, and OCA4AgBiBr8, BDA2AgBiBr8, 
PA2CsAgBiBr7, and PA2CsAgIn0.5Bi0.5Br7, where OCA stands for octyl-ammonium and BDA for 1,4- 
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Figure 16. (a) Photograph of as-grown single crystals of (BA)2CsAgBiBr7. (b) Structural alignment of
(BA)2CsAgBiBr7 and octahedra of BA. Reproduced with permission from [86].

In another approach, two new 2D double perovskites (C6H16N2)2AgBiI8·H2O and
(C6H16N2)2CuBiI8·0.5H2O were synthesized [88]. These perovskites had bandgaps of 1.93 eV and
1.68 eV, respectively. Both of them crystallized in a P21/c space group with a 2D structure, as shown
in Figure 17. (C6H16N2)2AgBiI8·H2O showed an absorption peak in the UV–visible spectra around
2.15 eV and PL emission at 1.84 eV. (C6H16N2)2CuBiI8·0.5H2O absorbed at 2.02 eV and showed a PL
peak at 1.78 eV.
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Recently, seven new double perovskites, namely, PA4AgInCl8, PA4AgBiBr8, and PA4AgInBr8,where
PA stands for propyl-ammonium, and OCA4AgBiBr8, BDA2AgBiBr8, PA2CsAgBiBr7, and
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PA2CsAgIn0.5Bi0.5Br7, where OCA stands for octyl-ammonium and BDA for 1,4- butanediammonium,
have been synthesized and characterized, as shown in Figure 18 [83].
Crystals 2020, 10, 62 20 of 32 
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from an interference effect), (c) PA4AgBiBr8, (d) PA2CsAgBiBr7, and (e) PA2CsAgBi0.5Br7. (f) Selected 
area electron diffraction (SAED) of fragments of PA4AgBiBr8, showing spots corresponding to the 
labeled d-spacings, with real-space TEM images of fragments inset. Scale bars: 2 nm–1 for the SAED 
image and 1 μm for the real-space image. Inset shows d-spacing of 3.1 Å. Reproduced with permission 
from [83]. 

5. Nanocrystals of Halide Double Perovskites 

Research advancements in the synthesis of nanocrystals (NCs) with desired morphology and 
optoelectronic applications of nanocrystalline materials have arisen since the 1980s. Perovskite 
nanocrystals exhibit many merits, including being solution phase processed, having a tunable 
bandgap, and showing defect tolerance. They show interesting optoelectronic properties such as high 
PL quantum yield, long carrier lifetime, high charge carrier mobility, and being compositionally 
tunable [89]. Zhou et. al. reported the synthesis of Cs2AgBiBr6 NCs for the first time using a hot 
injection method (Figure 19) [90]. It was found that the optimal temperature for NC synthesis was 
200 °C. The presence of oleic acid for nanocrystal formation, oleylamine for dissolving the BiBr3, and 
HBr for fully ionizing Ag+ was necessary. 

Figure 18. Optical microscope images of (a) PA4AgInCl8, (b) PA4AgInBr8 (colorless;, the purple comes
from an interference effect), (c) PA4AgBiBr8, (d) PA2CsAgBiBr7, and (e) PA2CsAgBi0.5Br7. (f) Selected
area electron diffraction (SAED) of fragments of PA4AgBiBr8, showing spots corresponding to the
labeled d-spacings, with real-space TEM images of fragments inset. Scale bars: 2 nm–1 for the SAED
image and 1 µm for the real-space image. Inset shows d-spacing of 3.1 Å. Reproduced with permission
from [83].

