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Abstract: We have theoretically investigated metal-cladded waveguides of tunable hyperbolic
metamaterial (THMM) cores, employing graphene sheets as a tunable layer, in terms of guided
waves propagation over near- to mid-infrared range, following the effective medium approximation.
We have proven that these subwavelength guiding structures offer a number of effects usually
not found in other types of waveguides, including controllable propagation gap and number of
modes, inversion of power flow direction with respect to phase velocity, TM mode propagation,
and absence of the fundamental mode, which occur as a result of controlled change of the guiding layer
dispersion regime. This is the first time that the above-mentioned effects are obtained with a single,
voltage-controlled waveguiding structure comprising graphene sheets and a dielectric, although the
presented methodology allows us to incorporate other tunable materials beyond graphene equally well.
We believe that such or similar structures, feasible by means of current planar deposition techniques,
will ultimately find their practical applications in optical signal processing, controlled phase matching,
controlled coupling, signal modulation, or the enhancement of nonlinear effects.

Keywords: hyperbolic metamaterials; slab waveguides; guided waves; optical waves

1. Introduction

Metamaterials are artificially composed media designed to produce an electromagnetic response
that is not possible with constituent materials alone. The first and one of the most important
contributions to this topic was made in 1968 by Veselago [1], who postulated a material of
simultaneously negative permittivity and permeability known as a left-handed metamaterial (LHM)
or a double-negative (DNG) metamaterial. Novel media of this type exhibit negative refractive index,
which results in a number of remarkable properties, including antiparallel group and phase velocities,
or the occurrence of an inverse Doppler effect [1]. Until now, many ideas and potential applications
based on these unique properties have been proposed, including perfect lensing with flat surface
media, hiding or obscuring objects, or extensive beam shaping (see references [2–5]). The study
of electromagnetic propagation in metamaterial waveguides seems especially interesting, being an
intensely investigated area, which emerged as a natural consequence of a growing interest in the
properties and applications of metamaterials in general.

Initially, the research in the field concentrated on guiding properties of waveguides with DNG
cores and dielectric claddings. Most of the reported work concerned symmetrical slab waveguides with
a DNG-metamaterial core layer cladded with a dielectric [6,7]. Studies devoted to such waveguiding
structures have proven the existence of guided optical modes, which possess a number of unusual
properties, such as the absence of the fundamental mode or sign-varying energy flux [6]. A more general
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case of an asymmetric waveguide with a DNG-metamaterial core cladded with two different dielectrics
has been studied in terms of the coexistence of transverse electric (TE) and transverse magnetic
(TM) surface modes [8,9]. Some studies were dedicated to analysis of various slab waveguide’s
configurations and included an air-core waveguide [10] or an LHM embedded only in the substrate
or the cladding [11,12]. More recently, modal properties of slab and cylindrical waveguides with a
dielectric core and a lossy metamaterial cladding have been established, including support for both
surface and ordinary TM modes, as well as hybrid ordinary-surface TM modes [13]. In general,
waveguides based on DNG have been recognized as photonic structures enabling slowing or stopping
light [13–15]. For the same applications, planar waveguides composed of a conventional dielectric
cladded with single-negative materials have also been proposed [16].

Among various metamaterial-based designs, anisotropic metamaterials have become particularly
well known for their advantages in terms of waveguiding properties combined with high technological
feasibility [17–21]. Especially, superluminal and slow light behavior of modes supported by anisotropic
metamaterial waveguides in both elliptic and hyperbolic regimes has been revealed, intended for
development of novel integrated photonic devices, including those harnessing active metamaterial
functionalities (e.g., stopped-light nanolasers) [19–21].

Recently, hyperbolic metamaterials (HMMs), which are characterized by an isofrequency contour
of hyperboloidal shape in the wavevector space and realized most commonly as periodically arranged
metal-dielectric unit cells of subwavelength dimensions, have been used both as cores [22,23] and
claddings [24] in the design of waveguides. Effects observed in such waveguides include guided
waves propagation [25], as well as plasmonic propagation [22,26], field enhancement [27], and slowing
or stopping light [28,29].

