Not Only Hydrogen Bonds: Other Noncovalent Interactions
Abstract
:1. Introduction
- Definition: Noncovalent interactions are complexes formed by two or several LBs and LAs. It is the LA that gives the name to the interaction. Dative bonds are included in this definition.
2. Alkali Bonds
3. Alkaline Earth Bonds
4. Regium Bonds
5. Spodium Bonds
6. Triel Bonds
7. Tetrel Bonds
8. Pnictogen Bonds
9. Chalcogen Bonds
10. Halogen Bonds
11. Aerogen Bonds
12. Other Bonds
13. Modeling
14. Application Con Cahn-Ingold-Prelog Rules to Complexes Formed by Weak Interactions (Including Hydrogen Bonds)
15. A General Definition for Weak Interactions (Including HBs)
16. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hobza, P.; Müller-Dethlefs, K. Noncovalent interactions. Theory and Experiment; RSC Theoretical and Computational Chemistry Series; Royal Society of Chemistry: Cambridge, UK, 2010. [Google Scholar]
- Sauvage, J.P.; Gaspard, P. (Eds.) From Noncovalent Assemblies to Molecular Machines; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Scheiner, S. (Ed.) Nonocovalent Forces; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Maharramov, A.M.; Mahmudov, K.T.; Kopylovich, M.N.; Pombeiro, A.J.L. (Eds.) Noncovalent Interactions in the Synthesis and Design of New Compounds; John and Wiley and Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Mó, O. Some interesting features of the rich chemistry around electron-deficient systems. Pure Appl. Chem. 2019. [Google Scholar] [CrossRef]
- Pimentel, G.C.; McClellan, A.L. The Hydrogen Bond; W.H. Freeman & Co.: San Francisco, CA, USA, 1960. [Google Scholar]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond. In Structural Chemistry and Biology; International Union of Crystallography, Oxford Science Publications: Oxford, UK, 1999. [Google Scholar]
- Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; International Union of Crystallography, Oxford Science Publications: Oxford, UK, 2009. [Google Scholar]
- Grabowski, S.J.; Lesczcynski, J. (Eds.) Hydrogen Bonding—New Insights; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Li, Z.T.; Wu, L.Z. (Eds.) Hydrogen Bonded Supramolecular Structures; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Alkorta, I.; Rozas, I.; Elguero, J. Non-conventional hydrogen bonds. Chem. Soc. Rev. 1998, 27, 163–170. [Google Scholar] [CrossRef]
- Juanes, M.; Saragi, R.T.; Caminati, W.; Lesarri, A. The hydrogen bond and beyond: Perspectives for rotational investigations of non-covalent interactions. Chem. Eur. J. 2019, 25, 11402–11411. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Montero-Campillo, M.M.; Mó, O.; Elguero, J.; Yáñez, M. Weak interactions get strong: Synergy between tetrel and alkaline earth bonds. J. Phys. Chem. A 2019, 123, 7124–7132. [Google Scholar] [CrossRef] [PubMed]
- Fürstner, A.; Davies, P.W. Catalytic carbophilic activation: Catalysis by platinum and gold π acids. Angew. Chem. Int. Ed. 2007, 46, 3410–3449. [Google Scholar] [CrossRef]
- Lewis, G.N. Valence and the Structure of Atoms and Molecules; American Chemical Monograph Series; Chemical Catalogue Company: New York, NY, USA, 1923. [Google Scholar]
- Jensen, W.B. The Lewis acid-base definitions: A status report. Chem. Rev. 1978, 78, 1–22. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. The bright future of unconventional σ/π-hole interactions. ChemPhysChem 2015, 16, 2496–2517. [Google Scholar]
- Montero-Campillo, M.M.; Ferrer, M.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Insights into the bonding between electron-deficient elements. Systems with X-Y-X (X = B, Al; Y = Be, Mg) bridges. Phys. Chem. Chem. Phys. 2020. submitted. [Google Scholar]
- Ott, H.; Matthes, C.; Ringe, A.; Magull, J.; Stalke, D.; Klingebiel, U. On the track of novel triel-stabilized silylaminoiminoborenes. Chem. Eur. J. 2009, 15, 4602–4609. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 2018, 361, 912–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, C.R.; Hughes, R.P.; Weinhold, F. Comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”. Science 2019, 365, eaay2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Pan, S.; Zhou, M.; Frenking, G. Response to comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”. Science 2019, 365, eaay5021. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, M.; Shichibu, Y.; Konishi, K. Unusual attractive Au-π interactions in small diacetylene-modified gold clusters. Angew. Chem. Int. Ed. 2019, 58, 2443–2447. [Google Scholar] [CrossRef] [PubMed]
- Frenking, G.; Shaik, S. (Eds.) The Chemical Bond, Chemical Bonding Across the Periodic Table; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Brinck, T.; Borrfors, A.N. Electrostatic and polarization determine the strength of the halogen bond: A red card for charge transfer. J. Mol. Model. 2019, 25, 125. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Danovich, D.; Mo, Y.; Shaik, S. On the nature of the halogen bond. J. Chem. Theor. Comput. 2014, 10, 3726–3737. [Google Scholar] [CrossRef]
- Mulliken, R.S. Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J. Am. Chem. Soc. 1950, 72, 600–608. [Google Scholar] [CrossRef]
- Wang, C.; Guan, L.; Danovich, D.; Shaik, S.; Mo, Y. The origins of the directionality of noncovalent intermolecular interactions. J. Comput. Chem. 2016, 37, 34–45. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Jin, W.J. σ-Hole vs π-hole bond: A comparison based on halogen bond. Chem. Rev. 2016, 116, 5072–5104. [Google Scholar] [CrossRef]
- Grabowski, S.J.; Sokalski, W.A. Are various -hole bonds steered by the same mechanism? ChemPhysChem 2017, 18, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Resnati, G. (Eds.) Halogen Bonding: Fundamentals and Applications. In Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 2008; Volume 126. [Google Scholar]
- Kollman, P.A.; Liebman, J.F.; Allen, L.C. The lithium bond. J. Am. Chem. Soc. 1970, 92, 1142–1150. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Characterizing complexes with F–Li⋯N, H–Li⋯N, and CH3Li⋯N lithium bonds: Structures, binding energies, and spin-spin coupling constants. J. Phys. Chem. A 2009, 113, 10327–10334. [Google Scholar] [CrossRef] [PubMed]
- Esrafili, M.D.; Mohammadirad, N. Halogen bond interactions enhanced by sodium bonds—Theoretical evidence for cooperative and substitution effects in NCX⋯NCNa⋯NCY complexes (X = F, Cl, Br, I; Y = H, F, OH). Can. J. Chem. 2014, 92, 653–658. [Google Scholar] [CrossRef]
- Solimannejad, M.; Rabbani, M.; Ahmadi, A.; Esrafili, M.D. Cooperative and diminutive interplay between the sodium bonding with hydrogen and dihydrogen bondings in ternary complexes of NaC3N with HMgH and HCN (HNC). Mol. Phys. 2014, 112, 2017–2022. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Characterizing complexes with F–Li+–F lithium bonds: Structures, binding energies, and spin-spin coupling constants. J. Phys. Chem. A 2009, 113, 8359–8365. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Provasi, P.F.; Pagola, G.I.; Ferraro, M.B. Electric field effects on nuclear magnetic resonance shielding of the 1.1 and 2:1 (homo and heterochiral) complexes of XOOX (X, X = H, CH3) with lithium cation and their chiral discrimination. J. Chem. Phys. 2011, 135, 104116. [Google Scholar] [CrossRef] [Green Version]
