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Abstract: Several kinds of polyimide (PI) films stemmed out of 4, 4’–diaminodiphenyl ether, as well as
various structurally various aromatic dianhydride, were prepared. The films’ mechanical, dielectric,
and dynamic mechanical attributes were put under investigation. According the findings, the PI films’
performance is significantly different as a result of their diverse structure. PI’s dielectric constant
and dielectric loss tangent of abides by the increasing order below: PMDA-PI>BTDA-PI>BPDA-PI.
Moreover, the electric breakdown strength of BTDA-PI (478.90 kV/mm) presents a lot higher value
compared to the one PMDA-PI (326.80 kV/mm) and BPDA-PI (357.07 kV/mm). In particular, BTDA-PI
film possesses high electric breakdown strength about 478.90 kV/mm. In addition, PI’s glass transition
temperature (Tg) are, respectively, 276 ◦C (BTDA-PI), and 290 ◦C (BPDA-PI), as well as 302 ◦C
(PMDA-PI). Therefore, in virtue of their various structures and performances, practical applications
of PI films can exert significant role in the electronics and microelectronics industries.

Keywords: polyimide; film; dielectric properties; thermal properties

1. Introduction

Aromatic polyimides (PIs) have been deemed as crucial high-performance polymers classes based
on the integration of excellent mechanical, electrical, and thermal properties, as well as chemical and
solvent resistance [1–5]. Therefore, these materials are being used in numerous applications, which
range from engineering plastics under aerospace industries to the films for the printed electronic
circuitry applications [6–9], as a result of the superior excellent dimensional stability, the temperature
under high glass transition, good optical transparency, good electrical resistivity, low water absorption,
and relative permittivity [10–13]. PIs are mainly used by taking the type of films and moldings, as well
as foams [14]. PIs have been particularly applied in a broad range as high-performance films, such
as microelectronics, gas or solvent separation, non-linear optical devices, aerospace engineering, and
printed electronic circuitry.

DuPont’s Kapton type film has been boasting one of the most representative and successful
commercial PI film over the past decades. The typical Kapton PI was obtained from pyromellitic
dianhydride (PMDA), along with 4,4’-diaminodiphenyl ether (ODA). Moreover, ever since the
commercialization of the Kapton type PI began the usage in the early 1960s, a series of PIs composed
of different diamine and dianhydride have been reported [15–18]. However, for the structurally
different PIs, their properties are different, as well. Therefore, it is necessary to conduct explorations on
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their structure–property relationships for practical applications. Although some studies showed that
the chain hardness constituted the extremely crucial factor which affects their attributes in a direct
way [19–23], the structure–property relationships links PIs are still not well understood.

In this regard, we prepared several different PIs obtained from ODA and multiple structured-based
distinct aromatic dianhydrides and investigated their properties. The effect of structural changes in PI
films’ mechanical, dielectric, and thermal attributes was studied, which was oriented with a better
understanding of PI films’ structure–property relationships in practical applications.

2. Experiential

2.1. Materials

The achievement of pyromellitic dianhydride (PMDA), 3,3’,4,4’-benzophenonetetracarboxylic
dianhydride (BTDA), and 3,3’,4,4’-biphenyltetracarboxylic dianhydride (BPDA), together with
4,4’-diaminodiphenyl ether (ODA), was conducted in Beijing Yinuokai Technology Co., Ltd. (Beijing,
China). The purchase of N, N-dimethylacetamide, DMAC (99.0%) was made in Shanghai Aladdin
Bio-Chem Technology Co., Ltd. (Shanghai, China). The overall reagents, which took on analytical
reagent (AR) level, were employed to start materials with no more purification.

2.2. Integration of PI Films

The synthesis of PI films was conducted in virtue of standard two-phase-based procedure as
follows. First, dissociation of ODA (10 mmol, 2.00 g) was implemented in a clean 50 mL, 3-neck- round
bottom flask with DMAC solvent (20 mL) and then stirred for 15 min. The BTDA (10 mmol, 3.22 g) was
added continuously for several times. Then, the mixed liquid was given 4-hour of vigorous stirring
to produce a sticky and uniform polyamic acid solution. After that, the polyamic acid solution was
coated on a glass plate, heated in a vacuum oven at 60 ◦C for 2 h, and then subjected to 1-hour thermal
imidization at individual temperatures of 100 ◦C, 200 ◦C, and 300 ◦C in dry-air-flowing oven. In the
last step, the BTDA-PI film was made by the experimental preparation above. The PMDA-PI and
BPDA-PI were prepared in virtue of a similarly-structured process as above. The film was made with
nearly 30–35 µm. Figure 1 presents the synthesis process of PI films.
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2.3. Characterization and Tests

