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Abstract: In the present work, freeze crystallization studies, as a novel concentration method
for aqueous 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]) ionic liquid solution,
were conducted. In order to find the appropriate temperature and composition range for freeze
crystallization, the solid–liquid equilibrium of a binary [DBNH][OAc]–water compound system was
investigated with differential scanning calorimetry (DSC). Results of this analysis showed that the
melting temperature of the pure ionic liquid was 58 °C, whereas the eutectic temperature of the binary
compound system was found to be −73 °C. The activity coefficient of water was determined based on
the freezing point depression data obtained in this study. In this study, the lowest freezing point was
−1.28 °C for the aqueous 6 wt.% [DBNH][OAc] solution. Ice crystal yield and distribution coefficient
were obtained for two types of aqueous solutions (3 wt.% and 6 wt.% [DBNH][OAc]), and two freezing
times (40 min and 60 min) were used as the main parameters to compare the two melt crystallization
methods: static layer freeze and suspension freeze crystallization. Single-step suspension freeze
crystallization resulted in higher ice crystal yields and higher ice purities when compared with the
single-step static layer freeze crystallization. The distribution coefficient values obtained showed
that the impurity ratios in ice and in the initial solution for suspension freeze crystallization were
between 0.11 and 0.36, whereas for static layer freeze crystallization these were between 0.28 and 0.46.
Consequently, suspension freeze crystallization is a more efficient low-energy separation method than
layer freeze crystallization for the aqueous-ionic liquid solutions studied and, therefore, this technique
can be applied as a concentration method for aqueous-ionic liquid solutions.

Keywords: melt crystallization; freeze crystallization (FC); recycling; ionic liquid (IL);
solid–liquid equilibrium

1. Introduction

Crystallization from melt is one of the separation and concentration techniques used for organic
compound solutions [1]. Nevertheless, under certain conditions, several organic compounds and
green solvents, such as ionic liquids and deep eutectic solvents, can undergo thermal degradation or
hydrolysis [2–6]. Even though it has been reported that low-pressure evaporation and distillation [7–9]
can be used as a concentration method in the recycling of ionic liquids from aqueous ionic liquid
solutions, the main drawback of such processes is that they are high-energy separation methods due to
the high latent heat of evaporation. Consequently, there is a need to find more feasible concentration
methods, which also allow application at low-temperature ranges.

Melt crystallization is a low-energy separation method that typically uses a low processing
temperature close to room temperature. This is an advantage when working with thermally unstable
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substances or organic compounds that tend to react and decompose at higher temperatures [10].
Freeze concentration of an aqueous solution is one type of melt-based crystallization method and this
is defined as the separation of formed ice from the aqueous solution.

Melt crystallization methods can be generally classified as either layer crystallization or suspension
crystallization [11]. In static layer crystallization, the formation and growth of the ice layer occurs at the
sub-cooled surface of a crystallizer from stagnant aqueous solution. In contrast, with the suspension
crystallization technique, ice crystals form and grow within a sub-cooled solution present inside a
crystallizer equipped with a scraper.

Moreover, a recent study [12] has shown that the combination of evaporation and freeze
crystallization processes as a new method of recycling an ionic liquid from an aqueous solution
is more energy efficient than evaporation-based concentration, primarily as a result of the lower latent
heat of freezing when compared with the latent heat of evaporation.

In the present work, an ionic liquid (IL), 1,5-diazabicyclo[4.3.0]non-5-enium acetate
([DBNH][OAc]), was used as a model compound for the investigation of the freeze concentration method.
[DBNH][OAc] has been shown to be an efficient solvent for dissolving birch-based cellulose [13] and is
considered to be a promising industrial solvent due to its safety, low environmental impact, economic
viability, and production of high-quality fiber even from low-refined unbleached pulps [14–17] with
good spinnability [18]. Nevertheless, the main challenge to the wider application of IL is that it can
be a relatively expensive organic solvent and, therefore, it must be efficiently recycled from aqueous
solution as a way to reduce costs [19].

