Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrophobization of CNCs by Grafting Alcohols of Different Chain Lengths onto Their Surfaces
2.3. Water Contact Angle Measurements
2.4. Processing of the Modified CNCs with PBS
2.5. Crystallization and Melting Behavior of Neat and CNC-Reinforced PBS Using Differential Scanning Calorimetry (DSC)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ISO. Standard Terms and Their Definition for Cellulose Nanomaterial; International Organization for Standardization (ISO): Geneva, Swizerland, 2017. [Google Scholar]
- Abushammala, H.; Mao, J. A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium ionic liquids. Polymers 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Abushammala, H.; Brown, N.; Laborie, M.P. Comparative assessment of methods for producing cellulose I nanocrystals from cellulosic sources. In Nanocelluloses: Their Preparation, Properties, and Applications, ACS Symposium Series; ACS Publications: Washington, DC, USA, 2017; Volume 1251, pp. 19–53. [Google Scholar]
- Mao, J.; Abushammala, H.; Hettegger, H.; Rosenau, T.; Laborie, M.P. Imidazole, a new tunable reagent for producing nanocellulose, part I: Xylan-Coated CNCs and CNFs. Polymers 2017, 9, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Abushammala, H.; Mao, J. A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono- and di-isocyanates. Molecules 2019, 24, 2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyley, S.; Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 2014, 6, 7764–7779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirani, S.; Abushammala, H.M.; Hashaikeh, R. Preparation and characterization of electrospun PLA/nanocrystalline cellulose-based composites. J. Appl. Polym. Sci. 2013, 130, 3345–3354. [Google Scholar] [CrossRef]
- Sapkota, J.; Natterodt, J.C.; Shirole, A.; Foster, E.J.; Weder, C. Fabrication and properties of polyethylene/cellulose nanocrystal composites. Macromol. Mater. Eng. 2017, 302, 1600300. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Dufresne, A.; Pinheiro, I.F.; Souza, D.H.S.; Gouveia, R.F.; Mei, L.H.I.; Lona, L.M.F. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. Eur. Polym. J. 2018, 108, 274–285. [Google Scholar] [CrossRef]
- Sinko, R.; Qin, X.; Keten, S. Interfacial mechanics of cellulose nanocrystals. MRS Bull. 2015, 40, 340–348. [Google Scholar] [CrossRef]
- Inai, N.H.; Lewandowska, A.E.; Ghita, O.R.; Eichhorn, S.J. Interfaces in polyethylene oxide modified cellulose nanocrystal-polyethylene matrix composites. Compos. Sci. Technol. 2018, 154, 128–135. [Google Scholar] [CrossRef]
- Lewandowska, A.; Eichhorn, S. Raman imaging as a tool for assessing the degree of mixing and the interface between polyethylene and cellulose nanocrystals. In Proceedings of the IOP Conference Series: Materials Science and Engineering 37th Risø International Symposium on Materials Science, Risø, Denmark, 5–8 September 2016. [Google Scholar]
- Hu, F.; Lin, N.; Chang, P.R.; Huang, J. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr. Polym. 2015, 129, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Salick, M.R.; Cordie, T.M.; Ellingham, T.; Dan, Y.; Turng, L.S. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2015, 49, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Qin, Z.Y.; Yan, C.F.; Yao, J.M. Green nanocomposites based on functionalized cellulose nanocrystals: A study on the relationship between interfacial interaction and property enhancement. ACS Sustain. Chem. Eng. 2014, 2, 875–886. [Google Scholar] [CrossRef]
