Effects of Synthesis Parameters on Crystallization Behavior of K-MER Zeolite and Its Morphological Properties on Catalytic Cyanoethylation Reaction
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of MER Zeolite
2.2. Characterization
2.3. Catalytic Study
3. Results and Discussion
3.1. Effect of Heating Time
3.2. Effect of Heating Temperature
3.3. Effect of K2O Content
3.4. Effect of SiO2 Content
3.5. Effect of Water Content
3.6. Morphological Effects on the Catalytic Behavior of K-MER Zeolite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Saqib, N.U.; Adnan, R.; Shah, I. Zeolite supported TiO2 with enhanced degradation efficiency for organic dye under household compact fluorescent light. Mater. Res. Exp. 2019, 6, 095506. [Google Scholar] [CrossRef]
- Derakhshankhah, H.; Hajipour, M.J.; Barzegari, E.; Lotfabadi, A.; Ferdousi, M.; Saboury, A.A.; Ng, E.-P.; Raoufi, M.; Awala, H.; Mintova, S.; et al. Zeolite nanoparticles inhibit Aβ–fibrinogen interaction and formation of a consequent abnormal structural clot. ACS Appl. Mater. Interfaces 2016, 8, 30768–30779. [Google Scholar] [CrossRef] [PubMed]
- Majano, G.; Ng, E.-P.; Lakiss, L.; Mintova, S. Nanosized molecular sieves utilized as an environmentally friendly alternative to antioxidants for lubricant oils. Green Chem. 2011, 13, 2435–2440. [Google Scholar] [CrossRef]
- Balkus, K.J., Jr.; Shi, J. A study of suspending agents for gadolinium (III)-exchanged hectorite. An oral magnetic resonance imaging contrast agent. Langmuir 1996, 12, 6277–6281. [Google Scholar] [CrossRef]
- Adam, F.; Appaturi, J.N.; Ng, E.-P. Halide aided synergistic ring opening mechanism of epoxides and their cycloaddition to CO2 using MCM-41-imidazolium bromide catalyst. J. Mol. Catal. A Chem. 2014, 386, 42–48. [Google Scholar] [CrossRef]
- Ng, E.-P.; Lim, G.K.; Khoo, G.-L.; Tan, K.-H.; Ooi, B.S.; Adam, F.; Ling, T.C.; Wong, K.-L. Synthesis of colloidal stable Linde Type J (LTJ) zeolite nanocrystals from rice husk silica and their catalytic performance in Knoevenagel reaction. Mater. Chem. Phys. 2015, 155, 30–35. [Google Scholar] [CrossRef]
- Ng, E.-P.; Nur, H.; Wong, K.-L.; Muhid, M.N.M.; Hamdan, H. Generation of Brönsted acidity in AlMCM-41 by sulphation for enhanced liquid phase tert-butylation of phenol. Appl. Catal. A Gen. 2007, 323, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Kakutani, Y.; Weerachawanasak, P.; Hirata, Y.; Sano, M.; Suzuki, T.; Miyake, T. Highly effective K-Merlinoite adsorbent for removal of Cs+ and Sr2+ in aqueous solution. RSC Adv. 2017, 7, 30919–30928. [Google Scholar] [CrossRef] [Green Version]
- Mirfendereski, S.M. Synthesis and application of high-permeable MER zeolite membrane for separation of carbon dioxide from methane. J. Aust. Ceram. Soc. 2019, 55, 103–114. [Google Scholar] [CrossRef]
- Seo, Y.H.; Prasetyanto, E.A.; Jiang, N.; Oh, S.M.; Park, S.E. Catalytic dehydration of methanol over synthetic K-MER zeolite. Microporous Mesoporous Mater. 2010, 128, 108–114. [Google Scholar] [CrossRef]
- Cheong, Y.-W.; Wong, K.-L.; Ling, T.C.; Ng, E.-P. Rapid synthesis of nanocrystalline zeolite W with hierarchical mesoporosity as an efficient solid basic catalyst for nitroaldol Henry reaction of vanillin with nitroethane. Mater. Express 2018, 8, 463–468. [Google Scholar] [CrossRef]