In this work, freeze crystallization techniques as a concentration method for IL recycling were
investigated. The solid–liquid equilibria were determined between [DBNH][OAc] and water by the
differential scanning calorimetry (DSC) technique.

2. Materials and Methods

This section describes the DSC procedure used for phase diagram construction and outlines
the methodologies employed for static layer freeze crystallization, suspension freeze crystallization,
and for separation efficiency studies.

2.1. Differential Scanning Calorimetry (DSC)

The solid–liquid equilibrium of binary [DBNH][OAc] and water solution was investigated to obtain
phase diagram data that cover both [DBNH][OAc]- and water-enriched solutions. Thermal analyses
were conducted by DSC (3, Mettler Toledo (Schwerzenbach, Switzerland)) equipped with an intra-cooler.
Individual samples, with a mass of ca. 10 mg, were placed in 25 µL aluminum crucibles that were
subsequently sealed before being placed in the experimental chamber with a N2 flux regulated
atmosphere. As low heating and cooling rates offer better information about the thermal behavior of
the samples, i.e., whether the ionic liquid is a crystal or a glass formation [20], a heating and cooling
rate of 1 K/min was chosen for all experiments.

2.2. Water Activity Coefficient

Water activity coefficients of aqueous [DBNH][OAc] solutions were calculated using Equations (1)
and (2). Gmehling et al. [21] derived Equation (1) for the solubility of an organic solute in a solvent
starting from the isofugacity condition. It can be used to estimate the activity coefficient of a sub-cooled
liquid solvent as a function of the enthalpy of fusion, heat capacity difference between liquid and solid
phase, and melting point of the solvent. When the system is close to its melting point, the last two
terms of Equation (1) can be neglected and the simplified, Equation (2) is obtained. In the remainder
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of the article, Equation (1) is referred to as the activity coefficient equation and Equation (2) as the
simplified activity coefficient equation.
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where
γL activity coefficient of water,
xL mole fraction of water,
∆hm enthalpy of fusion for water at 273.15 K (6009.5 J/mol),
∆cp heat capacity difference between water and solid ice (J/molK),
R universal gas constant (8.3143 J/molK),
Tm freezing point of pure water (273.15 K),
T freezing point of aqueous ionic liquid solution obtained by DSC (K).

Heat capacity difference, ∆cp, is a function of temperature, and its value changes significantly
when the temperature of a system is significantly lower than its melting point. Equation (3), previously
reported by Sippola and Taskinen [22], was used to calculate the heat capacity change of water at its
freezing point.

∆cp = −19656.303 + 98.468097·(T/[K]) + 234320880·(T/[K])−2
− 0.1386227·(T/[K])2,

237 K ≤ T ≤ 273.15 K.
(3)

2.3. Layer Freeze Crystallization

Experiments with stagnant 3 wt.% and 6 wt.% [DBNH][OAc] aqueous solutions were conducted
in a crystallizer that consisted of a 250 mL jacketed flat-bottom glass vessel equipped with a cylindrical
stainless-steel cold finger. The experimental setup is shown in Figure 1.
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Figure 1. Experimental setup of static layer freeze crystallization: (1) crystallizer, (2) cold finger,
(3) thermostats, (4) Pt 100 thermosensor, (5) thermocouples, (6) data processing device, (7) coolant
streams circulating through jacketed vessel, (8) coolant streams circulating through cold finger.

Both elements of the crystallizer, the jacketed vessel (1) and the cold finger (2), were connected to
a pair of Lauda ECO RE 1050 thermostats (Lauda-Königshofen, Germany) (3). The coolant streams
(approx. 50 wt.% aqueous ethylene glycol solution) were circulated at a flow rate of 1.64 L/min through
the jacketed vessel and at a flow rate of 0.35 L/min through the cold finger—the flow rates of circulating
coolants through the jacketed vessel and cold finger were measured by Kytola EH-5SA and Kytola
EH-4AA rotameters (Muurame, Finland), respectively. Thermocouples (5) were used to measure
the temperature at four points within the crystallizer: inside the jacketed vessel (representing the
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temperature of solution), at the inlet of the cold finger coolant line, at the outlet from the cold finger,
and inside the cold finger proximal to the tip (representing the temperature of sub-cooling). In addition,
the external thermostatic control of the Lauda PT 100 (4) connected to the jacketed vessel was used to
measure the solution temperature. Monitoring of temperature and storage of the measured data were
performed using LabVIEW (Espoo, Finland) data acquisition software (6).