- Brea, O.; Alkorta, I.; Corral, I.; Mó, O.; Yáñez, M.; Elguero, J. Intramolecular Beryllium Bonds. Further Insights into Resonance Assistance Phenomena. In Intermolecular Interactions in Crystals; Novoa, J.J., Ed.; The Royal Society of Chemistry: London, UK, 2018; Chapter 15. [Google Scholar]
- Montero-Campillo, M.M.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. The beryllium bond. Adv. Inorg. Chem. 2019, 73, 73–121. [Google Scholar]
- Yáñez, M.; Sanz, P.; Mó, O.; Alkorta, I.; Elguero, J. Beryllium bonds, do they exists? J. Chem. Theory Comput. 2009, 5, 2763–2771. [Google Scholar] [CrossRef]
- Parameswaran, P.; Frenking, G. Chemical bonding in transition metal complexes with beryllium ligands [(PMe3)2M-BeCl2], [(PMe3)2M-BeClMe], and [(PMe3)2M-BeMe2] (M) Ni, Pd, Pt). J. Phys. Chem. A 2010, 114, 8529–8535. [Google Scholar] [CrossRef]
- Buchner, M.R. Recent contributions to the coordination chemistry of beryllium. Chem. Eur. J. 2019, 25, 12018–12036. [Google Scholar] [CrossRef] [PubMed]
- Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Modulating the strength of hydrogen bonds through beryllium bonds. J. Chem. Theory Comput. 2012, 8, 2293–2300. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, M.; Mó, O.; Alkorta, I.; Elguero, J. Can conventional bases and unsaturated hydrocarbons be converted into gas-phase superacids that are stronger than most of the known oxyacids? The role of beryllium bonds. Chem. Eur. J. 2013, 19, 11637–11643. [Google Scholar] [CrossRef] [PubMed]
- Brea, O.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Creating σ-holes through the formation of beryllium bonds. Chem. Eur. J. 2015, 21, 12676–12682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brea, O.; Alkorta, I.; Mó, O.; Yáñez, M.; Elguero, J. Exergonic and spontaneous production of radicals through beryllium bonds. Angew. Chem. Int. Ed. 2016, 55, 8736–8739. [Google Scholar] [CrossRef] [PubMed]
- Brea, O.; Corral, I.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Beryllium-based anion sponges: A close relatives of proton sponges. Chem. Eur. J. 2016, 22, 18322–18325. [Google Scholar] [CrossRef]
- Yang, X.; Li, Q.; Cheng, J.; Li, W. A new interaction mechanism of LiNH2 with MgH2: Magnesium bond. J. Mol. Model. 2013, 19, 247–253. [Google Scholar] [CrossRef]
- Xu, H.L.; Li, Q.Z.; Scheiner, S. Effect of magnesium bond on the competition between hydrogen and halogen bonds and the induction of proton and halogen transfer. ChemPhysChem 2018, 19, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Sanz, P.; Montero-Campillo, M.M.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Intramolecular magnesium bonds in malonaldehyde-like systems: A critical view of the resonance-assisted phenomena. Theor. Chem. Acc. 2018, 137, 97. [Google Scholar] [CrossRef] [Green Version]
- Alkorta, I.; Legon, A.C. Non-covalent interactions involving alkaline-earth atoms and Lewis bases B: An ab initio investigation of beryllium and magnesium bonds, B⋯MR2 (M = Be or Mg, and R = H, F or CH3). Inorganics 2019, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Montero-Campillo, M.M.; Sanz, P.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Alkaline-earth (Be, Mg and Ca) bonds at the origin of huge acidity enhancements. Phys. Chem. Chem. Phys. 2018, 20, 2413–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frontera, A.; Bauzá, A. Regium-π bonds: An unexplored link between noble metal nanoparticles and aromatic surfaces. Chem. Eur. J. 2018, 24, 7228–7234. [Google Scholar] [CrossRef] [PubMed]
- Legon, A.C.; Walker, N.R. What’s in a name? ‘Coinage-metal’ non-covalent bonds and their definition. Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: A systematic look at non-covalent interactions. Phys. Chem. Chem. Phys. 2018, 20, 19332–19338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legon, A.C.; Walker, N.R. Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: A systematic look at non-covalent interactions. Phys. Chem. Chem. Phys. 2017, 19, 14884–14896. [Google Scholar] [CrossRef] [PubMed]
- Stenlid, J.H.; Johansson, A.J.; Brinck, T. σ-Holes and σ-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: Introducing regium bonds. Phys. Chem. Chem. Phys. 2018, 20, 2676–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, Q.; Li, R.; Li, W.; Cheng, J. Prediction and characterization of HCCH⋯AuX (X = OH, F, Cl, Br, CH3, CCH, CN and NC) complexes: A π Au-bond. J. Chem. Phys. 2011, 135, 074304. [Google Scholar] [CrossRef] [PubMed]
- Zierkiewicz, W.; Michalczyk, M.; Wysokinski, R.; Scheiner, S. Dual geometry schemes in tetrel bonds: Complexes between TF4 (T = Si, Ge, Sn) and pyridine derivatives. Molecules 2019, 24, 376. [Google Scholar] [CrossRef] [Green Version]
- Stenlid, J.H.; Johansson, A.J.; Brinck, T. σ-Holes on transition metal nanoclusters and their influence on the local Lewis acidity. Crystals 2017, 7, 222. [Google Scholar] [CrossRef] [Green Version]
- Brinck, T.; Stenlid, J.H. The Molecular Surface Property Approach: A Guide to Chemical Interactions in Chemistry, Medicine, and Material Science. Adv. Theor. Simul. 2019, 2, 1800139. [Google Scholar] [CrossRef]
- Pérez-Bitrián, A.; Baya, M.; Casas, J.M.; Falvello, L.R.; Martín, A.; Menjón, B. (CF3)3Au as a highly acidic organogold(III) fragment. Chem. Eur. J. 2017, 23, 14918–14930. [Google Scholar] [CrossRef]
- Martín-Somer, A.; Montero-Campiño, M.M.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Some interesting features of non-covalent interactions. Croat. Chim. Acta 2014, 87, 291–396. [Google Scholar] [CrossRef]
- Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Understanding regium bonds and their competition with hydrogen bonds in Au2:HX complexes. ChemPhysChem 2019, 20, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Liu, S.; Cheng, J.; Li, W.; Li, Q. Synergistic and diminutive effects between triel bond and regium bond: Attractive interactions between π-hole and σ-hole. Appl. Organomet. Chem. 2019, 33, e4806. [Google Scholar] [CrossRef]
- Terrón, A.; Buils, J.; Mooibroek, T.J.; Barceló-Oliver, M.; García-Raso, A.; Fiol, J.J.; Frontera, A. Synthesis, X-ray characterization and regium bonding interactions of a trichlorido-(1-hexylcytosine)gold(III) complex. Chem. Commun. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Liu, Y.; Wang, Z.; Zhou, F.; Liu, Y.; Ding, X.; Lu, T. Regium bonds formed by MX (M = Cu, Ag, Au; X = F, Cl, Br) with phosphine-oxide/phosphinous acid: Comparisons between oxygen-shared and phosphine-shared complexes. Mol. Phys. 2019, 117, 2443–2455. [Google Scholar] [CrossRef]
- Trujillo, C.; Sánchez-Sanz, G.; Elguero, J.; Alkorta, I. The Lewis Acidities of Gold(I) and Gold(III): A Theoretical Study of Complexes of AuCl and AuCl3. Organometallics 2020. submitted. [Google Scholar]
- Patil, N.T.; Yamamoto, Y. Gold-catalyzed reactions of oxo-alkynes. Arkivoc 2007, 6, 19. [Google Scholar]
- Yamamoto, Y. From σ- to π-electrophilic Lewis acids. Application to selective organic transforma-tions. J. Org. Chem. 2007, 21, 7817–7831. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Gridnev, I.D.; Patil, N.T.; Jin, T. Alkyne activation with Brønsted acids, iodine, or gold complexes, and its fate leading to synthetic application. Chem. Commun. 2009, 5075–5087. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. Regium–π vs. cation–π interactions in M2 and MCl (M = Cu, Ag and Au) complexes with small aromatic systems: An ab initio study. Inorganics 2018, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Boorman, T.C.; Slawin, A.M.Z.; Larrosa, I. Gold(I)-mediated C–H activation of arenes. J. Am. Chem. Soc. 2010, 132, 5580–5581. [Google Scholar] [CrossRef] [PubMed]