- Abushammala, H. Nano-brushes of alcohols grafted onto cellulose nanocrystals for reinforcing poly(butylene succinate): Impact of alcohol chain length on interfacial adhesion. Polymers 2020, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.V.; Pinheiro, I.F.; de Souza, S.F.; Mei, L.H.; Lona, L.M. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. J. Compos. Sci. 2019, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Xu, W.; Li, D.; Liao, R.; Zhang, L. The Innovation Research of Biodegradable Polymers for Sustainable Packaging. DEStech Trans. Environ. Energy Earth Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly (butylene succinate)-based polyesters for biomedical applications: A review. Eur. Polym. J. 2016, 75, 431–460. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.H. Poly (butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol. J. 2010, 5, 1149–1163. [Google Scholar] [CrossRef]
- Bin, T.; Qu, J.P.; Liu, L.M.; Feng, Y.H.; Hu, S.X.; Yin, X.C. Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly (butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim. Acta 2011, 525, 141–149. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, W.; Wu, D. Selective localization of starch nanocrystals in the biodegradable nanocomposites probed by crystallization temperatures. Carbohydr. Polym. 2020, 227, 115341. [Google Scholar] [CrossRef] [PubMed]
- Pramoda, K.P.; Linh, N.T.T.; Zhang, C.; Liu, T. Multiwalled carbon nanotube nucleated crystallization behavior of biodegradable poly(butylene succinate) nanocomposites. J. Appl. Polym. Sci. 2009, 111, 2938–2945. [Google Scholar] [CrossRef]
- Bosq, N.; Aht-Ong, D. Nonisothermal crystallization behavior of poly(butylene succinate)/NaY zeolite nanocomposites. Macromol. Res. 2018, 26, 13–21. [Google Scholar] [CrossRef]
- Li, Y.D.; Fu, Q.Q.; Wang, M.; Zeng, J.B. Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr. Polym. 2017, 164, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Chen, Y.; Zhou, W.; Wu, Y.; Huang, Y. Bamboo fibers@ poly (ethylene glycol)-reinforced poly (butylene succinate) biocomposites. J. Appl. Polym. Sci. 2011, 122, 2456–2466. [Google Scholar] [CrossRef]
- Xu, J.; Manepalli, P.H.; Zhu, L.; Narayan-Sarathy, S.; Alavi, S. Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion. J. Polym. Res. 2019, 26, 188. [Google Scholar] [CrossRef]
- Joy, J.; Jose, C.; Yu, X.; Mathew, L.; Thomas, S.; Pilla, S. The influence of nanocellulosic fiber, extracted from Helicteres isora, on thermal, wetting and viscoelastic properties of poly(butylene succinate) composites. Cellulose 2017, 24, 4313–4323. [Google Scholar] [CrossRef]
- Phua, Y.; Pegoretti, A.; Araujo, T.M.; Ishak, Z.M. Mechanical and thermal properties of poly (butylene succinate)/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biodegradable blends. J. Appl. Polym. Sci. 2015, 132, 47. [Google Scholar] [CrossRef]
- Chen, C.H. Effect of attapulgite on the crystallization behavior and mechanical properties of poly (butylene succinate) nanocomposites. J. Phys. Chem. Solids 2008, 69, 1411–1414. [Google Scholar] [CrossRef]
- Liang, Z.; Pan, P.; Zhu, B.; Dong, T.; Inoue, Y. Mechanical and thermal properties of poly (butylene succinate)/plant fiber biodegradable composite. J. Appl. Polym. Sci. 2010, 115, 3559–3567. [Google Scholar] [CrossRef]
- Han, H.; Wang, X.; Wu, D. Mechanical properties, morphology and crystallization kinetic studies of bio-based thermoplastic composites of poly (butylene succinate) with recycled carbon fiber. J. Chem. Technol. Biotechnol. 2013, 88, 1200–1211. [Google Scholar] [CrossRef]
- Chen, G.X.; Yoon, J.S. Nonisothermal crystallization kinetics of poly (butylene succinate) composites with a twice functionalized organoclay. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 817–826. [Google Scholar] [CrossRef]
- Yarici, T.; Kodal, M.; Ozkoc, G. Non-isothermal crystallization kinetics of Poly (Butylene succinate)(PBS) nanocomposites with different modified carbon nanotubes. Polymer 2018, 146, 361–377. [Google Scholar] [CrossRef]
- Bosq, N.; Aht-Ong, D. Isothermal and non-isothermal crystallization kinetics of poly (butylene succinate) with nanoprecipitated calcium carbonate as nucleating agent. J. Therm. Anal. Calorim. 2018, 132, 233–249. [Google Scholar] [CrossRef]