- Liu, X.-D.; Wang, Y.-P.; Cui, X.-M.; He, Y.; Mao, J. Influence of synthesis parameters on NaA zeolite crystals. Powder Technol. 2013, 243, 184–193. [Google Scholar] [CrossRef]
- Sivalingam, S.; Sen, S. Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Appl. Surf. Sci. 2018, 455, 903–910. [Google Scholar] [CrossRef]
- Quan, Y.; Li, S.; Wang, S.; Li, Z.; Dong, M.; Qin, Z.; Chen, G.; Wei, Z.; Fan, W.; Wang, J. Synthesis of chainlike ZSM‑5 zeolites: Determination of synthesis parameters, mechanism of chainlike morphology formation, and their performance in selective adsorption of xylene isomers. ACS Appl. Mater. Interfaces 2017, 9, 14899–14910. [Google Scholar] [CrossRef]
- Au, L.T.Y.; Yeung, K.L. An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes. J. Membr. Sci. 2001, 194, 33–55. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Dong, M.; Fan, S.; Zhao, T.; Wang, J.; Fan, W. Strategies to control zeolite particle morphology. Chem. Soc. Rev. 2019, 48, 885–907. [Google Scholar] [CrossRef]
- Jhung, S.H.; Chang, J.-S.; Hwang, Y.K.; Park, S.-E. Crystal morphology control of AFI type molecular sieves with microwave irradiation. J. Mater. Chem. 2004, 14, 280–285. [Google Scholar] [CrossRef]
- Khoo, D.Y.; Kok, W.-M.; Mukti, R.R.; Mintova, S.; Ng, E.-P. Ionothermal approach for synthesizing AlPO-5 with hexagonal thin-plate morphology influenced by various parameters at ambient pressure. Solid State Sci. 2013, 25, 63–69. [Google Scholar] [CrossRef]
- Ng, E.-P.; Ng, D.T.-L.; Awala, H.; Wong, K.-L.; Mintova, S. Microwave synthesis of colloidal stable AlPO-5 nanocrystals with high water adsorption capacity and unique morphology. Mater. Lett. 2014, 132, 126–129. [Google Scholar] [CrossRef]
- Ou, X.; Xu, S.; Warnett, J.M.; Holmes, S.M.; Zaheer, A.; Garforth, A.A.; Williams, M.A.; Jiao, Y.; Fan, X. Creating hierarchies promptly: Microwave-accelerated synthesis of ZSM-5 zeolites on macrocellular silicon carbide (SiC) foams. Chem. Eng. J. 2017, 312, 1–9. [Google Scholar] [CrossRef]
- Askari, S.; Halladj, R. Ultrasonic pretreatment for hydrothermal synthesis of SAPO-34 nanocrystals. Ultrason. Sonochem. 2012, 19, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.-P.; Chow, J.-H.; Mukti, R.R.; Muraza, O.; Ling, T.C.; Wong, K.-L. Hydrothermal synthesis of zeolite a from bamboo leaf biomass and its catalytic activity in cyanoethylation of methanol under autogenic pressure and air conditions. Mater. Chem. Phys. 2017, 201, 78–85. [Google Scholar] [CrossRef]
- Ginés-Molina, M.J.; Ahmad, N.H.; Mérida-Morales, S.; García-Sancho, C.; Mintova, S.; Ng, E.-P.; Maireles-Torres, P. Selective Conversion of Glucose to 5-Hydroxymethylfurfural by Using L-Type Zeolites with Different Morphologies. Catalysts 2019, 9, 1073. [Google Scholar] [CrossRef] [Green Version]
- Ghrear, T.M.A.; Rigolet, S.; Daou, T.J.; Mintova, S.; Ling, T.C.; Tan, S.H.; Ng, E.-P. Synthesis of Cs-ABW nanozeolite in organotemplate-free system. Microporous Mesoporous Mater. 2019, 277, 78–83. [Google Scholar] [CrossRef]
- Wong, S.-F.; Awala, H.; Vincente, A.; Retoux, R.; Ling, T.C.; Mintova, S.; Mukti, R.R.; Ng, E.-P. KF zeolite nanocrystals synthesized from organic-template-free precursor mixture. Microporous Mesoporous Mater. 2017, 249, 105–110. [Google Scholar] [CrossRef]
- IZA-SC Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 1 December 2019).