The structure of the film was put under the research of Fourier transform infrared (FTIR)
spectroscopy (Nicolet Avatar-360, Thermo Nicolet Corporation, Waltham, MA, USA) and X-ray
diffraction (XRD) spectroscopy (Rigaku Dmax-rB, Rigaku Corporation, Tokyo, Japan). XRD was
conducted in virtue of Cu Kα radiation (λ = 1.5406 Å). The test on films’ insulating and dielectric
attribute was carried out through the highly-intensified megohm micro electric current tester (ST2255,
Suzhou Lattice Electronics Co., Ltd, Suzhou, China) and impedance analyzer (Agilent4294A, Agilent
Technologies Corporation, Santa Clara, CA, USA), respectively. The electric breakdown performance
got experimented in virtue of a dielectric withstand voltage test (YD2013, Changzhou Yangzi Electronic
Co., Ltd, Changzhou, China). The mechanical tests of the films was carried out by a micro electronic
testing machine (WDW-20, Jinan Fangyuan Testing Machine Co., Ltd, Jinan, China). The performance
of dynamic mechanical analysis (DMA) was committed on a sample with the size of 30 × 5 × 0.5 mm3 in
virtue of a dynamic mechanical analyzer of TA Instruments (DMAQ 800, TA Instruments Corporation,
New Castle, DE, USA), and the stretched film mode was carried out at a temperature ranging from
ambient temperature to 200 ◦C (1 Hz) with the heating ratio of 5 ◦C per min.

3. Findings and Discussions

3.1. PI Films’ Structure

PI films are structured by the chemical structures which were tested via FT-IR spectroscopy,
as Figure 2a displays. Figure 2a offered the findings of the structure’s peak, which is at 725 cm−1,
1376 cm−1, 1719 cm−1 and 1774 cm−1. The results individually correspond to C=O bending, C–N
stretching, and C=O symmetric stretching, as well as asymmetric stretching. An imide’s structure can
be confirmed.
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Figure 2b shows the X-ray diffraction types of three kinds of PI films. Three broad peaks can
be placed under apparent observation within the range of about 2θ = 16~19◦, which confirms the
ordered region in amorphous polyimide. These broad peaks are mainly originated from the partial
crystallization of PI films. However, we also can notice that the strength and shape of the peaks is
similar. Therefore, DMA analysis was further used to investigate the crystalline degree of PI in the
following discussion.
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3.2. Mechanical Properties of PI Films

The tensile strength, tensile modulus, and elongation at the break of PI films are summarized in
Figure 3. It can be apparently observed that the BPDA-PI film has a better plastic property, and the
elongation at the break of it is as high as 3.8%. PMDA-PI possesses a higher brittleness with the high
tensile modulus of 3.42 GPa and low elongation at of 2.82%. It should be further addressed that the
BTDA-PI shows an excellent comprehensive performance with the high tensile strength of 114.19 MPa,
the tensile modulus of 3.23 GPa and elongation at the break of 3.58%. The diversity of tensile properties
could be attributed to different molecular chain flexibility and intermolecular force in the PI films.
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3.3. Dielectric Attributed Harbored by PI Films

Figure 4a shows the relative dielectric constant of PI films at the frequency of 50~106 Hz on the
condition of room temperature. The dielectric constants of PI films, which features relatively more
stability from 50 to 104 Hz, expressed a decreasing trend in the high-frequency from 104 to 106 Hz.
Moreover, the dielectric constants presented significant distinction for three kinds of PI films. The
constants of the PI film varied between 3.39~3.69 at 100 Hz. PI, based on the dielectric constant of ODA,
were sticking to the following increasing order: PMDA-PI> BTDA-PI>BPDA-PI. This phenomenon
can be attributed to the different molecular polarity caused by the different molecular chain structure.
The Clausius-Mossotti equation can be used to explain the dielectric constant of PI membranes [24]:

εr − 1
εr + 2

=
Nα
3ε0

, (1)
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where εr is the dielectric constant; ε0 is the vacuum permittivity; N is the molecule number in unit
volume; and α is the molecular polarization. According to Equation (1), the various dielectric constant
of ODA based PI can be mainly attributed to the different molecular polarization caused by the different
molecular chain structure.
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The dielectric loss tangent of PI films is given in Figure 4b. According to the observation, as the
frequency increases, the loss tangent first drops slightly and then rises sharply. The dielectric loss mainly
arises out of relaxation polarization and inter-facial polarization here. Within the 50~103 Hz frequency
range, the dielectric loss tangent decreases slightly, which is caused by the interface polarization lagging
behind the change of electric field frequency. The increase range from 104 to 106 Hz is attributed to PI’s
glass transition relaxation [25]. Moreover, it is observed that the dielectric loss tangent of PI was also
abiding by the following increasing order: PMDA-PI> BTDA-PI>BPDA-PI. However, all PI show a
lower dielectric loss tangent. Besides, even for PMDA-PI films, the loss tangent still features less value
compared to 0.004 at 100 Hz.