- Radenkovic, S.; Antic, M.; Savic, N.D.; Glisic, B.D. The nature of the Au–N bond in gold(III) complexes with aromatic nitrogen-containing heterocycles: The influence of Au(III) ions on the ligand aromaticity. New J. Chem. 2017, 41, 12407–12415. [Google Scholar] [CrossRef]
- Joy, J.; Jemmis, E.D. Contrasting Behavior of the Z Bonds in X–Z⋯Y Weak Interactions: Z = Main Group Elements Versus the Transition Metals. Inorg. Chem. 2017, 56, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- CSD: Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising, Acta Crystallogr. Sect. B 2002, 58, 380–388. [Google Scholar]
- Chieh, C. Synthesis and structure of dichlorobis(thiosemicarbazide)mercury(II). Can. J. Chem. 1977, 55, 1583–1587. [Google Scholar] [CrossRef] [Green Version]
- Lupinetti, A.J.; Jonas, V.; Thiel, W.; Strauss, S.H.; Frenking, G. Trends in molecular geometries and bond strengths of the homoleptic d10 metal carbonyl cations [M(CO)n]x+ (Mx+ = Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+; n = 1–6): A theoretical study. Chem. Eur. J. 1999, 5, 2573–2583. [Google Scholar] [CrossRef]
- Wang, S.R.; Arrowsmith, M.; Braunschweig, H.; Dewhurst, R.D.; Dömling, M.; Mattock, J.D.; Pranckevicius, C.; Vargas, A. Monomeric 16-electron π-diborene complexes of Zn(II) and Cd(II). J. Am. Chem. Soc. 2017, 139, 10661–10664. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, S.J. Boron and other triel Lewis acid centers: From hypovalency to hypervalency. ChemPhysChem. 2014, 15, 2985–2993. [Google Scholar] [CrossRef]
- Hiberty, P.C.; Ohanessian, G. Comparison of minimal and extended basis sets in terms of resonant formulas. Application to 1, 3-dipoles. J. Am. Chem. Soc. 1982, 104, 66–70. [Google Scholar] [CrossRef]
- Brinck, T.; Murray, J.S.; Politzer, P. A computational analysis of the bonding in boron trichloride and their complexes with ammonia. Inorg. Chem. 1993, 32, 2622–2625. [Google Scholar] [CrossRef]
- Kutzelnigg, W. Chemical bonding in higher main group elements. Angew. Chem. Int. Ed. 1984, 23, 272–295. [Google Scholar] [CrossRef]
- Rowsell, B.D.; Gillespie, R.J.; Heard, G.L. Ligand close-packing and the Lewis acidity of BF3 and BC3. Inorg. Chem. 1999, 38, 4659–4662. [Google Scholar] [CrossRef] [PubMed]
- Bessac, F.; Frenking, G. Why is BCl3 a stronger Lewis acid with respect to strong bases than BF3? Inorg. Chem. 2003, 42, 7990–7994. [Google Scholar] [CrossRef] [PubMed]
- Fau, S.; Frenking, G. Theoretical investigation of the weakly bonded donor-acceptor complexes H3B-H2, X3B-C3H4, and X3B-C2H2 (X = H, F, Cl). Mol. Phys. 1999, 96, 519–527. [Google Scholar]
- Grabowski, S.J. π-Hole bonds: Boron and aluminum Lewis acid centers. ChemPhysChem 2015, 16, 1470–1479. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. On the versatility of BH2X (X = F, Cl, Br, and I) compounds as halogen-, hydrogen-, and triel-bond donors: An ab initio study. ChemPhysChem 2016, 17, 3181–3186. [Google Scholar] [CrossRef]
- Bauzá, A.; García-Llinás, X.; Frontera, A. Charge-assisted triel bonding interactions in solid state chemistry: A combined computational and crystallographic study. Chem. Phys. Lett. 2016, 666, 73–78. [Google Scholar] [CrossRef]
- Gao, L.; Zeng, Y.; Zhang, X.; Meng, L. Comparative studies on group III σ-hole and π-hole interactions. J. Comput. Chem. 2016, 37, 1321–1327. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. Competition between lone pair-π, halogen-π and triel bonding interactions involving BX3 (X = F, Cl, Br and I) compounds: An ab initio study. Theor. Chem. Acc. 2017, 136, 37. [Google Scholar] [CrossRef]
- Chi, Z.; Li, Q.; Li, H.B. Comparison of triel bonds with different chalcogen electron donors: Its dependence on triel donor and methyl substitution. Int. J. Quant. Chem. 2019, 120, e26046. [Google Scholar] [CrossRef]
- Leopold, K.R.; Canagaratna, M.; Phillips, J.A. Partially Bonded Molecules from the Solid State to the Stratosphere. Acc. Chem. Res. 1997, 30, 57–64. [Google Scholar] [CrossRef]
- Phillips, J.; Giesen, D.; Wells, N.; Halfen, J.; Knutson, C.; Wrass, J. Condensed-phase effects on the structural properties of C6H5CN-BF3 and (CH3)3CCN-BF3: IR spectra, crystallography, and computations. J. Phys. Chem. A 2005, 109, 8199–8208. [Google Scholar] [CrossRef] [PubMed]
- Fiacco, D.; Leopold, K. Partially bound systems as sensitive probes of microsolvation: A microwave and ab initio study of HCN⋯HCN–BF3. J. Phys. Chem. A 2003, 107, 2808–2814. [Google Scholar] [CrossRef]
- Tang, Q.J.; Li, Q.Z. Abnormal synergistic effects between Lewis acid-base interaction and halogen bond in F3B⋯NCX⋯NCM. Mol. Phys. 2015, 113, 3809–3814. [Google Scholar] [CrossRef]
- Zhang, J.R.; Li, W.Z.; Cheng, J.B.; Liu, Z.B.; Li, Q.Z. Cooperative effects between π-hole triel and π-hole chalcogen bonds. RSC Adv. 2018, 8, 26580–26588. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.X.; Zhuo, H.Y.; Li, Q.Z.; Li, W.Z.; Cheng, J.B. Theoretical study of the cooperative effects between the triel bond and the pnicogen bond in BF3⋯NCXH2⋯Y (X = P, As, Sb; Y = H2O, NH3) complexes. J. Mol. Model. 2016, 22, 10. [Google Scholar] [CrossRef]
- Yourdkhani, S.; Korona, T.; Hadipour, N.L. Interplay between tetrel and triel bonds in RC6H4CN⋯MF3CN⋯BX3 complexes: A combined symmetry-adapted perturbation theory, Møller-Plesset, and Quantum Theory of Atoms-in-Molecules study. J. Comput. Chem. 2015, 36, 2412–2428. [Google Scholar] [CrossRef]
- Echeverría, J. In(III)⋯In(III) short contacts: An unnoticed metallophilic interaction? Chem. Commun. 2018, 54, 6312–6315. [Google Scholar] [CrossRef]
- Echeverría, J. Intermolecular carbonyl⋯carbonyl interactions in transition-metal complexes. Inorg. Chem. 2018, 57, 5429–5437. [Google Scholar] [CrossRef]
- Grabowski, S.J. Pnicogan and tetrel bonds—Tetrahedral Lewis acid centers. Struct. Chem. 2019, 30, 1141–1152. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel bonding interactions. Chem. Rec. 2016, 16, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Tetrel bond-σ-hole as a preliminary stage of the SN2 reaction. Phys. Chem. Chem. Phys. 2014, 16, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Ramis, R.; Frontera, A. Computational study of anion recognition based on tetrel and hydrogen bonding interaction by calix[4]pyrrole derivatives. Comput. Theor. Chem. 2014, 1038, 67–70. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Small cycloalkane (CN)2C–C(CN)2 structures are highly directional non-covalent carbon-bond donors. Chem. Eur. J. 2014, 20, 10245–10248. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel-bonding interaction: Rediscovered supramolecular force? Angew. Chem. Int. Ed. 2013, 52, 12317–12321. [Google Scholar] [CrossRef]
- Mani, D.; Arunan, E. The X–C⋯Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys. Chem. Chem. Phys. 2013, 15, 14377–14383. [Google Scholar] [CrossRef]
- Naseer, M.M.; Hussain, M.; Bauzá, A.; Lo, K.M.; Frontera, A. Intramolecular noncovalent carbon bonding interaction stabilizes the cis conformation in acylhydrazones. ChemPlusChem 2018, 83, 881–885. [Google Scholar] [CrossRef]