Studies of the ice layer on the cold finger from [DBNH][OAc] solutions were carried out at five
different temperatures of coolant circulating through cold finger (sub-cooling temperatures) with two
freezing times of 40 min and 60 min. The coolant temperature in the jacket was kept constant, and each
separate temperature of coolant circulating through cold finger was set to be lower than the freezing
point of solution, i.e., a sub-cooling temperature. The degree of sub-cooling was varied by altering the
temperature of coolant of the cold finger.

For each experiment at a new sub-cooling temperature, the temperature of the thermostat
connected to the cold finger was set to the desired value, whereas the temperature of the coolant
circulating through the jacketed vessel was kept constant at the freezing point value of the respective
solution. In addition, the internal sensor of the thermostat was used to adjust the temperature of
coolant circulating through the cold finger at sub-cooling value.

After a constant temperature of solution and temperature of sub-cooling was achieved, freeze
crystallization was induced by seeding with an ice crystal. This procedure was performed outside the
jacketed vessel by the attachment of a seed ice crystal to the bottom surface of the cold finger, followed
by immediate re-immersion in the solution. This immersion time was considered as the starting time
in each freezing experiment, and the ice layer was allowed to grow on the cold finger for a pre-selected
freezing time. The cold finger surface area where ice layer formation occurred is referred to as the
cooling area in the layer freeze crystallization (FC) experiments. The ice seeds were produced by a
Scotsman AF 103 Ice Flaker and were transported inside an insulated container.

After the fixed freezing time was complete, the ice layer formed was removed from the cold
finger and rinsed with 5 mL of de-ionized water at 0 °C to remove any mother liquor remnants.
The dimensions of the ice sample (outer diameter and height) and mass were measured before the
sample melted.

2.4. Suspension Freeze Crystallization

The experimental setup of suspension freeze crystallization is shown in Figure 2.Crystals 2020, 10, 147 5 of 14 
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Figure 2. Experimental setup of suspension freeze crystallization: (1) crystallizer, (2) scraper, (3) mixer,
(4) thermostat, (5) thermocouple, (6) Pt 100 thermosensor, (7) coolant streams circulating through
jacketed vessel, (8) data processing device.
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The crystallizer setup consisted of a 250 mL jacketed glass vessel (1) with a rotating scraper
(2) that prevents encrustation of ice crystals at the inner surface of the crystallizer. A rotation speed of
18 rpm was set for the scraper (3). The coolant (approx. 50 wt.% aqueous ethylene glycol solution)
was circulating at a flow rate of 1.64 L/min through the jacketed vessel connected to a Lauda ECO RE
1050 thermostat (3), and the flow rate of the coolant was measured by a Kytola EH-5SA rotameter.
The thermocouple (5) and the Lauda PT 100 thermosensor (6) were used to determine solution
temperature. LabVIEW and WinTherm software were used to monitor and store measured temperature
data (8).

Suspension crystallization experiments with 3 and 6 wt.% [DBNH][OAc] aqueous solutions were
conducted at five different temperatures of sub-cooled solutions for freezing times of 40 and 60 min.
In the case of suspension freeze crystallization, the degree of sub-cooling presents the difference
between the temperature of the sub-cooled solution and its freezing point. Sub-cooling of the solution
depended on the temperature of coolant circulated by the thermostat pump through the jacket of the
crystallizer. When the sub-cooling temperature of solution reached the desired value and became stable,
ice crystal seeds were placed inside the crystallizer to induce the freeze crystallization. For suspension
FC experiments, the cooling area is the vessel inner wall surface area. The ice seeds were produced by
a Scotsman AF 103 Ice Flaker and transported inside an insulated container.