A new functionality of HMM structures has emerged as a result of substitution of metallic
layers with graphene (a so-called graphene-based HMM, or GHMM) [30–33]. Since the conductivity
of single-layer graphene is frequency and chemical potential dependent, it is possible to change
optical properties of the GHMM structure with an external stimulus, such as a voltage bias [34,35].
Until now, GHMM-based waveguides have been proposed as means of introducing tunability to the
aforementioned hyperbolic metamaterial applications [36–38]. In particular, slow light effect in the S,
C, L, and U telecom bands, as well as controllable number of modes, have been demonstrated [23,39].

In this paper, we present, by example of graphene-based metal-cladded metamaterial slab
waveguides, controllable guiding properties of tunable HMM waveguides (THMM). The type of
dispersion of the guiding layer is governed by an external biasing voltage and results in a controllable
propagation gap and number of modes, as well as enables inversion of power flow direction with
respect to phase velocity. We consider THMM structures of two geometrical configurations embedded
between two metallic layers. First, we present a theoretical propagation model, supported by the
effective medium theory, for describing dispersion properties of the guiding layer. Next, we analyze a
number of effective propagation characteristics for a waveguide of parameters of choice and discuss
their resulting unusual propagation properties. Finally, we make an assessment of possible practical
applications of the class of waveguides considered.

2. Theoretical Model

We consider metal-cladded planar THMM waveguides in two configurations as shown in Figure 1.
THMM sandwiched between two perfectly metallic layers is composed of a number of unit cells,
each comprising graphene and a dielectric layer of widths tg and td, respectively, forming the
waveguiding structure. We distinguish two possible configurations of such a structure based on
the geometrical orientation of THMM layers with respect to metallic cladding, further referred to
as configuration A and configuration B, where the mode propagation direction (along the z axis,
see Figure 1) is parallel or perpendicular to the interfaces between THMM layers, respectively.
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Figure 1. Schematic representation of two waveguide configurations under investigation, 
configuration A (left) and configuration B (right), where tg and td are widths of graphene and dielectric 
layers, and σ is the conductivity of a perfectly metallic layer. 
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where ε0 is the vacuum permittivity, ω is the frequency and σ is the conductivity of a monolayer 
graphene sheet, dependent on the chemical potential given by the Kubo formula [42]. A change of 
graphene’s chemical potential (and hence the optical properties of the THMM) can be achieved with 
a voltage bias Vb. The aforementioned model of graphene’s conductivity is consistent for waves 
longer than 400 nm [41], including plasmonic behavior in near- [43,44], mid- [45], and far-infrared 
spectral range [46]. Relationship between bias voltage and the chemical potential can be described 
with the following formula [39,41]: 
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electronic band of graphene will not qualitatively impact the prospective results. 

Considering the metal-cladded THMM waveguides of both geometrical configurations we 
assume mode profiles of the form {E(x), H(x)}exp(iωt − iβz), where E and H are the electric and 
magnetic vector fields, and β is the propagation constant of the waveguide mode. We assume that at 
the boundary of perfectly metallic interfaces (at x = −d and x = 0) the tangential electric field for TE as 

Figure 1. Schematic representation of two waveguide configurations under investigation, configuration
A (left) and configuration B (right), where tg and td are widths of graphene and dielectric layers, and σ
is the conductivity of a perfectly metallic layer.