- Wong, S.-F.; Deekomwong, K.; Wittayakun, J.; Ling, T.C.; Muraza, O.; Adam, F.; Ng, E.-P. Crystal growth study of KF nanozeolite and its catalytic behavior in Aldol condensation of benzaldehyde and heptanal enhanced by microwave heating. Mater. Chem. Phys. 2017, 196, 295–301. [Google Scholar] [CrossRef]
- Ng, E.-P.; Sekhon, S.S.; Mintova, S. Discrete MnAlPO-5 nanocrystals synthesized by an ionothermal approach. Chem. Commun. 2009, 1661–1663. [Google Scholar] [CrossRef]
- Ng, E.-P.; Awala, H.; Ghoy, J.P.; Vicente, A.; Ling, T.C.; Ng, Y.H.; Mintova, S.; Adam, F. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals. Mater. Chem. Phys. 2015, 159, 38–45. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Wang, Z. Control of crystallization rate and morphology of zeolite silicalite-1 in solvent-free synthesis. Microporous Mesoporous Mater. 2019, 283, 14–24. [Google Scholar] [CrossRef]
- Ng, E.-P.; Rigolet, S.; Daou, T.J.; Mintova, S.; Ling, T.C. Micro-and macroscopic observations of the nucleation process and crystal growth of nanosized Cs-pollucite in an organotemplate-free hydrosol. New J. Chem. 2019, 43, 17433–17440. [Google Scholar] [CrossRef]
- Gomez, A.G.; de Silveira, G.; Doana, H.; Cheng, C.-H. A facile method to tune zeolite L crystals with low aspect ratio. Chem. Commun. 2011, 47, 5876–5878. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.-P.; Goh, J.-Y.; Ling, T.C.; Mukti, R.R. Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor. Nanoscale Res. Lett. 2013, 8, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghrear, T.M.A.; Cheong, Y.-W.; Lim, G.K.; Chateigner, D.; Ling, T.C.; Tan, S.H.; Ng, E.-P. Fast, low-pressure, low-temperature microwave synthesis of ABW cesium aluminosilicate zeolite nanocatalyst in organotemplate-free hydrogel system. Mater. Res. Bull. 2020, 122, 110691. [Google Scholar] [CrossRef]
- Barrett, P.A.; Valencia, S.; Camblor, M.A. Synthesis of a merlinoite-type zeolite with an enhanced Si/Al ratioviapore filling with tetraethylammonium cations. J. Mater. Chem. 1998, 8, 2263–2268. [Google Scholar] [CrossRef]
- Mohammad, S.A.G.; Khoerunnisa, F.; Rigolet, S.; Daou, T.J.; Ling, T.C.; Ng, E.-P. Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone. Processes 2020, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Choo, M.-Y.; Juan, J.C.; Oi, L.E.; Ling, T.C.; Ng, E.-P.; Noorsaadah, A.R.; Centi, G.; Lee, K.T. The role of nanosized zeolite Y in the H 2-free catalytic deoxygenation of triolein. Catal. Sci. Technol. 2019, 9, 772–782. [Google Scholar] [CrossRef]
- Hargreaves, J.S.J.; Hutchings, G.J.; Joyner, R.W.; Kiely, C.J. The relationship between catalyst morphology and performance in the oxidative coupling of methane. J. Catal. 1992, 135, 576–595. [Google Scholar] [CrossRef]