As the main challenge was to properly separate ice crystals from the mother liquor, a gravity-based
filtration procedure with a perforated plate setup was used (Figure 3), where partial melting of washed
ice samples could take place.Crystals 2020, 10, 147 6 of 14 
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Approximately 15 g of surface floating ice crystals and mother liquor were taken directly from the
reactor with a spoon and pressed on to the perforated plate in order to squeeze the mother liquor from
the sample. Additionally, the sample was washed with 7 mL of de-ionized water at 0 ◦C to remove the
remaining mother liquor. Washed samples were then left to partially melt and, with each step, the ice
became more purified. The last fraction of ice crystals, with a mass of approx. 5 g, were considered to
be pure crystals that had properly separated from the mother liquor, and its melt was used for the ice
crystal purity analysis.

2.5. Determining Distribution Coefficient and Crystal Yield

In order to conduct the layer and suspension crystallization experiments, the freezing points
of two DBNH[OAc] aqueous solutions were determined in the jacketed crystallizer fitted with a
scraper. Upon seeding, ice crystallization commenced and as a result of the heat of crystallization,
the solution temperature increased until a constant value was attained, which remained for the
duration of crystallization. This temperature was taken as the freezing point and was measured with a
thermocouple with a standard uncertainty of 0.01 ◦C (expanded uncertainty of 0.02 ◦C).
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The ice crystal yield and the distribution coefficient were the main parameters used to assess the
efficiency of freeze crystallization as a separation method.

Ice crystal yield was determined based on the mass of a pure ice sample as calculated by
Equation (4)

Y =
mice

mwater,sol
·100, (4)

where
mice mass of the pure ice (kg),
mwater,sol mass of the water in initial solution (kg).

The mass of the ice samples produced by layer freeze crystallization was determined by weighing,
whereas the mass of ice samples crystallized in the suspension crystallizer was calculated based on the
concentration difference of [DBNH][OAc] in the mother liquor at the end of crystallization and the
initial solution.

The distribution coefficient, K, is expressed as the ratio of the impurity in the ice to the initial
impurity in the solution:

K =
Cimp

C0
, (5)

where
Cimp concentration of ionic liquid in ice (kg [DBNH][OAc]/kg ice),
C0 initial concentration of ionic liquid in solution (kg [DBNH][OAc]/kg solution).

Purity of the ice samples —which is determined from the concentration of [DBNH][OAc] present
in the ice crystals—was analyzed by the measurement of melted ice and mother liquor sample electrical
conductivities with a Consort C3050 electrical conductivity meter. To obtain a correlation between
electrical conductivity and concentration, the electrical conductivities of six solutions (0, 2, 4, 6, 8, and
10 wt.% [DBNH][OAc](aq)) were measured and are shown in Figure 4.
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3. Results

3.1. Phase Equilibria of Binary [DBNH][OAc] and Water System

Mixtures of [DBNH][OAc] and water at different ratios were analyzed by DSC. For each different
sample, the corresponding liquidus temperature and/or glass transition (or eutectic temperature) were
extracted from DSC curves obtained, and these were then plotted in a phase diagram as shown in
Figure S1. The compositions of [DBNH][OAc] and water mixture samples analyzed are provided in
Table S1.

The binary phase equilibria between [DBNH][OAc] and water are shown in Figure 5. The phase
diagram was constructed based on temperature transition data obtained for the ionic liquid–water
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mixtures (water content was varied over a range between 0.49 wt.% and 100 wt.%). As can be seen
from Figure 5, the black dot highlights glass transition or eutectic temperature, which is at −73 ◦C and
the red dots relate to the liquidus temperatures. For the mixtures of [DBNH][OAc]–H2O, where water
content was less than 54.3 wt.%, only four temperatures were obtained by DSC, due to the ionic liquid
glass-formation that occurs with such compositions. Consequently, the ionic liquid liquidus curve was
plotted by extrapolation.
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Figure 5. Phase equilibria between [DBNH][OAc] and water with solid forms. Five different
crystallization behaviors in the [DBNH][OAc] and water mixtures.