Since the multilayered guiding medium is of subwavelength scale, the THMM core is modeled as
an anisotropic medium with effective permittivity tensor components ε‖ and ε⊥ determined from the
effective medium theory (EMT) [40]:

ε‖ =
tgεd + tdεd

tg + td
, ε⊥ =

εgεd
(
tg + td

)
tgεd + tdεg

(1)

where ‖ and ⊥ refer to the direction parallel and normal to the guiding medium layer surfaces,
respectively. According to references [39,41], graphene’s effective permittivity can be described as

εg = 1− j
σ(ω,µc)

ωε0tg
(2)

where ε0 is the vacuum permittivity, ω is the frequency and σ is the conductivity of a monolayer
graphene sheet, dependent on the chemical potential given by the Kubo formula [42]. A change of
graphene’s chemical potential (and hence the optical properties of the THMM) can be achieved with a
voltage bias Vb. The aforementioned model of graphene’s conductivity is consistent for waves longer
than 400 nm [41], including plasmonic behavior in near- [43,44], mid- [45], and far-infrared spectral
range [46]. Relationship between bias voltage and the chemical potential can be described with the
following formula [39,41]: ∣∣∣µc

∣∣∣ = hυF

√
π
∣∣∣a0(Vb −Vdirac)

∣∣∣ (3)

where h̄ is the Dirac constant, υF is the Fermi velocity of Dirac fermions in graphene (~106 m/s), a0 = 9 ×
1016 m−2V−1, Vdirac is the offset bias which reflects graphene’s doping and/or its impurities, while Vb is
the biasing voltage which is applied across the multilayer structure (along the x-axis for configuration
A and z-axis for configuration B). The Dirac cone formula in Equation (3) assumes that the electronic
band structure of a monolayer graphene is isolated, i.e., not influenced by adjacent sheets, and that the
biasing voltage is applied in the form of graphene-dielectric capacitor arrangement [42]. The use of
such an approximation is justified because a possible alteration in electronic band of graphene will not
qualitatively impact the prospective results.

Considering the metal-cladded THMM waveguides of both geometrical configurations we assume
mode profiles of the form {E(x), H(x)}exp(iωt − iβz), where E and H are the electric and magnetic vector
fields, and β is the propagation constant of the waveguide mode. We assume that at the boundary
of perfectly metallic interfaces (at x = −d and x = 0) the tangential electric field for TE as well as TM
waves is zero. For clarity of discussion, in subsequent paragraphs, we derive solutions for guided
modes for each of the waveguide configurations.
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At this point, it is worth pointing out that our investigation is based on effective medium
approximation and is therefore relevant to guided waves propagation, i.e., the macroscopic envelope
field. Thus, our results closely correspond to superposition of plasmonic modes propagating at the
interfaces of constituent layers of the guiding medium, as discussed in [47].

2.1. THMM Slab Waveguide in Configuration A

Assuming the THMM structure in configuration A (see Figure 1), the multilayer metamaterial is
identified by the following permittivity tensor:

ε =


εxx 0 0
0 εyy 0
0 0 εzz

 =

ε⊥ 0 0
0 ε‖ 0
0 0 ε‖

 (4)

The field components of TE modes for metal/THMM/metal waveguide, satisfying perfect metal
boundary condition for Ey(−d) = Ey(0) = 0, are given as follows:

Ey(x) = C sin(kxx),
Hx(x) = −C β

ωµ0
sin(kxx),

Hz(x) = C ikx
ωµ0

cos(kxx),
(5)

where kx =
√
ω2µ0ε|| − β2 and kxd = mπ, while C is the amplitude of the wave, and m is an integer.

Thus, we obtain the guidance condition

d
√
ω2µ0ε‖ − β2 = mπ, (6)

where m now denotes the mode order (m = 1, 2, 3, . . . ).
Similarly, for TM modes satisfying the boundary conditions Ez(−d) = Ez(0) = 0, the field

components Hy, Ex, Ez are given as follows:

Hy(x) = C cos(kxx),
Ex(x) = C β

ωε⊥
cos(kxx),

Ez(x) = C kx
ωε‖

sin(kxx),
(7)

where kx =
√
ω2µ0ε‖ − β2 ε‖

ε⊥
. Applying the boundary condition of vanishing Ez at x = −d,

the dispersion relation for TM mode is obtained as

d
√
ω2µ0ε‖ − β2

ε‖
ε⊥

= mπ. (8)

Next, we derive similar formulas for configuration B of the waveguiding structure.