5. Nanocrystals of Halide Double Perovskites

Research advancements in the synthesis of nanocrystals (NCs) with desired morphology and
optoelectronic applications of nanocrystalline materials have arisen since the 1980s. Perovskite
nanocrystals exhibit many merits, including being solution phase processed, having a tunable
bandgap, and showing defect tolerance. They show interesting optoelectronic properties such as
high PL quantum yield, long carrier lifetime, high charge carrier mobility, and being compositionally
tunable [89]. Zhou et al. reported the synthesis of Cs2AgBiBr6 NCs for the first time using a hot
injection method (Figure 19) [90]. It was found that the optimal temperature for NC synthesis was
200 ◦C. The presence of oleic acid for nanocrystal formation, oleylamine for dissolving the BiBr3, and
HBr for fully ionizing Ag+ was necessary.
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five days [5]. 
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As can be seen in Figure 19, synthesized halide double perovskite NCs were obtained with
well-defined cubic shapes and were uniformly distributed with an average size of 9.5 nm. Thus,
double perovskite NCs could be obtained with uniform and well-defined shapes in a similar fashion
to Pb-based NCs. The bandgap of the Cs2AgBiBr6 NCs was 2.52 eV and showed a blue shift of
0.57 eV from the corresponding bulk Cs2AgBiBr6 (1.95 eV); the enlarged bandgap was attributed to
the quantum confinement effect. These NCs readily decomposed in organic solvents like dimethyl
formamide because of their ionic nature. They also degraded in protonic solvents because of the proton
exchange between the solvent and ligands. However, the NCs were stable (lasting about three weeks)
in mild polar (chloroform) and non-polar solvents. CO2 reduction using Cs2AgBiBr6 was carried out
in non-protonic and mildly polar solvent ethyl acetate, as this has been reported recently as a medium
for conducting the photocatalytic reduction of CO2 and because the NCs were found to be stable in it
for five days [5].
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Cs2AgBiBr6 and Cs2AgBiCl6 colloidal NCs were reported in 2017 followed by ion-exchange
reactions to yield a new material, namely, Cs2AgBiI6. Nanocrystals were prepared by using
trimethylsilyl halides as the ion exchange reagent, as depicted in Figure 20 [91]. Cs2AgBiX6 (X = Cl,
Br) NCs were further explored via synthesis using two new methods and by studying their physical
properties. In the first method, 8–15 nm sized NCs were synthesized by injecting the precursor solutions
of octadecene along with oleylamine and oleic acid into the Cs-oleate and keeping the solution within
the temperature range 150–200 ◦C. The second method also yielded the same type of nanocrystals in
which the reactants were injected into the metal acetate solutions at a comparatively low temperature,
i.e., 100 ◦C [92]. Cs2AgBiBr6 showed a sharp absorption peak at ∼430 nm, with an indirect transition
which was also confirmed by PL observed at 650 nm with a full width at half maximum of ∼200 nm.
Cs2AgBiCl6 showed absorption at 365 nm with no PL emission peak.

The depletion of the double perovskite structure results in a phase transition from cubic Cs2AgBiBr6

to trigonal Cs3Bi2Br9, Cs3BiBr6, and elemental silver, as follows.

3Cs2AgBiBr6→ Cs3Bi2Br9 + Cs3BiBr6 + 3Ag + 3/2 Br2 (5)

The spreading out of Ag, together with its reduction and adjoining, is the key reason for structural
instability. The Cs2AgBiBr6 NCs are stable in polar solvents and were found to retain their phase
in polar solvents. These NCs showed a similar absorption peak in polar solvents with a value of
polar indices lower than 4.4 (ethyl acetate). For fast screening of reaction conditions and the expected
properties, a microfluidic reactor was designed to synthesize the halide double perovskite NCs [93].
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optoelectronic and magnetic performance of NCs within by size control and quantum confinement 
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synthesized nanocrystals. (f) Comparison of absorption spectra from two different sizes of Cs2AgBiBr6

nanocrystals (blue) and the corresponding anion-exchanged Cs2AgBiI6 (red) nanocrystals; starting
diameters were 9 nm (light blue/light red) and 13 nm (dark blue/dark red). (g) Photograph of dilute
toluene solutions of (left to right) Cs2AgBiBr6, Cs2AgBiBr5.2I0.8, Cs2AgBiBr1.6I4.4, and Cs2AgBiI6

nanocrystals. Reproduced with permission from [91]. Legend: TMS = trimethylsilyl.