- Thomas, S.P.; Pavan, M.S.; Guru Row, T.N. Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Chem. Commun. 2014, 50, 49–51. [Google Scholar] [CrossRef]
- Mirdya, S.; Frontera, A.; Chattopadhyay, S. Formation of a tetranuclear supramolecule via non-covalent Pb⋯Cl tetrel bonding interaction in a hemidirected lead(II) complex with a nickel(II) containing metaloligand. CrystEngComm. 2019, 21, 6859–6868. [Google Scholar] [CrossRef]
- Sohail, M.; Panisch, R.; Bowden, A.; Bassindale, A.R.; Taylor, P.G.; Korlyukov, A.A.; Arkhipov, D.E.; Male, L.; Callear, S.; Coles, S.J.; et al. Pentacoordinate silicon complexes with dynamic motion resembling a pendulum on the SN2 reaction pathway. Dalton. Trans. 2013, 42, 10971–10981. [Google Scholar] [CrossRef]
- Mikosch, J.; Trippel, S.; Eichhorn, C.; Otto, R.; Lourderaj, U.; Zhang, J.X.; Hase, W.L.; Weidemüller, M.; Wester, R. Imaging Nucleophilic Substitution Dynamics. Science 2008, 319, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Matejcik, S.; Illenberger, E. The nucleophilic displacement (SN2) reaction F− + CH3Cl→CH3F + Cl− induced by resonant electron capture in gas phase clusters. Phys. Chem. Chem. Phys. 2000, 2, 1001–1005. [Google Scholar] [CrossRef]
- Levy, C.J.; Puddephatt, R.J. Rapid reversible oxidative addition of group 14−halide bonds to platinum (II): rates, equilibria, and bond energies. J. Am. Chem. Soc. 1997, 119, 10127–10136. [Google Scholar] [CrossRef]
- The Chemistry of Functional Groups. The Chemistry of Organic Germanium, Tin and Lead Compounds; Patai, S., Rappoport, Z., Eds.; John and Wiley and Sons: Hoboken, NJ, USA, 1995; Volume 19. [Google Scholar]
- Parr, J. Comprehensive Coordination Chem. II; McCleverty, J.A., Meyer, T.J., Eds.; Pergamon Press: Oxford, UK, 2004; Volume 3, p. 545. [Google Scholar]
- Sato, T. Comprehensive Organometallic Chem. II; Abel, E.W., Stone, F.G.A., Wilkinson, G., Eds.; Pergamon Press: Oxford, UK, 1995; Volume 11, p. 389. [Google Scholar]
- Pinhey, J.T. Comprehensive Organometallic Chem. II; Abel, E.W., Stone, F.G.A., Wilkinson, G., Eds.; Pergamon Press: Oxford, UK, 1995; Volume 11, p. 461. [Google Scholar]
- Greenberg, A.; Wu, G. Structural relationships in silatrane molecules. Struct. Chem. 1990, 1, 79–85. [Google Scholar] [CrossRef]
- Hencsei, P. Evaluation of silatrane structures by correlation relationships. Struct. Chem. 1991, 2, 21–26. [Google Scholar] [CrossRef]
- Voronkov, M.G.; Barishok, V.P.; Petukhov, L.P.; Rahklin, R.G.; Pestunovich, V.A. 1-Halosilatranes. J. Organomet. Chem. 1988, 358, 39–55. [Google Scholar] [CrossRef]
- Lukevics, E.; Dimens, V.; Pokrovska, N.; Zicmane, I.; Popelis, J.; Kemme, A. Addition of nitrile oxides to 2,3-dihydrofurylsilanes. Crystal and molecular structure of tetrahydrofuro [2,3-d]-isoxazolylsilanes. J. Organomet. Chem. 1999, 586, 200–207. [Google Scholar] [CrossRef]
- Corriu, R.J.P. Hypervalent species of silicon: Structure and reactivity. J. Organomet. Chem. 1990, 400, 81–106. [Google Scholar] [CrossRef]
- Förgács, G.; Kolonits, M.; Hargittai, I. The gas-phase molecular structure of 1-fluorosilane from electron diffraction. Struct. Chem. 1990, 1, 245–250. [Google Scholar] [CrossRef]
- Eujen, R.; Petrauskas, E.; Roth, A.; Brauer, D.J. The structures of 1-chlorogermatrane and of 1-fluorogermatrane, revisited. J. Organomet. Chem. 2000, 613, 86–92. [Google Scholar] [CrossRef]
- Lukevics, E.; Ignatovich, L.; Beliakov, S. Synthesis and molecular structure of phenyl and tolylgermatranes. J. Organomet. Chem. 1999, 588, 222–230. [Google Scholar] [CrossRef]
- Livant, P.; Northcott, J.; Webb, T.R. Structure of an oxo-bridged germatrane dimer. J. Organomet. Chem. 2001, 620, 133–138. [Google Scholar] [CrossRef]
- Karlov, S.S.; Shutov, P.L.; Churakov, A.V.; Lorberth, J.; Zaitseva, G.S. New approach to 1-(phenylethynyl) germatranes and 1-(phenylethynyl)-3,7,10-trimethylgermatrane. Reactions of 1-(phenylethynyl) germatrane with N-bromosuccinimide and bromine. J. Organomet. Chem. 2001, 627, 1–5. [Google Scholar] [CrossRef]
- Shen, Q.; Hilderbrandt, R.L. The structure of methyl silatrane (1-methyl-2,8,9-trioxa-5-aza-1-silabicyclo(3.3.3)undecane) as determined by gas phase electron diffraction. J. Mol. Struct. 1980, 64, 257–262. [Google Scholar] [CrossRef]
- Scilabra, P.; Kumar, V.; Ursini, M.; Resnati, G. Close contacts involving germanium and tin in crystal structures: Experimental evidence of tetrel bonds. J. Mol. Model. 2018, 24, 37. [Google Scholar] [CrossRef] [Green Version]
- Frontera, A.; Bauzá, A. S⋯Sn tetrel bonds in the activation of peroxisome proliferator-activated receptors (PPARs) by organotin molecules. Chem. Eur. J. 2018, 24, 16582–16587. [Google Scholar] [CrossRef]
- Southern, S.A.; Errulat, D.; Frost, J.; Gabidullin, B.; Bryce, D.L. Prospects for 207Pb solid-state NMR studies of lead terel bonds. Faraday Discuss. 2017, 203, 165–186. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Bauzá, A.; Amini, M.; Molins, E.; Mague, J.T.; Frontera, A. On the importance of tetrel bonding interactions in lead (II) complexes with (iso) nicotinohydrazide based ligands and several anions. Dalton Trans. 2016, 45, 10708–10716. [Google Scholar] [CrossRef] [Green Version]
- Servati Gargari, M.; Stilinović, V.; Bauzá, A.; Frontera, A.; McArdle, P.; van Derveer, D.; Ng, S.W.; Mahmoudi, G. Design of lead(II) metal-organic frameworks based on covalent and tetrel bonding. Chem. Eur. J. 2015, 21, 17951–17958. [Google Scholar] [CrossRef]
- Burgi, H.B. Chemical reaction coordinates from crystal structure data. I. Inorg. Chem. 1973, 12, 2321–2325. [Google Scholar] [CrossRef]
- Burgi, H.B.; Dunitz, J.D.; Shefter, E. Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 1973, 95, 5065–5067. [Google Scholar] [CrossRef]
- Egli, M.; Gessner, R.V. Stereoelectronic effects of deoxyribose O4′ on DNA conformation. Proc. Natl. Acad. Sci. USA 1995, 92, 180–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahn, S.; Frank, R.; Hey-Hawkins, E.; Kirchner, B. Pnicogen bonds: A new molecular linker? Chem. Eur. J. 2011, 17, 6034–6038. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. A new noncovalent force: Comparison of P⋯N interaction with hydrogen and halogen bonds. J. Chem. Phys. 2011, 134, 094315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bene, J.E.; Alkorta, I.; Sánchez-Sanz, G.; Elguero, J. 31P–31P spin-spin coupling constants for pnicogen homodimers. Chem. Phys. Lett. 2011, 512, 184–187. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. The Pnicogen Bond in Review: Structures, Binding Energies, Bonding Properties, and Spin-Spin Coupling Constants of Complexes Stabilized by Pnicogen Bonds. Chall. Adv. Comput. Chem. Phys. 2015, 19, 191–264. [Google Scholar]
- Scheiner, S. The pnicogen bond: Its relation to hydrogen, halogen, and other noncovalent bonds. Acc. Chem. Res. 2013, 46, 280–288. [Google Scholar] [CrossRef]
- Li, W.; Spada, L.; Tasinato, N.; Rampino, S.; Evangelisti, L.; Gualandi, A.; Cozzi, P.G.; Melandri, S.; Barone, V.; Puzzarini, C. Theory meets experiment for noncovalent complexes: The puzzling case of pnicogen interactions. Angew. Chem. Int. Ed. 2018, 57, 13853–13857. [Google Scholar] [CrossRef] [Green Version]