2.2. THMM Slab Waveguide in Configuration B

The THMM guiding medium in configuration B shown in Figure 1 is identified by the permittivity
tensor of the following form:

ε =


εxx 0 0
0 εyy 0
0 0 εzz

 =

ε ‖ 0 0
0 ε ‖ 0
0 0 ε

⊥

 (9)
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For TE waves, the nonzero field components as well as the dispersion relation are still described
by the same formulas as in the case of configuration A, see Equations (5) and (6).

The field components for TM-polarized waves, satisfying the perfect metal boundary condition of
Ez = 0 at x = 0, are given by

Hy(x) = C cos(kxx),
Ex(x) = C β

ωε‖
cos(kxx),

Ez(x) = C kx
ωε⊥

sin(kxx),
(10)

where kx =
√
ω2µ0ε⊥ − β2 ε⊥

ε‖
. Imposing the boundary condition of vanishing Ez at x = −d,

the dispersion relation for TM mode is obtained as

d
√
ω2µ0ε⊥ − β2 ε⊥

ε‖
= mπ. (11)

Using Equations (6), (8), and (11), the dispersion formulas of a metal-cladded THMM waveguide
for various TE and TM mode orders are obtained.

3. Results and Discussion

The basis for further analysis is formed by considerations upon the properties of the medium
forming the guiding layers of both waveguide configurations, with a unit cell composed of six graphene
monolayers, tg = 2.1 nm (0.35 nm per monolayer) and a layer of SiO2 of td = 2 nm. The effective
dispersion of such structures can be controlled owing to voltage-sensitivity of graphene, which has
been already demonstrated in reference [41]. Components of the effective permittivity tensor are
obtained with the help of effective medium theory (EMT) and are presented in Figure 2 as functions of
the bias voltage. By placing the bias voltage within respective intervals (separated in Figure 2 with
dashed vertical lines), positive elliptic (ε⊥ > ε‖ > 0, i.e., uniaxial positive crystal), Type I (ε⊥ < 0, ε‖ > 0),
as well as Type II (ε⊥ > 0, ε‖ < 0) hyperbolic dispersion types of the guiding medium considered can
be obtained.
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Figure 2. Effective permittivity tensor components of the guiding medium at 1.55 µm dependent on
the voltage bias Vb applied. Three dispersion regions are indicated: positive elliptic (0 < Vb < 1.98 V),
type I hyperbolic metamaterial (HMM) (1.98 V < Vb < 2.25 V) and type II HMM (Vb > 2.25 V).

The controlled variable for the following investigations is the wavelength, which is held constant
at λ = 1.55 µm. Further on, this constraint is relaxed to display the spectral behavior resulting from the
effective dispersion properties of the waveguiding medium considered.
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3.1. Results for Configuration A

Let us now consider configuration A of a metal cladded THMM waveguide (see Figure 1).
The dispersion characteristics, i.e., propagation constant vs. waveguide width, and the corresponding
propagation distance L = (2Im

{
β
}
)−1 [48], are presented in Figure 3a−f for various biasing voltages.

The values of the biasing voltages are selected to correspond to different dispersion types of the guiding
layer, namely positive elliptic (Figure 3a,b), Type I HMM (Figure 3c,d), and Type II HMM (Figure 3e,f).
In each figure, the power flow direction with respect to phase velocity of the guided modes, defined as

Pz =
0∫
−d

→
z ·

(
→

E ×
→

H
)
∂x/

∣∣∣∣∣∣∣
0∫
−d

→
z ·

(
→

E ×
→

H
)
∂x

∣∣∣∣∣∣∣ , where
→
z is the unit vector in z axis direction, is indicated

(further simply referred to as power flow direction, for brevity). The absence of the fundamental mode
for both polarizations (TE and TM) is a direct consequence of the boundary conditions implied by the
perfect metallic cladding.
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Figure 3. Propagation constant for configuration A at 1.55 µm in various dispersion regimes, dependent
on the voltage bias Vb applied: (a,b) positive elliptic (0 V), (c,d) Type I HMM (2.1 V), and (e,f) Type II
HMM (3 V). Power flow direction is indicated.