It is necessary to mention here that the size of the nanocrystals and their quantum confinement
depends on the reaction conditions, and can be tuned accordingly [94]. Double perovskite NCs can be
doped with some external metal like magnetic Mn2+ for modification of their optical properties [41,95].
This also paves the way for doping double perovskite NCs to obtain better magneto-optical applications
in the near future. NCs offer a diverse area of research for scientists to improve the optoelectronic and
magnetic performance of NCs within by size control and quantum confinement through controlling
and modifying the synthetic methods, varying the composition of the perovskite structure, alloying
metals, doping various metals and non-metals, and combining with other materials like carbon
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materials for better performances. It was observed that double perovskite structures which are
not stable in the bulk state can be synthesized in nano-form with enhanced stability because of the
considerable contribution of surface energy to the total energy balance in nanomaterials. Various
synthetic approaches, detailed comparative synthetic parameters, and properties of nanocrystals of
metal halide perovskites have been described recently by Shamsi and co-workers [96]. Nanoscale
double perovskites can be further tuned by doping and substitutions of metal ions to enhance the
optoelectronic response. For example, Yang et al. synthesized Cs2AgIn0.9Bi0.1Cl6 NCs with a direct
bandgap (Figure 21). PL quantum efficiency of 36.6% was achieved, which was comparable to
lead-based perovskite NCs in the violet region of light [97]. Double perovskite NCs can also be
explored for catalytic, sensor, and biological applications.
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In Table 1, some lead-free halide double perovskites and their properties are summarized.
Halide double perovskites are synthesized by solution and solid-state methods. They are mostly
crystallized in cubic crystal geometry with an Fm3m space group. The bandgaps of these perovskites
are tunable depending on their compositions. In 3D halide double perovskites, Cs2AgInCl6 shows
a large bandgap of 3.23 eV and Cs2AgSbBr6 shows a small bandgap of 1.64 eV. In 2D halide double
perovskites, the bandgap varies from the largest value of 3.96 eV for PA4AgInCl8 to the smallest value
of 1.93 eV for (MA)2AgSbI6. Photophysical properties are probably composition-dependent in halide
double perovskites.
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Table 1. Summary of some lead-free halide double perovskites and their properties.

Double Perovskite Crystal System Space Group Bandgap (eV) PL (eV) Synthetic Method Reference

Cs2AgBiBr6 Cubic Fm3m 2.19 indirect 1.87 Hydrothermal [21,49]

Cs2AgBiCl6 Cubic Fm3m 2.77 indirect 3.14 Solid-state and hydrothermal [21,61,98]

(MA)2KBiCl6 Rhombohedral R3m 3.04 indirect Hydrothermal [80]

(MA)2TlBiBr6 Cubic Fm3m ~2.0 direct Hydrothermal [78]

Cs2AgInCl6 Cubic Fm3m 3.23 direct 1.95 Solid-state and hydrothermal [65,67,75]

Cs2AgSbCl6 Cubic Fm3m 2.54–2.60 indirect Hydrothermal [63,65]

Cs2AgIn0.5Sb0.5Cl6 2.81 indirect Hydrothermal [65]

Cs2AgSb0.4In0.6Cl6 2.92 direct Hydrothermal [65]

Cs2AgSb0.2In0.8Cl6 3.06 direct Hydrothermal [65]

Cs2NaVCl6 Cubic Fm3m ~2.64 direct Solid-state [77]

Cs2AgBi1–xSbxBr6 Cubic Fm3m 2–1.6 Solid-state [57]

(MA)2AgSbI6 Cubic Fm3m 1.93 Solid-state [81]

Cs2AgSbBr6 Cubic Fm3m 1.64 indirect Hydrothermal [62]

Cs2NaBiCl6 Cubic Fm3m Solvent evaporation [44,45]

PA4AgInCl8 Triclinic P1 3.96 Hydrothermal [83]

PA4AgBiBr8 Monoclinic C2/m 2.41 Hydrothermal [83]

PA4AgInBr8 Monoclinic C2/m 3.15 2.76 Hydrothermal [83]

OCA4AgBiBr8 Monoclinic C2/m Hydrothermal [83]

BDA2AgBiBr8 Triclinic P1 Hydrothermal [83]

PA2CsAgBiBr7 Monoclinic C2/m Hydrothermal [83]

PA2CsAgIn0.5Bi0.5Br7 Monoclinic C2/m Hydrothermal [83]

PA4AgSb0.5Bi0.5Br8 2.51 1.93 Hydrothermal [83]

PA4AgIn0.5Bi0.5Br8 2.56 1.76 Hydrothermal [83]
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6. Applications of Halide Double Perovskites

Halide double perovskites have been mainly explored in recent years for their optoelectronic
applications. They have been applied in fabricating photodetectors [49,68], X-ray detectors [3,50], solar
cells [19,29,32,37,51,63,67,99–101], LEDs [38,42], and photocatalysts [93], etc.