Results from the DSC study show that the [DBNH][OAc]–H2O mixtures can be divided into five
regions based on their different crystallization behaviors. These regions are shown in Figure 5 and
relate to the following characteristics:

• Region 1: At lower water content, mixtures were solid at ambient temperature.
• Region 2: No crystallization upon cooling and no recrystallization upon heating were observed,

but glass transitions were measured at −73 ◦C
• Region 3: Crystallization of mixtures occurred upon heating. The mixtures underwent the

transitions in following order: glass transition, recrystallization, and finally melting.
• Region 4: Mixtures neither crystallized nor underwent glass transition when they were cooled to

−80 ◦C and heated up to 25 ◦C during DSC analyses.
• Region 5: For the mixtures with water content was greater than 54.3 wt.%, crystallization occurred

upon cooling and melting upon heating. The melting temperatures acquired were used to
construct the liquidus line of ice.

The phase equilibrium obtained results show that the appropriate temperature range and
composition range for freeze crystallization of aqueous [DBNH][OAc] solution are in Region 5.
Aqueous [DBNH][OAc] solutions from this region with freezing points above −10 ◦C can be feasibly
concentrated by freeze crystallization.

Calculated freezing points of an ideal aqueous solution (γ = 1) based on Equation (2) and
experimentally obtained freezing points for an aqueous [DBNH][OAc] solution for the same range of
dissolved solute were compared, as shown in Figure 6.
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Figure 6. Freezing point depressions of ideal aqueous solutions calculated by simplified
activity coefficient equation and aqueous [DBNH][OAc] solutions obtained by differential scanning
calorimetry (DSC).

Water activity coefficients for aqueous [DBNH][OAc] solutions from Region 5 of the phase
diagram, as calculated by Equations (1) and (2), are presented in Figure 7. It is apparent that aqueous
ionic liquid solutions are non-ideal and [DBNH][OAc]–H2O has an attractive interaction, as γL < 1.
The freezing point depression data obtained by DSC were used as a basis for the thermodynamic
modeling. When the two heat capacity change terms of undercooled water in Equation (2) are
considered, this results in a lower level of non-ideality for the studied binary solution in higher
concentrations when compared to the model based on Equation (1), where the specific heat capacity
change terms are ignored. Furthermore, it is worth noting that Equation (3) was also used to calculate
specific heat capacity change at −38.28 ◦C, even though Equation (3) is only considered to be valid
over a temperature range between 0 and −35 ◦C according to Sippola and Taskinen [22].
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3.2. Layer Freeze Crystallization Results

In order to make a comparison between crystal yields and distribution coefficients, the experiments
for approximately the same set of five sub-cooling degrees for both aqueous [DBNH][OAc] solutions
and both freezing times were carried out (n.b., sub-cooling degrees deviated in range between 0.01 ◦C
and 0.09 ◦C). All experimental and calculated data can be found in the Supplementary Material
(Tables S2–S5).

The ice yield and distribution coefficient as a function of sub-cooling degree are presented in
Figures 8 and 9. Ice crystal yield as a function of sub-cooling temperature shows a similar linear
dependence for both freezing times and for both aqueous [DBNH][OAc] solutions. As expected,
the greater the sub-cooling degree, the higher the crystal yield is. The distribution coefficients
obtained show the separation efficiency of layer freeze crystallization varied between 0.28 and 0.46.
The results indicate that the distribution coefficients for both types of solutions are almost independent
of crystallization duration, as there are only negligible differences between the values of distribution
coefficients obtained at the same level of sub-cooling for the two different freezing times investigated.
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sub-cooling degree.
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sub-cooling degree.

3.3. Suspension Freeze Crystallization Results

Experimental and calculated data are presented in the Supplementary Material (Tables S6–S9).
Related sub-cooling degrees for both freezing times were found to vary within a range between 0.02
and 0.12.

Figures 10 and 11 show the ice yield and distribution coefficients obtained by the suspension FC
experiments as function of sub-cooling degree. The ice crystal yield shows a linear dependence
on sub-cooling temperature, and its value increases as the degree of sub-cooling increases.
Nevertheless, the distribution coefficient is rather independent of sub-cooling degree and the values
vary in a range between 0.11 and 0.36.
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sub-cooling degree.