- Del Bene, J.E.; Alkorta, I.; Sánchez-Sanz, G.; Elguero, J. Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J. Phys. Chem. A 2011, 115, 13724–13731. [Google Scholar] [CrossRef]
- Alkorta, I.; Sánchez-Sanz, G.; Elguero, J.; Del Bene, J.E. Influence of hydrogen bonds on the P⋯P pnicogen bond. J. Chem. Theor. Comput. 2012, 8, 2320–2327. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Del Bene, J.E. Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, CN, NC, CH3, H, and BH2. J. Phys. Chem. A 2013, 117, 4981–4987. [Google Scholar] [CrossRef] [PubMed]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Influence of substituent effects on the formation of P⋯Cl pnicogen bonds or halogen bonds. J. Phys. Chem. A 2014, 118, 2360–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Pnicogen-bonded complexes HnF5–nP:N-base, for n = 0–5. J. Phys. Chem. A 2014, 118, 10144–10154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkorta, I.; Azofra, L.M.; Elguero, J. Ab initio study in the hydration process of metaphosphoric acid: The importance of the pnictogen interactions. Theor. Chem. Acta 2015, 134, 30. [Google Scholar] [CrossRef] [Green Version]
- Alkorta, I.; Legon, A.C. Nucleophilicities of Lewis bases B and electrophilicities of Lewis acids A determined from the dissociation energies of complexes B⋯A involving hydrogen bonds, tetrel bonds, pnictogen bonds, chalcogen bonds and halogen bonds. Molecules 2017, 22, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. What types of noncovalent bonds stabilize dimers (XCP)2, for X = CN, Cl, F, and H? J. Phys. Chem. A 2019, 123, 10086–10094. [Google Scholar] [CrossRef]
- Guan, L.; Mo, Y. Electron transfer in pnicogen bonds. J. Phys. Chem. A 2014, 118, 8911–8921. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Mohammadian-Sabet, F. Pnicogen– pnicogen interactions in O2XP:PH2Y complexes (X = H, F, CN; Y = H, OH, OCH3, CH3, NH2). Chem. Phys. Lett. 2015, 638, 122–127. [Google Scholar] [CrossRef]
- Zhuo, H.; Li, Q.; Li, W.; Cheng, J. The dual role of pnicogen as Lewis acid and base and the unexpected interplay between the pnicogen bond and coordination interaction in H3N⋯MCN (X = P and As; M = Cu, Ag, and Au). New J. Chem. 2015, 39, 2067–2074. [Google Scholar] [CrossRef]
- Pecina, A.; Lepsík, M.; Hnyk, D.; Hobza, P.; Fanfrlík, J. Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square-antiprismatic heteroboranes. J. Phys. Chem. A 2015, 119, 1388–1395. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Q.; Li, W.; Cheng, J.; McDowell, S.A.C. Influence of the protonation of pyridine nitrogen on pnicogen bonding: Competition and cooperativity. Phys. Chem. Chem. Phys. 2016, 18, 11348–11356. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, N.; Sankaran, K.; Sundararajan, K. PCl3–C6H6 heterodimers: Evidence for P⋯π phosphorus bonding at low temperatures. Phys. Chem. Chem. Phys. 2016, 18, 19350–19358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zeng, Y.; Li, Z.; Meng, L.; Zhang, X. The mutual influence between π-hole pnicogen bonds and σ-hole halogen bonds in complexes of PO2Cl and XCN/C6H6 (X = F, Cl, Br). Struct. Chem. 2016, 27, 1427–1437. [Google Scholar] [CrossRef]
- Schmauck, J.; Breugst, M. The potential of pnicogen bonding for catalysis—A computational study. Org. Biomol. Chem. 2017, 15, 8037–8045. [Google Scholar] [CrossRef]
- Moaven, S.; Andrews, M.C.; Polaske, T.J.; Karl, B.M.; Unruh, D.K.; Bosch, E.; Bowling, N.P.; Cozzolino, A.F. Triple-pnictogen bonding as a tool for supramolecular assembly. Inorg. Chem. 2019, 58, 16227–16235. [Google Scholar] [CrossRef]
- Scilabra, P.; Terraneo, G.; Daolio, A.; Baggioli, A.; Famulari, A.; Leroy, C.; Bryce, D.L.; Resnatti, G. 4,4′-Dipyridyl dioxide·SbF3 co-crystal: Pnictogen bond prevails over halogen and hydrogen bonds in driving self-assembly. Cryst. Growth Des. 2020, 20, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Paulini, R.; Müller, K.; Diederich, F. Orthogonal multipolar interactions in structural chemistry and biology. Angew. Chem. Int. Ed. 2005, 44, 1788–1805. [Google Scholar] [CrossRef]
- Fischer, F.R.; Schweizer, W.B.; Diederich, F. Molecular torsion balances: Evidence for favorable orthogonal dipolar interactions between organic fluorine and amide groups. Angew. Chem. Int. Ed. 2007, 46, 8270–8273. [Google Scholar] [CrossRef]
- Fischer, F.R.; Wood, P.A.; Allen, F.H.; Diederich, F. Orthogonal dipolar interactions between amide carbonyl groups. Proc. Natl. Acad. Sci. USA 2008, 105, 17290–17294. [Google Scholar] [CrossRef] [Green Version]
- Yap, G.P.A.; Jové, F.A.; Claramunt, R.M.; Sanz, D.; Alkorta, I.; Elguero, J. The X-ray molecular structure of 1-(2′,4′-dinitrophenyl)-1,2,3-triazole and the problem of the orthogonal interaction between a ‘pyridine-like’ nitrogen and a nitro group. Aust. J. Chem. 2005, 58, 817–822. [Google Scholar] [CrossRef]
- Pinilla, E.; Torres, M.R.; Claramunt, R.M.; Sanz, D.; Prakask, R.; Singh, S.P.; Alkorta, I.; Elguero, J. The structure of 2,3-dihydro-3-(2,4-dioxo-6-methylpyran-3-ylidene)-2-(2-nitrobenzyl)-1,4-benzo-thiazine and the problem of orthogonal interactions. Arkivoc 2006, 136–142. [Google Scholar] [CrossRef] [Green Version]
- García, M.A.; Claramunt, R.M.; Elguero, J. 13C and 15N NMR chemical shifts of 1-(2,4-dinitro-phenyl) and 1-(2,4,6-trinitrophenyl) pyrazoles in the solid state and in solution. Magn. Reson. Chem. 2008, 46, 697–700. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Roussel, C.; Vanthuyne, N.; Piras, P. Atropisomerism and axial chirality in heteroaromatic compounds. Adv. Heterocycl. Chem. 2012, 105, 1–188. [Google Scholar]
- Triballeau, N.; Van Name, E.; Laslier, G.; Cai, D.; Paillard, G.; Sorensen, P.W.; Hoffmann, R.; Bertrand, H.O.; Ngai, J.; Acher, F.C. High-potency olfactory receptor agonists discovered by virtual high-throughput screening: Molecular probes for receptor structure and olfactory function. Neuron 2008, 60, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Mahmudov, K.T.; Kopylovich, M.N.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans. 2016, 46, 10121–10138. [Google Scholar] [CrossRef] [Green Version]
- Gleiter, R.; Haberhauer, G.; Werz, D.B.; Rominger, F.; Bleiholder, C. From noncovalent chalcogen-chalcogen interactions to supramolecular aggregates: Experiments and calculations. Chem. Rev. 2018, 118, 2010–2041. [Google Scholar] [CrossRef]
- Vogel, L.; Wonner, P.; Huber, S.M. Chalcogen bonding: An overview. Angew. Chem. Int. Ed. 2019, 58, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Scilabra, P.; Terraneo, G.; Resnati, G. The chalcogen bond in crystalline solids: A world parallel to halogen bond. Acc. Chem. Res. 2019, 52, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ji, B.; Zhang, Y. Chalcogen bond: A sister noncovalent bond to halogen bond. J. Phys. Chem. A 2009, 113, 8132–8135. [Google Scholar] [CrossRef] [PubMed]
- Minkin, V.I.; Sadekov, I.D.; Maksimenko, A.A.; Kompan, O.E. Molecular and crystal structure of ortho-tellurated azomethines with intramolecular N→Te coordination. J. Organomet. Chem. 1991, 402, 331–348. [Google Scholar] [CrossRef]
- Minyaev, R.M.; Minkin, V.I. Theoretical study of O→X (S, Se, Te) coordination in organic compounds. Can. J. Chem. 1998, 76, 776–788. [Google Scholar] [CrossRef]
- Minkin, V.I.; Minyaev, R.M. Cyclic aromatic systems with hypervalent centers. Chem. Rev. 2001, 101, 1247–1265. [Google Scholar] [CrossRef] [PubMed]