Cs2AgBiBr6-based thin film solar cells showed a PCE of 2.5% and an open current voltage larger
than 1 V, as illustrated in Figure 22 [102]. In another study, a Cs2AgBiBr6 based solar cell was fabricated
with a uniform and compact perovskite thin film by optimizing the material deposition parameters,
which led to the achievement of a 1.26% PCE [100]. Cs2AgBiX6 NCs are also promising light-emitting
materials. Yang et al. synthesized Cs2AgBiX6 NCs and observed tunable PL emission from 2.15 eV
to 3.14 eV, as shown in Figure 23 [98]. Volonakis et al. studied the electronic surface properties of
Cs2BiAgCl6, Cs2BiAgBr6, Cs2SbAgCl6, and Cs2InAgCl6 double perovskites and suggested that these
materials have the potential for photocatalytic water splitting [103]. Ionization potential and electron
affinity values of Cs2BiAgCl6 and Cs2BiAgBr6 indicate their promising potential for photocatalysis.
It has also been speculated that composition with mixed halides can tune the photocatalytic activity as
the conduction band level is controlled by halogen p orbital energy.
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Figure 23. (a) Steady-state absorption spectra Cs2AgBiBr6 NCs. (b) PL spectra NCs. Inset: photographs
of colloidal ligand-free Cs2AgBiBr6 NCs. (c) Variation in relative PL and relative absorption.
(d) Time-resolved photoluminescence (PL) kinetics of ligand-free NCs measured with time-correlated
single photon counting (376 nm pump). (e) NC charge carrier dynamics. (f) XRD patterns of Cs2AgBiX6
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Reproduced with permission from [98].
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The NCs of Cs2AgBiBr6 have shown good results for reducing CO2 to sustainable fuels (CO and
CH4) by showing an electron consumption of 105 µmol g–1 (6 h) [93]. However, further improvement
in stability by exploring different surface ligands and intercalations, or by different synthetic methods,
is expected to improve NC stability and photocatalytic performance.

7. Conclusions and Perspectives

With beneficial properties such as their promising environmental friendliness, suitable
compositional tunability, and favorable optoelectronic properties, halide double perovskites have
stimulated increasing research interest in the materials science community. This review summarizes
recent advances in the synthesis of 3D, 2D, and nanocrystal representative A2B’B”X6 halide double
perovskites. Important applications of these advanced materials in solar cells, photodetectors, X-ray
detectors, and photocatalysis, etc., are also introduced briefly. It can be seen that a variety of halide
double perovskites with either a direct bandgap or an indirect bandgap have been demonstrated.
Halide double perovskites with a bandgap comparable to that of the conventional MAPbI3 are now
accessible, which may further boost the application of these less-toxic materials in the photovoltaic
area. Although halide double perovskites were proposed initially to solve toxicity and stability issues
of conventional APbX3 single perovskites, one of the current challenges in halide double perovskites is
still their llower level of stability under ambient conditions and their low photovoltaic performance.
Zhao et al. reported the degradation of single-perovskite-based optoelectronic devices in 2016. It was
revealed that the perovskite device was degraded by redox reactions of the perovskite with Ag, Al, Yb,
or Cr layers. [104]. The degradation mechanism of double-perovskite-based optoelectronic devices is
yet to be identified. Thus, there is a need to improve their stability and photoresponsivity, including
photodetection, to overcome lead perovskites. The instability can be overcome by encapsulating the
perovskite with carbon or by substitution of multi-cations or by incorporating the hydrophobic moieties
around the perovskite structure [105]. The other challenge that is common to all perovskites is their
large-scale application and commercialization. Furthermore, the change in bandgap with temperature
in double perovskites was observed recently by Schade and co-workers. This might initiate further
future temperature-dependent studies of double perovskites, as the bandgap of lead-based halide
perovskites is temperature-independent [53]. In addition, large double perovskite crystals are more
desired in applications. However, the crystal growth of large-sized A2B’B”X6 single crystals in a
shorter time period is also a big challenge in this field. Overall, the double perovskite family has not
been extensively explored yet and possible new combinations may provide alternative photovoltaic
materials. In these double perovskites there are more chances of finding new perovskite combinations
as the B’ and B” positions can be tuned to find the best combination for the best output. However, in
these lead-free halide perovskites the exact mechanism of action relative to the particular structures is
not yet known. Hence, there is sufficient research space, and we have enormous expectations for the
future development of A2B’B”X6 halide double perovskite materials. The innovation and novelty in
this field may surely find a solution for toxicity and instability.
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