To investigate the insulating property to the films, volume resistivities were tested at different
electric field strengths, and representative results are expounded in Figure 4c. As can be seen in the
figure, all of the three films show high resistivities (1015 Ωm) and confirm PI films’ excellent insulativity.
Moreover, the three films harbor the resistivity values, which present a slight difference, which might
be attributable to the various strength of the conjugate effect in the PI molecules.
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3.4. Breakdown Strength Harbored by PI Films

The measurement of PI films’ dielectric breakdown was taken on the condition of room temperature.
Dielectric breakdown is discussed in virtue of a two parameters Weibull distributions as follows [24]:

P(E) = 1− e−(E/α)β , (2)

where P(E) refers to the cumulative probability of the failure which occurred in at the electric area with
a low or equal value to E. E means the experimental breakdown strength; α stands for the proportional
parameter, which presents the breakdown strength when 63.2% is expressed as the cumulative failure
probability. β is a shape parameter which is relevant to a linear regression fit in the distribution. The
Weibull cumulative distribution function could be described as the following two logarithms:

ln(− ln(1− P(E))) = β ln E− β lnα. (3)

Next, ln(−ln(1 −P(E))) versus lnE, was sketched. The values could be, respectively, achieved out
of the slope, the ln(−ln(1−P(E))) interception andβlnα.α and β are decided by least-squares linear
regression. Table 1 includes the linear fitting results and PI films’ Weibull parameters. According to
Table 1, the correlation coefficient (R) values presented higher value compared to 0.95. That reveals a
fine fitting upon the PI films. Figure 5 shows the PI films’ Weibull deploy. As is seen, the PMDA-PI
harbors the breakdown strength which is close to BPDA-PI. Nonetheless, the breakdown strength
harbored by BTDA-PI (478.90 kV/mm) presents far higher value compared the one of PMDA-PI
(326.80 kV/mm) and BPDA-PI (357.07 kV/mm). It might be due to the different crystalline degree and
regularity in the PI molecular structure films.

Table 1. Linear fitting results and Weibull parameters of PI films.

PI Films
Linear Fitting Results Weibull Parameters

Slope ln(−ln(1−P(E)) Intercept R β α/kVmm−1

BTDA-PI 9.68 −59.74 0.9702 9.68 478.90
BPDA-PI 10.65 −62.60 0.9612 10.65 357.07
PMDA-PI 4.13 −23.91 0.9547 4.13 326.80
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3.5. Thermal Properties Harbored by PI Films

Thermal stability contributes as a major performance for PI engineering films. Figure 6 interprets
differential DMA curves announce the different glass transition temperature (Tg) of PI. Therefore, it is
clear that the glass transition temperature of PI films are 276 ◦C (BTDA-PI), 290 ◦C (BPDA-PI), and
302 ◦C (PMDA-PI), respectively. The DMA results confirm that the expression of the thermal stability
harbored by PI in the below increasing order: PMDA-PI>BTDA-PI>BPDA-PI. Moreover, the DMA
results indirectly show the crystalline degree of the PI films maybe in the following increasing order:
PMDA-PI>BTDA-PI>BPDA-PI. Thereby, it is of significance in the practical application of PI films
according to their different thermal properties.
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4. Conclusions

In summary, the preparations of several varied aromatic PIs got out of the standard two-phase
procedure of diamine (ODA) with various structurally different dianhydrides (PMDA, BTDA,
and BPDA). The dielectric and thermal properties were measured for the research on the three
kinds of PI films. It is found that BTDA-PI film possesses an excellent comprehensive tensile
properties. The dielectric properties of the three films is marking a slight difference since the different
molecular polarity and conjugate effect of PI molecules. The PI, which is based on the dielectric
constant and dielectric loss tangent of ODA-based are existing in the following increasing order:
PMDA-PI>BTDA-PI>BPDA-PI. In particular, BTDA-PI film possesses high electric breakdown strength
about 478.90 kV/mm. In addition, the glass transition temperature of PI films are 276 ◦C (BTDA-PI),
290 ◦C (BPDA-PI), and 302 ◦C (PMDA-PI), respectively. Therefore, in terms of their various structures
and performances, it is a significant job to conduct practical applications of PI films in the electronics
and microelectronics industries.
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validation, P.Z., K.Z. and S.D.; formal analysis, P.Z.; investigation, P.Z.; resources, Y.L. and J.Z.; data curation,
P.Z.; writing—original draft preparation, P.Z. and K.Z.; writing—review and editing, P.Z., K.Z., J.Z. and S.D. All
authors have read and agreed to the published version of the manuscript.
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