4. Discussion

Based on the comparison between static layer FC and suspension FC methods, the following
observations are presented.



Crystals 2020, 10, 147 12 of 14

For the same freezing time and approximately the same sub-cooling temperature, ice crystal
yields obtained by suspension freeze crystallization are around four-to-eight times higher than yields
obtained by static layer freeze crystallization. This is as a result of the higher consumption of cooling
energy and larger cooling surface area needed for the suspension crystallization experiments. In this
case, the cooling area for suspension FC experiments was around nine times higher than the cooling
area for static layer FC experiments.

From Figures 8–11, it is apparent that the difference between ice crystal yields obtained from the
two types of aqueous solutions is greater in the case of suspension crystallization than in the case of
layer crystallization. Moreover, the average value of the distribution coefficient is higher for static
layer freeze crystallization, which indicates a lower ice purity than in case of suspension crystallization.
These observations suggest that the mother liquor remained entrapped within the ice layer formed by
the layer FC method. The distribution coefficient of static layer crystallization also shows a tendency
to increase with higher undercooling and supersaturation, while for suspension crystallization the case
is observed to display the opposite behavior.

For both freeze crystallization methods, the values of overall ice growth rate or freezing capacity
(defined as kilogram of ice per unit of time and employed cooling surface area) are in the range of
10−4–10−3 kg/m2s. Furthermore, layer FC progressed with somewhat faster freezing kinetics, as the
values of overall growth rates of layer FC are noticeably higher when compared to those obtained
by suspension FC. Nevertheless, for both FC methods, the overall growth rate decreased for the
more concentrated solutions of 6 wt.% [DBNH][OAc], which means that [DBNH][OAc] decreased the
ice-growth kinetics.

5. Conclusions

In this study, the solid–liquid equilibria of a binary 1,5-diazabicyclo[4.3.0]non-5-enium acetate
([DBNH][OAc])–water compound system as well as layer and suspension freeze crystallization as a
concentration method were investigated. The main conclusions that can be drawn from this study are
as follows:

• Based on obtained solid–liquid equilibria, it was concluded that melt crystallization can be
employed as a concentration method for aqueous [DBNH][OAc] solutions with water content
higher than 54.3 wt.%.

• Water activity coefficient results calculated in mole fraction range between 0 and 0.08 showed
that [DBNH][OAc] solutions are non-ideal solutions with an attractive interaction between
[DBNH][OAc] and water molecules.

• Single-step suspension freeze crystallization is a more suitable concentration method for aqueous
[DNBH][OAc] solutions than single-step layer freeze crystallization, based on the comparison
between ice crystal yield and ice purity of these two freeze crystallization methods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/3/147/s1,
Figure S1: Schematic diagram of extracting thermal data from a DSC curve, Table S1: Liquidus and glass transition
(or eutectic temperature) temperatures extracted from DSC curves, Table S2: Layer freeze crystallization data of
aqueous 3 wt.% [DBNH][OAc] solutions with a freezing time of 40 min, Table S3: Layer freeze crystallization data
of aqueous 3 wt.% [DBNH][OAc] solutions with a freezing time of 60 min, Table S4: Layer freeze crystallization
data of aqueous 6 wt.% [DBNH][OAc] solutions with a freezing time of 40 min, Table S5: Layer freeze crystallization
data of aqueous 6 wt.% [DBNH][OAc] solutions with a freezing time of 60 min, Table S6: Suspension freeze
crystallization data of aqueous 3 wt.% [DBNH][OAc] solutions with a freezing time of 40 min, Table S7: Suspension
freeze crystallization data of aqueous 3 wt.% [DBNH][OAc] solutions with a freezing time of 60 min, Table S8:
Suspension freeze crystallization data of aqueous 6 wt.% [DBNH][OAc] solutions with a freezing time of 40 min,
Table S9: Suspension freeze crystallization data of aqueous 6 wt.% [DBNH][OAc] solutions with a freezing time of
60 min.
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