Beginning with the case where the guiding layer reveals positive elliptic dispersion (Vb = 0 V,
ε‖ > ε⊥ > 0), we observe that TE and TM modes behave similarly as in a dielectric slab waveguide
with metallic boundaries [49]. It is worth noting, that the modes of both types possess the same
cut-off widths (see Figure 3a and compare Equations (6) and (8) for β = 0). Thus, for a given
waveguide width, the number of propagating TE and TM modes is always equal. For each TM mode
order, there exist an optimal waveguide width, which provides the longest propagation distance
(see Figure 3b). Additionally, the propagation distance asymptotically approaches a finite value for
arbitrarily increasing waveguide width. For TE modes, the propagation distance increases with the
waveguide width and monotonically with the propagation constant. Moreover, for both types of
modes, the power flow direction is parallel to the phase velocity direction, as found for classical
waveguided modes.

The dispersion characteristic changes significantly with increased voltage biasing of the guiding
core, which at Vb = 2.1 V exhibits Type I hyperbolic dispersion (see Figure 3c). In this case, TE modes
still perceive the guiding layer as a dielectric described by ε‖, since the electric field vector has the
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y component only, and thus the dispersion characteristics are similar to those of a metal-cladded
dielectric waveguide. However, the propagation of TM modes remarkably differs in character from the
previously discussed positive elliptic case, since propagation of all TM modes is allowed and reveals
high energy confinement when the waveguide is of subwavelength scale, i.e., the ability to propagate
wavelengths much longer than the width of the waveguide. With an increasing waveguide width,
TM modes are sequentially cut off while the propagation of higher order modes is preserved (in general,
TM mode propagation is always supported independently of the waveguide width), which is in
contradiction to the behavior observed in conventional dielectric waveguides. Similar effects are also
observed in single-negative metamaterial-based waveguides [16,50]. It is also worth noting that TE
and TM modes of the same order still possess the same cutoff width and simultaneous existence of TE
and TM modes of the same order is not allowed. The power flow preserves the direction of the phase
velocity for both mode types.

Further increase in the biasing voltage (i.e., Vb = 3 V) leads to Type II hyperbolic dispersion of the
guiding layer medium. In this case (see Figure 3e), the propagation of TE modes is not possible due to
the propagation constant being almost purely imaginary, which is caused by the metallic character of
the guiding medium perceived by modes of this type (the electric field vector lies in plane with negative
permittivity ε‖). On the other hand, TM modes are still supported by the waveguide, revealing possibly
high energy confinement, and the absence of cut-off widths (for comparison, see reference [48]).
Moreover, as opposed to previous cases, power flow of TM modes is anti-parallel to phase velocity.

For broader insight into the waveguide propagation properties, “propagation maps” are presented,
which illustrate the propagation constant as a function of the waveguide width and the biasing voltage,
for TE and TM modes of the first and second order each (see Figure 4). The areas corresponding to
dispersion regions of the guiding layer are indicated above the top bar of each plot (positive elliptic
dispersion, abbreviated as elliptic; type I HMM, I; and type II HMM, II). At this time, we are still
considering propagation properties at a fixed wavelength of 1.55 µm. Black areas indicate regions of
no propagation, i.e., approximately where the imaginary part of β is greater than its real part.

Here, we can observe that TE modes (see Figure 4a,b) behave in elliptic and Type I HMM dispersion
regions similarly as in a dielectric slab waveguide, which is consistent with the previously obtained
characteristics (compare with Figure 3). In the Type II HMM region, however, the propagation is
prohibited regardless of the waveguide width. This is due to the dispersion of metallic character
exhibited by the guiding layer medium (see Figure 3e). Thus, for a waveguide of a given width,
changing the biasing voltage allows for control over mode phase velocity, and the number of supported
modes. We can distinguish two types of propagation control—(1) within the elliptic and type I HMM
regions, when small biasing voltage changes are preferable, or (2) detuning to type II HMM for
disabling propagation.