Parameters | Samples | Gel Molar Composition | T (°C) | t (h) | Si/Al Ratio | Phase(s) a | |||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | K2O | H2O | ||||||
Time | W-1 | 7 | 1 | 3.5 | 196 | 180 | 0 | 7.81 | Am. |
W-2 | 10 | 3.73 | Am.>>MER | ||||||
W-3 | 14 | 2.29 | MER | ||||||
W-4 | 20 | 2.28 | MER | ||||||
Temperature | W-5 | 7 | 1 | 3.5 | 196 | 120 | 14 | 3.29 | Am. |
W-6 | 140 | 2.63 | MER | ||||||
W-7 | 160 | 2.61 | MER | ||||||
W-3 | 180 | 2.29 | MER | ||||||
K2O | W-3 | 7 | 1 | 3.5 | 196 | 180 | 14 | 2.29 | MER |
W-8 | 5.0 | 2.29 | MER | ||||||
W-9 | 7.0 | 2.28 | MER | ||||||
SiO2 | W-10 | 1.5 | 1 | 3.5 | 130 | 180 | 14 | 1.22 | EDI |
W-11 | 5 | 2.53 | MER | ||||||
W-12 | 7 | 2.73 | LTL<MER | ||||||
W-13 | 10 | 3.05 | LTL | ||||||
H2O | W-14 | 7 | 1 | 3.5 | 100 | 180 | 14 | 2.82 | LTL<MER |
W-12 | 130 | 2.73 | LTL<MER | ||||||
W-3 | 196 | 2.29 | MER | ||||||
W-16 | 280 | 2.31 | MER |
Sample | Morphology | Si/Al Ratio | K/Al Ratio | Surface Area (m2/g) a | TPD-CO2 Basicity (mmol/g) | |||
---|---|---|---|---|---|---|---|---|
Weak | Medium | Medium-Strong | Total | |||||
W-3 | Nanorod | 2.29 | 1.04 | 39.57 | 0.08 | 1.99 | 2.03 | 3.10 |
W-4 | Bullet | 2.28 | 1.07 | 12.24 | 0.18 | 0.95 | 0.27 | 1.39 |
W-9 | Prismatic | 2.28 | 0.97 | 26.63 | 0.24 | 1.53 | 0.94 | 2.71 |
W-16 | Wheatsheaf | 2.31 | 1.06 | 9.01 | 0.04 | 0.56 | 0.65 | 1.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, Y.-W.; Wong, K.-L.; Ooi, B.S.; Ling, T.C.; Khoerunnisa, F.; Ng, E.-P. Effects of Synthesis Parameters on Crystallization Behavior of K-MER Zeolite and Its Morphological Properties on Catalytic Cyanoethylation Reaction. Crystals 2020, 10, 64. https://doi.org/10.3390/cryst10020064
Cheong Y-W, Wong K-L, Ooi BS, Ling TC, Khoerunnisa F, Ng E-P. Effects of Synthesis Parameters on Crystallization Behavior of K-MER Zeolite and Its Morphological Properties on Catalytic Cyanoethylation Reaction. Crystals. 2020; 10(2):64. https://doi.org/10.3390/cryst10020064
Chicago/Turabian StyleCheong, Ying-Wai, Ka-Lun Wong, Boon Seng Ooi, Tau Chuan Ling, Fitri Khoerunnisa, and Eng-Poh Ng. 2020. "Effects of Synthesis Parameters on Crystallization Behavior of K-MER Zeolite and Its Morphological Properties on Catalytic Cyanoethylation Reaction" Crystals 10, no. 2: 64. https://doi.org/10.3390/cryst10020064
APA StyleCheong, Y. -W., Wong, K. -L., Ooi, B. S., Ling, T. C., Khoerunnisa, F., & Ng, E. -P. (2020). Effects of Synthesis Parameters on Crystallization Behavior of K-MER Zeolite and Its Morphological Properties on Catalytic Cyanoethylation Reaction. Crystals, 10(2), 64. https://doi.org/10.3390/cryst10020064