- Sanz, P.; Yáñez, M.; Mó, O. Competition between X⋯H⋯Y intramolecular hydrogen bonds and X⋯Y (X = O, S, and Y = Se, Te) chalcogen–chalcogen interactions. J. Phys. Chem. A 2002, 106, 4661–4668. [Google Scholar] [CrossRef]
- Bleiholder, C.; Werz, D.B.; Köppel, H.; Gleiter, R. Theoretical investigations on chalcogen–chalcogen interactions: What makes these nonbonded interactions bonding? J. Am. Chem. Soc. 2006, 128, 2666–2674. [Google Scholar] [CrossRef]
- Owczarzak, A.; Dutkiewicz, Z.; Kurczab, R.; Pietrús, W.; Kubicki, M.; Grzéskiewicz, A.M. Role of staple molecules in the formation of S⋯S contact in thioamides: Experimental charge density and theoretical studies. Cryst. Growth Des. 2019, 19, 7324–7335. [Google Scholar] [CrossRef]
- Li, Q.Z.; Li, R.; Guo, P.; Li, H.; Li, W.Z.; Cheng, J.B. Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS–HOX and SeCSe–HOX (X = Cl and Br) complexes. Comput. Theor. Chem. 2012, 980, 56–61. [Google Scholar] [CrossRef]
- Trujillo, C.; Sánchez-Sanz, G.; Alkorta, I.; Elguero, J. Halogen, chalcogen and pnictogen interaction in (XNO2)2 homodimers (X = F, Cl, Br, I). New J. Chem. 2015, 39, 6791–6802. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Asadollahi, S.; Shaamat, Y.D. Competition between chalcogen bond and halogen bond interactions in YOX4:NH3 (Y = S, Se; X = F, Cl, Br) complexes: An ab initio investigation. Struct. Chem. 2016, 27, 1439–1447. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Del Bene, J.E. Complexes of O=C=S with nitrogen bases: Chalcogen bonds, tetrel bonds, and other secondary interactions. ChemPhysChem 2018, 19, 1886–1894. [Google Scholar] [CrossRef]
- Teng, Q.; Ng, P.S.; Leung, J.N.; Huynh, H.V. Donor strengths determination of pnictogen and chalcogen ligands by the Huynh electronic parameter and its correlation to sigma Hammett constants. Chem. Eur. J. 2019, 25, 13956–13963. [Google Scholar] [CrossRef] [Green Version]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Exploring N⋯C tetrel and O⋯S chalcogen bonds in HN (CH)SX:OCS systems, for X = F, NC, Cl, CN, CCH, and H. Chem. Phys. Lett. 2019, 730, 466–471. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Potential energy surfaces of HN (CH)SX:CO2 systems, for X = F, Cl, NC, CN, CCH, and H: N⋯C tetrel bonds and O⋯S chalcogen bonds. J. Phys. Chem. A 2019, 123, 7270–7277. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Scheiner, S. Effects of halogen, chalcogen, pnicogen, and tetrel bonds on IR and NMR spectra. Molecules 2019, 24, 2822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esrafili, M.D.; Saeidi, N.; Solimannejad, M. Tuning of chalcogen bonds by cation-π interactions: Cooperative and diminutive effects. J. Mol. Model. 2015, 21, 300. [Google Scholar] [CrossRef] [PubMed]
- Mó, O.; Montero-Campillo, M.M.; Alkorta, I.; Elguero, J.; Yáñez, M. Ternary complexes stabilized by chalcogen and alkaline-earth bonds: Crucial role of cooperativity and secondary noncovalent interactions. Chem. Eur. J. 2019, 25, 11688–11795. [Google Scholar] [CrossRef]
- Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Enhancing intramolecular chalcogen interactions in 1-hydroxy-YH-naphthalene derivatives. J. Phys. Chem. A 2017, 121, 8995–9003. [Google Scholar] [CrossRef]
- Sánchez-Sanz, G.; Alkorta, I.; Elguero, J. Theoretical study of intramolecular interactions in peri-substituted naphthalenes: Chalcogen and hydrogen bonds. Molecules 2017, 22, 227. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Intermolecular weak interactions in HTeXH Dimers (X = O, S, Se, Te): Hydrogen bonds, chalcogen–chalcogen contacts and chiral discrimination. ChemPhysChem 2012, 13, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Strakova, K.; Assies, L.; Goujon, A.; Piazzolla, F.; Humeniuk, H.V.; Matile, S. Dithienothiophenes at work: Access to mechanosensitive fluorescent probes, chalcogen-bonding catalysis, and beyond. Chem. Rev. 2019, 119, 10977–11005. [Google Scholar] [CrossRef]
- Riwar, L.J.; Trapp, N.; Root, K.; Zenobi, R.; Diederich, F. Supramolecular capsules: Strong versus weak chalcogen bonding. Angew. Chem. Int. Ed. 2018, 57, 17259–17264. [Google Scholar] [CrossRef]
- Ams, M.R.; Trapp, N.; Schwab, A.; Milic, J.V.; Diederich, F. Chalcogen bonding “2S–2N squares” versus competing interactions: Exploring the recognition properties of sulfur. Chem. Eur. J. 2019, 25, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Maurice, R.; Teze, D.; Graton, J.; Champion, J.; Montavon, G.; Galland, N. Experimental and computational evidence of halogen bonds involving astatine. Nat. Chem. 2018, 10, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc. Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen bonding in supramolecular chemistrt. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Molina, P.; Zapata, F.; Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev. 2017, 117, 9907–9972. [Google Scholar] [CrossRef]
- Scheiner, S. Comparison of halide receptors based on H, halogen, chalcogen, pnicogen, and tetrel bonds. Faraday Discuss. 2017, 203, 213–226. [Google Scholar] [CrossRef]
- Huber, S.M.; Scanlon, J.D.; Jiménez-Izal, E.; Ugalde, J.M.; Infante, I. On the directionality of halogen bonding. Phys. Chem. Chem. Phys. 2013, 15, 10350–10357. [Google Scholar] [CrossRef]
- Riley, K.E.; Murray, J.S.; Fanfrlík, J.; Řezáč, J.; Solá, R.J.; Concha, M.C.; Ramos, F.M.; Politzer, P. Halogen bond tunability I: The effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J. Mol. Model. 2011, 17, 3309–3318. [Google Scholar] [CrossRef]
- Riley, K.E.; Murray, J.S.; Fanfrlík, J.; Řezáč, J.; Solá, R.J.; Concha, M.C.; Ramos, F.M.; Politzer, P. Halogen bond tunability II: The varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J. Mol. Model. 2013, 19, 4651–4659. [Google Scholar] [CrossRef]
- Chan, Y.C.; Yeung, Y.Y. Halogen Bond Catalyzed Bromocarbocyclization. Angew. Chem. Int. Ed. 2018, 57, 3483–3487. [Google Scholar] [CrossRef] [PubMed]
- Carreras, L.; Serrano-Torné, M.; van Leeuwen, P.W.N.M.; Vidal-Ferran, A. XBphos-Rh: A halogen-bond assembled supramolecular catalyst. Chem. Sci. 2018, 9, 3644–3648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieffrig, J.; Jeannin, O.; Fourmigué, M. Expanded halogen-bonded anion organic networks with star-shaped iodoethynyl-substituted molecules: From corrugated 2d hexagonal lattices to pyrite-type 2-fold interpenetrated cubic lattices. J. Am. Chem. Soc. 2013, 135, 6200–6210. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Pilati, T.; Terraneo, G.; Meyer, F.; Metrangolo, P.; Resnati, G. Halogen bonded Borromean networks by design: Topology invariance and metric tuning in a library of multi-component systems. Chem. Sci. 2017, 8, 1801–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, A.J.; Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Intermolecular interactions in molecular crystals: what’s in a name? Faraday Discuss. 2017, 203, 93–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politzer, P.; Murray, J.S. σ-Hole interactions: Perspectives and misconceptions. Crystals 2017, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Catalano, L.; Pérez-Estrada, S.; Terraneo, G.; Pilati, T.; Resnati, G.; Metrangolo, P.; García-Garibay, M.A. Dynamic characterization of crystalline supramolecular rotors assembled through halogen bonding. J. Am. Chem. Soc. 2015, 137, 15386–15389. [Google Scholar] [CrossRef]