A more complex behavior can be observed in turn for TM modes, where each dispersion region is
responsible, due to the arrangement of the electric field vector in xz-plane, for different propagation
conditions (see Figure 4c,d). As a result, for a waveguide of a given width, it is possible to obtain
propagation conditions for a certain mode order in the elliptic region, and at the same time, propagation
of modes of higher orders in the Type I HMM region only. Finally, propagation in the Type II HMM
region is always allowed, and it is worth noting that the power flow in this case is anti-parallel to the
mode phase velocity. With all the aforementioned effects combined, a complete control of propagation
with respect to mode phase velocity, power flow, and field confinement is obtained, which may be
particularly suitable for optical signal processing, coupling control, signal modulation, or enhancement
of nonlinear effects. There are two types of propagation control—within elliptic or type I HMM region,
or between regions, depending on the chosen waveguide width.



Crystals 2020, 10, 176 8 of 13

Crystals 2020, 10, x FOR PEER REVIEW 8 of 14 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Propagation constant for configuration A as a function of the waveguide width d and the 
applied bias voltage Vb, at 1.55 µm for first and second order TE (a, b) and TM (c, d) modes. Black 
areas indicate regions where propagation is forbidden. 

Here, we can observe that TE modes (see Figure 4a, 4b) behave in elliptic and Type I HMM 
dispersion regions similarly as in a dielectric slab waveguide, which is consistent with the previously 
obtained characteristics (compare with Figure 3). In the Type II HMM region, however, the 
propagation is prohibited regardless of the waveguide width. This is due to the dispersion of metallic 
character exhibited by the guiding layer medium (see Figure 3e). Thus, for a waveguide of a given 
width, changing the biasing voltage allows for control over mode phase velocity, and the number of 
supported modes. We can distinguish two types of propagation control—(1) within the elliptic and 
type I HMM regions, when small biasing voltage changes are preferable, or (2) detuning to type II 
HMM for disabling propagation. 

A more complex behavior can be observed in turn for TM modes, where each dispersion region 
is responsible, due to the arrangement of the electric field vector in xz-plane, for different propagation 
conditions (see Figure 4c, 4d). As a result, for a waveguide of a given width, it is possible to obtain 
propagation conditions for a certain mode order in the elliptic region, and at the same time, 
propagation of modes of higher orders in the Type I HMM region only. Finally, propagation in the 
Type II HMM region is always allowed, and it is worth noting that the power flow in this case is anti-
parallel to the mode phase velocity. With all the aforementioned effects combined, a complete control 
of propagation with respect to mode phase velocity, power flow, and field confinement is obtained, 
which may be particularly suitable for optical signal processing, coupling control, signal modulation, 
or enhancement of nonlinear effects. There are two types of propagation control—within elliptic or 
type I HMM region, or between regions, depending on the chosen waveguide width. 

Figure 4. Propagation constant for configuration A as a function of the waveguide width d and the
applied bias voltage Vb, at 1.55 µm for first and second order TE (a,b) and TM (c,d) modes. Black areas
indicate regions where propagation is forbidden.

Qualitatively similar analysis can be performed in spectral domain by taking the perspective of
fixed voltage biasing conditions (see Figure 5).
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(in black); or can have the power flow direction reversed with respect to phase velocity (in type II
HMM dispersion region). As shown previously, the occurrence of these propagation regions in the
spectral domain is dependent on the applied bias voltage. Additionally, the waveguide has the ability
to propagate modes of much larger wavelengths than the width of the waveguide.

3.2. Results for Configuration B

We now consider propagation properties of the waveguide in configuration B (see Figure 1).
As previously noted, fundamental modes of TE and TM polarizations do not exist due to the assumed
boundary conditions. A similar analysis is conducted as in the case of configuration A. The change of
configuration leads to the rearrangement of the components of the guiding layer effective permittivity
tensor, where ε⊥ becomes εzz, and ε‖ now corresponds to εxx and εyy (see Equation (9)).