- Catalano, L.; Pérez-Estrada, S.; Wang, H.H.; Ayitou, A.J.L.; Khan, S.I.; Terraneo, G.; Metrangolo, P.; Brown, S.; García-Garibay, M.A. Rotational dynamics of diazabicyclo[2.2.2]octane in isomorphous halogen-bonded co-crystals: Entropic and enthalpic effects. J. Am. Chem. Soc. 2017, 139, 843–848. [Google Scholar] [CrossRef]
- Lemouchi, C.; Vogelsberg, C.S.; Zorina, L.; Simonov, S.; Batail, P.; Brown, S.; García-Garibay, M.A. Ultra-fast rotors for molecular machines and functional materials via halogen bonding: Crystals of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane with distinct gigahertz rotation at two sites. J. Am. Chem. Soc. 2011, 133, 6371–6379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, D.M.; Novikov, A.S.; Ananyev, I.V.; Kirina, Y.V.; Kukushkin, V.Y. Halogen bonding between metal centers and halocarbons. Chem. Commun. 2016, 55, 5565–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baykov, S.V.; Dabranskaya, U.; Ivanov, D.M.; Novikov, A.S.; Boyarskiy, V.P. Pt/Pd and I/Br isostructural exchange provides formation of C–I⋯Pd, C–Br⋯Pt, and C–Br⋯Pd metal-involving halogen bonding. Cryst. Growth Des. 2018, 18, 5973–5980. [Google Scholar] [CrossRef]
- Rozhkov, A.V.; Krykova, M.A.; Ivanov, D.M.; Novikov, A.S.; Sinelshchikova, A.A.; Volostnykh, M.V.; Konovalov, M.A.; Grigoriev, M.S.; Gorbunova, Y.G.; Kukushkin, V.Y. Reverse arene sandwich structures based upon π-hole⋯[MII] (d8M = Pt, Pd) interactions, where positively charged metal centers play the role of a nucleophile. Angew. Chem. Int. Ed. 2019, 58, 4164–4168. [Google Scholar] [CrossRef]
- El Kerdawy, A.; Murray, J.S.; Politzer, P.; Bleiziffer, P.; Hesselmann, A.; Görling, A.; Clark, T. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 2013, 9, 2264–2275. [Google Scholar] [CrossRef]
- Clark, T. Halogen bonds and σ-holes. Faraday Discuss. 2017, 203, 9–27. [Google Scholar] [CrossRef]
- Sedlak, R.; Kolár, M.H.; Hobza, P. Polar flattening and the strength of halogen bonding. J. Chem. Theory Comput. 2015, 11, 4727–4732. [Google Scholar] [CrossRef] [Green Version]
- Kolár, M.H.; Hobza, P. Computer modelling of halogen bonds and other σ-hole interactions. Chem. Rev. 2016, 116, 5155–5187. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.J. The halogen bond: Nature and applications. Phys. Sci. Rev. 2017, 20170136. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. (Eds.) Halogen Bonding I. Impact on Materials Chemistry and Life Sciences. In Topics in Current Chemistry; Springer: Cham, Switzerland, 2015; Volume 358. [Google Scholar]
- Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. 2008, 47, 6114–6127. [Google Scholar] [CrossRef]
- Reddy, C.M.; Kirchner, M.T.; Gundakaram, R.C.; Padmanabhan, K.A.; Desiraju, G.R. Isostructurality, polymorphism and mechanical properties of some hexahalogenated benzenes: The nature of halogen⋯halogen interactions. Chem. Eur. J. 2006, 12, 2222–2234. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Riley, K.E.; Bulat, F.A.; Murray, J.S. Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s razor). Comput. Theor. Chem. 2012, 998, 2–8. [Google Scholar] [CrossRef]
- Zou, J.W.; Jiang, Y.J.; Guo, M.; Hu, G.X.; Zhang, B.; Liu, H.C.; Yu, Q.S. Ab initio study of the complexes of halogen-containing molecules RX (X = Cl, Br, and I) and NH3: Towards understanding the nature of halogen bonding and the electron-accepting propensities of covalently bonded halogen atoms. Chem. Eur. J. 2005, 11, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Zou, J.W.; Wang, Y.H.; Jiang, Y.J.; Yu, Q.S. Ab initio investigation of the complexes between bromobenzene and several electron donors: Some insights into the magnitude and nature of halogen bonding interactions. J. Phys. Chem. A 2007, 111, 10781–10788. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Jing, B.; Li, Q. Novel halogen-bonded complexes H3NBH3⋯XY (XY = ClF, ClCl, BrF, BrCl, and BrBr): Partially covalent character. J. Phys. Chem. A 2010, 114, 6438–6443. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Vakili, M.; Solimannejad, M. Characterization of halogen⋯halogen interactions in crystalline dihalomethane compounds (CH2Cl2, CH2Br2 and CH2I2): A theoretical study. J. Mol. Model. 2014, 20, 2102. [Google Scholar] [CrossRef]
- Kozuch, S.; Martin, J.M.L. Halogen bonds: Benchmarks and theoretical analysis. J. Chem. Theor. Comput. 2013, 9, 1918–1931. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. Aerogen bonding interactions: A new supramolecular force? Angew. Chem. Int. Ed. 2015, 54, 7340–7343. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. σ/π-Hole noble gas bonding interactions: Insights from theory and experiment. Coord. Chem. Rev. 2020, 404, 213112. [Google Scholar] [CrossRef]
- Goettel, J.T.; Haensch, V.G.; Schrobilgen, G.J. Stable chloro- and bromoxenate cage anions; [X3(XeO3)3]3– and [X4(XeO3)4]4– (X = Cl or Br). J. Am. Chem. Soc. 2017, 139, 8725–8733. [Google Scholar] [CrossRef]
- Goettel, J.T.; Matsumoto, K.; Mercier, H.P.A.; Schrobilgen, G.J. Syntheses and structures of xenon trioxide alkylnitrile adducts. Angew. Chem. Int. Ed. 2016, 55, 13780–13783. [Google Scholar] [CrossRef] [PubMed]
- Britvin, S.N.; Kashtanov, S.A.; Krivovichev, S.V.; Chukanov, N.V. Xenon in rigid oxide frameworks: Structure, bonding and explsive properties of layered perovskite K4Xe3O12. J. Am. Chem. Soc. 2016, 138, 13838–13841. [Google Scholar] [CrossRef] [PubMed]
- Britvin, S.N.; Kashtanov, S.A.; Krzhizhanovskaya, M.G.; Gurinov, A.A.; Glumov, O.V.; Strekopytov, S.; Kretser, Y.L.; Zaitsev, A.N.; Chukanov, N.V.; Krivovichev, S.V. Perovskites with the framework-forming xenon. Angew. Chem. Int. Ed. 2015, 54, 14340–14344. [Google Scholar] [CrossRef] [PubMed]
- Makarewicz, E.; Lundell, J.; Gordon, A.J.; Berski, S. On the nature of interactions in the F2OXe...NCCH3 complex: Is there the Xe (IV)-N bond? J. Comput. Chem. 2016, 37, 1876–1886. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Xiong, Z.; Gao, Y. The effects of aerogen-bonding on the geometries and spectral properties of several small molecular clusters containing XeO3. J. Phys. Condens. Matter. 2018, 30, 44. [Google Scholar] [CrossRef] [PubMed]
- Borocci, S.; Grandinetti, F.; Sanna, N.; Antoniotti, P.; Nunzi, F. Noncovalent complexes of the noble-gas atoms: Analyzing the transition from physical to chemical interactions. J. Comput. Chem. 2019, 40, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, F.; Landis, C.R. Valency and Bonding: A Natural Bond. Orbital Donor–Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bauzá, A.; Frontera, A. Theoretical study on the dual behavior of XeO3 and XeF4 toward aromatic rings: Lone pair-π versus aerogen–π interactions. ChemPhysChem 2015, 16, 3625–3630. [Google Scholar] [CrossRef]
- Gao, M.; Cheng, J.; Li, W.; Xiao, B.; Li, Q. The aerogen-π bonds involving π systems. Chem. Phys. Lett. 2016, 651, 50–55. [Google Scholar] [CrossRef]
- Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. Aerogen bonds formed between AeOF2 (Ae = Kr, Xe) and diazines: Comparisons between σ-hole and π-hole complexes. Phys. Chem. Chem. Phys. 2018, 20, 4676–4687. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Asadollahi, S.; Vakili, M. Investigation of substituent effects in aerogen-bonding interactions between ZO3 (Z = Kr, Xe) and nitrogen bases. Int. J. Quantum Chem. 2016, 116, 1254–1260. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Mohammadian-Sabet, F. Exploring “aerogen-hydride” interactions between ZOF2 (Z = Ke, Xe) and metal hydrides: An ab initio study. Chem. Phys. Lett. 2016, 654, 23–28. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Mohammadian-Sabet, F.; Solimannejad, M. Single-electron aerogen bonds: Do they exist? Chem. Phys. Lett. 2016, 659, 196–202. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Mohammadian-Sabet, F. An ab initio study on anionic aerogen bonds. Chem. Phys. Lett. 2017, 667, 337–344. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Sadr-Mousavi, A. A computational study on the strength and nature of bifurcated aerogen bonds. Chem. Phys. Lett. 2018, 698, 1–6. [Google Scholar] [CrossRef]
- Hou, C.; Wang, X.; Botanab, J.; Miao, M. Noble gas bond and the behaviour of XeO3 under pressure. Phys. Chem. Chem. Phys. 2017, 19, 27463–27467. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Vessally, E. A theoretical evidence for cooperative enhancement in aerogen-bonding interactions: Open-chain clusters of KrOF2 and XeOF2. Chem. Phys. Lett. 2016, 662, 80–85. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Vessally, E. The strengthening of a hydrogen or lithium bond on the Z⋯N aerogen bond (Z = Ar, Kr and Xe): A comparative study. Mol. Phys. 2016, 114, 3265–3276. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Kiani, H. Cooperativity between the hydrogen bonding and σ-hole interaction in linear NCX⋯(NCH)n=2–5 and O3Z⋯(NCH)n=2–5 complexes (X = Cl, Br; Z = Ar, Kr): A comparative study. Can. J. Chem. 2017, 95, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Esrafili, M.D.; Mousavian, P.; Mohammadian-Sabet, F. The influence of hydrogen- and lithium-bonding on the cooperativity of chalcogen bonds: A comparative ab initio study. Mol. Phys. 2019, 117, 58–66. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Qasemsolb, S. Tuning aerogen bonds via anion-π or lone pair-π interaction: A comparative ab initio study. Struct. Chem. 2017, 28, 1255–1264. [Google Scholar] [CrossRef]
- Alkorta, I.; Rozas, I.; Elguero, J. An attractive interaction between the π-cloud of C6F6 and electron-donor atoms. J. Org. Chem. 1997, 62, 4687–4691. [Google Scholar] [CrossRef]
- Buglioni, L.; Mastandrea, M.M.; Frontera, A.; Pericás, M.A. Anion-π interactions in light-induced reactions: Role in the amidation of (hetero)aromatic systems with activated N-aryloxyamides. Chem. Eur. J. 2019, 25, 11785–11790. [Google Scholar] [CrossRef] [PubMed]
- Leffler, J.E.; Grunwald, E. Rates and Equilibria of Organic Reactions: As Treated by Statistical, Thermodynamic and Extrathermodynamic Methods (Dover Books on Chemistry); Kindle Edition; Dover Publications: Mignola, NY, USA, 1989. [Google Scholar]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Mayr, H.; Breugst, M.; Ofial, A.R. Farewell to the HSAB treatment of ambident reactivity. Angew. Chem. Int. Ed. 2011, 50, 6470–6505. [Google Scholar] [CrossRef] [PubMed]
- Chandrakumar, K.R.S.; Pal, S. A systematic study on the reactivity of Lewis acid-base complexes through the local Hard-Soft Acid-Base principle. J. Phys. Chem. A 2002, 106, 11775–11781. [Google Scholar] [CrossRef]
- Drago, R.S.; Vogel, G.C.; Needham, T.E. A four-parameter equation for predicting enthalpies of adduct formation. J. Am. Chem. Soc. 1971, 93, 6014–6026. [Google Scholar] [CrossRef]
- Drago, R.S.; Dadmun, A.P.; Vogel, G.C. Addition of new donors to the E and C model. Inorg. Chem. 1993, 32, 2473–2479. [Google Scholar] [CrossRef]
- Hancock, R.D.; Nakani, B.S.; Marsicano, F. Relationship between Lewis acid-base behavior in the gas phase and in aqueous solution. 1. Role of inductive, polarizability, and steric effects in amine ligands. Inorg. Chem. 1983, 22, 2531–2535. [Google Scholar] [CrossRef]
- Hosmane, R.S.; Liebman, J.F. Paradoxes and paradigms: Why is quinoline less basic than pyridine or isoquinoline? A classical organic chemical perspective. Struct. Chem. 2009, 20, 693–697. [Google Scholar] [CrossRef]
- Yamaguchi, I. Nuclear Magnetic Resonance study of the steric effect in dimethylphenols. Bull. Chem. Soc. Jpn. 1961, 34, 744–747. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, J.; Pidcock, E.; van de Streek, J.; Infantes, L.; Motherwell, S.; Allen, F.H. Knowledge-based approaches to crystal design. CrystEngComm 2006, 8, 11–28. [Google Scholar] [CrossRef]
- Delori, A.; Galek, P.T.A.; Pidcock, E.; Jones, W. Quantifying homo- and heteromolecular hydrogen bonds as a guide for adduct formation. Chem. Eur. J. 2012, 18, 6835–6846. [Google Scholar] [CrossRef] [PubMed]
- Romero-Fernández, M.P.; Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Palacios, J.C. A further look at π-delocalization and hydrogen bonding in 2-arylmalondialdehydes. Tetrahedron 2016, 72, 95–104. [Google Scholar] [CrossRef]
- Stephan, D.W. “Frustrated Lewis pairs”: A concept for new reactivity and catalysis. Org. Biomol. Chem. 2008, 6, 1535–1539. [Google Scholar] [CrossRef]
- Stephan, D.W.; Erker, G. Frustrated Lewis Pairs chemistry: Development and perspectives. Angew. Chem. Int. Ed. 2015, 54, 6400–6441. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.; Privalov, T. Chemistry of intermolecular frustrated Lewis pairs in motion: Emerging perspectives and prospects. Isr. J. Chem. 2015, 55, 179–195. [Google Scholar] [CrossRef]
- Hill, M.S.; Liptrot, D.J.; Weetman, C. Alkaline earths as main group reagents in molecular catalysis. Chem. Soc. Rev. 2016, 45, 972–988. [Google Scholar] [CrossRef] [PubMed]
- Rohman, S.S.; Kashyap, C.; Ullah, S.S.; Guha, A.K. Designing metal-free frustrated Lewis pairs for dihydrogen activation based on a carbene–borane system. Polyhedron 2019, 162, 1–7. [Google Scholar] [CrossRef]
- Cahn, R.S.; Ingold, C.; Prelog, V. Specification of molecular chirality. Angew. Chem. Int. Ed. 1966, 5, 385–415. [Google Scholar] [CrossRef]
- Prelog, V.; Helmchen, G. Basic principles of the CIP-system and proposals for a revision. Angew. Chem. Int. Ed. 1982, 21, 567–583. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Cintas, P. Adding only one priority rule allows extending CIP rules to supramolecular systems. Chirality 2015, 27, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Elguero, J. Is it possible to extend the Cahn-Ingold-Prelog priority rules to supramolecular structures and coordination compounds using lone pairs? Chem. Int. 2016, 30–31. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkorta, I.; Elguero, J.; Frontera, A. Not Only Hydrogen Bonds: Other Noncovalent Interactions. Crystals 2020, 10, 180. https://doi.org/10.3390/cryst10030180
Alkorta I, Elguero J, Frontera A. Not Only Hydrogen Bonds: Other Noncovalent Interactions. Crystals. 2020; 10(3):180. https://doi.org/10.3390/cryst10030180
Chicago/Turabian StyleAlkorta, Ibon, José Elguero, and Antonio Frontera. 2020. "Not Only Hydrogen Bonds: Other Noncovalent Interactions" Crystals 10, no. 3: 180. https://doi.org/10.3390/cryst10030180
APA StyleAlkorta, I., Elguero, J., & Frontera, A. (2020). Not Only Hydrogen Bonds: Other Noncovalent Interactions. Crystals, 10(3), 180. https://doi.org/10.3390/cryst10030180