When no biasing voltage is applied, again, the guiding layer medium exhibits positive elliptic
dispersion. This time, however, TM and TE modes of a certain order reveal different cut-off widths,
the behavior inherited after the effective anisotropy, see Figure 6a, which is evident from Equations (6)
and (11) for β = 0. Thus, a behavior similar to that of the anisotropic slab waveguide is observed [51].Crystals 2020, 10, x FOR PEER REVIEW 10 of 14 
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By changing the biasing voltage, the dispersion type of guiding layer medium becomes Type I
hyperbolic (Vb = 2.1 V) (see Figure 6c). In this case, TM modes display behavior previously observed
in Type II hyperbolic dispersion region, which is characterized by the absence of a cut-off width,
and possible high energy confinement. Regardless of the rearrangement of the permittivity tensor
followed by the change in waveguide configuration, TE modes preserve their performance observed
for a dielectric waveguide, since these modes perceive the medium after the parallel tensor component
ε‖.

A further increase of biasing voltage (Vb = 3 V) leads to Type II hyperbolic dispersion. Once more,
propagation of TE modes, due to metallic character of the guiding medium, is prohibited (see Figure 6e).
On the other hand, TM modes behave in an unusual manner, with a reversed cut-off, i.e., with
increasing waveguide width, propagation of subsequent modes orders is being successively prohibited.
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Moreover, propagation in a waveguide of subwavelength width, where high energy confinement
takes place, is still possible. For each mode order, there exists an optimal waveguide width for which
the propagation distance is the largest. It is also worth noting, that the power flow of TM modes is
contra-directional to phase velocity of the modes.

Analogously to analysis performed for configuration A, propagation maps for configuration B
illustrating voltage-controlled behavior of TE and TM modes are presented (see Figure 7). In the case
of TE polarization, modes perceive the same medium as in configuration A (compare with Figure 4a
and 4b), so no change in propagation is expected nor observed.Crystals 2020, 10, x FOR PEER REVIEW 11 of 14 
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Figure 7. Map of propagation constant values for TM1 and TE1 (a,c), and TM2 and TE2 (b,d) for a
perpendicular configuration at 1.55 µm dependent on the waveguide width the biasing voltage. Black
areas indicate regions where propagation is prohibited.

In the case of TM modes, the waveguide of a given width provides propagation conditions for a
certain mode order in type II HMM region, and at the same time, conditions for modes of higher orders
in elliptic region. Propagation in the type I HMM region is always allowed. The power flow in the type
II HMM region is contra-directional to phase velocity. Despite the differing characters of propagation in
configurations A and B, both waveguides share a similar application potential, as discussed previously
for configuration A, with regard to voltage-controlled propagation.

To provide qualitatively similar analysis as in the case of A configuration, we replicate
characteristics for spectral domain (see Figure 8). Thus, for the considered waveguide of a given width,
regions of propagation windows and gaps controlled with voltage are again observed.
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4. Conclusions

Within this paper, we present a comprehensive analytical analysis of guiding conditions in
metal-cladded THMM slab waveguides by example of a graphene-based multilayer nanostructure
employed as a guiding layer. We demonstrate that their propagation properties can be controlled by
means of the voltage-dependency of the dispersion type of the guiding medium. For comprehensiveness
of the analysis, two configurations were presented, derived on the basis of the effective medium
theory, where transformation of the effective permittivity tensor allowed us to straightforwardly
account for two separate configurations. The structures constitute a new type of waveguides based on
THMMs, combining effects previously observed in distinct waveguide configurations and offering
a wide diversity of unusual propagation effects and flexibility of field distribution, which include
permitting stopping, or breaking the propagation, as well as reversing the power flow with respect to
phase velocity of the guided modes in a single, voltage-controlled nanostructure. We believe that such
structures will find their applications in optical signal processing, controlled phase matching, coupling
control, signal modulation, or enhancement of nonlinear effects by possible electric field confinement.
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