- Filizgok, S.; Kodal, M.; Ozkoc, G. Non-isothermal crystallization kinetics and dynamic mechanical properties of poly (Butylene succinate) nanocomposites with different type of carbonaceous nanoparticles. Polym. Compos. 2018, 39, 2705–2721. [Google Scholar] [CrossRef]
- Habibi, Y.; Dufresne, A. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 2008, 9, 1974–1980. [Google Scholar] [CrossRef]
- Abushammala, H. On the para/ortho reactivity of isocyanate groups during the carbamation of cellulose nanocrystals using 2,4-toluene diisocyanate. Polymers 2019, 11, 1164. [Google Scholar] [CrossRef] [Green Version]
- Abushammala, H. A simple method for the quantification of free isocyanates on the surface of cellulose nanocrystals upon carbamation using toluene diisocyanate. Surfaces 2019, 2, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Correlo, V.M.; Boesel, L.F.; Bhattacharya, M.; Mano, J.F.; Neves, N.M.; Reis, R.L. Properties of melt processed chitosan and aliphatic polyester blends. Mater. Sci. Eng. A 2005, 403, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Dobreva, A.; Gutzow, I. Kinetics of Non-isothermal Overall Crystallization in Polymer Melts. Cryst. Res. Technol. 1991, 26, 863–874. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; He, Y.; Fan, Z.; Li, S. Non-isothermal crystallization kinetics of poly (L-lactide). Polym. Int. 2010, 59, 1616–1621. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.Y.; Duan, B.; Wang, M.; Cheung, W.L. Isothermal and non-isothermal crystallization kinetics of poly (L-Lactide)/carbonated hydroxyapatite nanocomposite microspheres. Adv. Divers. Ind. Appl. Nanocompos. 2011, 1, 231–260. [Google Scholar]
- Ravari, F.; Mashak, A.; Nekoomanesh, M.; Mobedi, H. Non-isothermal cold crystallization behavior and kinetics of poly (l-lactide): Effect of l-lactide dimer. Polym. Bull. 2013, 70, 2569–2586. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Achilias, D.S.; Bikiaris, D.N. Crystallization kinetics of biodegradable poly (butylene succinate) under isothermal and non-isothermal conditions. Macromol. Chem. Phys. 2007, 208, 1250–1264. [Google Scholar] [CrossRef]
- Seven, K.M.; Cogen, J.M.; Gilchrist, J.F. Nucleating agents for high-density polyethylene—A review. Polym. Eng. Sci. 2016, 56, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Calabia, B.P.; Ninomiya, F.; Yagi, H.; Oishi, A.; Taguchi, K.; Kunioka, M.; Funabashi, M. Biodegradable poly (butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers 2013, 5, 128–141. [Google Scholar] [CrossRef] [Green Version]
Sample | Β (°C/min) | Tc (°C) | Tm (°C) | ΔHm (J/g PBS) | X (%) |
---|---|---|---|---|---|
PBS | 4 | 80.2 ± 0.1 | 115.7 ± 0.0 | 55.1 ± 0.4 | 49.9 ± 0.4 |
6 | 78.0 ± 0.3 | 115.6 ± 0.0 | 56.2 ± 0.1 | 51.0 ± 0.1 | |
8 | 76.2 ± 0.1 | 115.5 ± 0.0 | 59.6 ± 0.2 | 54.0 ± 0.2 | |
10 | 74.7 ± 0.1 | 115.7 ± 0.1 | 62.3 ± 0.5 | 56.5 ± 0.5 | |
PBS+CNCs-TDI-Eth | 4 | 85.8 ± 0.1 | 115.6 ± 0.1 | 53.8 ± 0.6 | 48.8 ± 0.5 |
6 | 84.6 ± 0.1 | 115.6 ± 0.0 | 55.6 ± 0.1 | 50.4 ± 0.1 | |
8 | 83.4 ± 0.2 | 115.7 ± 0.1 | 56.6 ± 0.7 | 51.3 ± 0.6 | |
10 | 82.2 ± 0.1 | 115.8 ± 0.0 | 58.9 ± 0.4 | 53.4 ± 0.3 | |
PBS+CNCs-TDI-But | 4 | 87.6 ± 0.0 | 115.7 ± 0.1 | 55.6 ± 0.9 | 50.4 ± 0.8 |
6 | 85.8 ± 0.0 | 115.5 ± 0.0 | 57.0 ± 0.4 | 51.7 ± 0.3 | |
8 | 84.6 ± 0.3 | 115.6 ± 0.0 | 58.1 ± 0.5 | 52.6 ± 0.4 | |
10 | 83.4 ± 0.1 | 115.9 ± 0.1 | 58.8 ± 1.1 | 53.3 ± 1.0 | |
PBS+CNCs-TDI-Hex | 4 | 88.6 ± 0.1 | 115.5 ± 0.3 | 56.2 ± 0.5 | 50.9 ± 0.4 |
6 | 87.1 ± 0.1 | 115.6 ± 0.3 | 59.3 ± 0.4 | 53.8 ± 0.3 | |
8 | 85.1 ± 0.2 | 115.7 ± 0.4 | 63.3 ± 0.9 | 57.4 ± 0.9 | |
10 | 84.5 ± 0.3 | 115.8 ± 0.5 | 65.3 ± 0.3 | 59.2 ± 0.3 | |
PBS+CNCs-TDI-Oct | 4 | 91.7 ± 0.4 | 115.7 ± 0.1 | 56.8 ± 0.5 | 51.5 ± 0.5 |
6 | 89.5 ± 0.6 | 115.5 ± 0.0 | 59.7 ± 0.8 | 54.2 ± 0.7 | |
8 | 87.9 ± 0.4 | 115.6 ± 0.0 | 64.9 ± 1.4 | 58.8 ± 1.3 | |
10 | 86.6 ± 0.1 | 115.9 ± 0.1 | 67.3 ± 1.0 | 61.0 ± 0.9 |
Sample | B or B* | φ |
---|---|---|
PBS | 4638 ± 112 | - |
PBS+CNCs-TDI-Eth | 3821 ± 62 | 0.82 |
PBS+CNCs-TDI-But | 2907 ± 177 | 0.63 |
PBS+CNCs-TDI-Hex | 2398 ± 16 | 0.52 |
PBS+CNCs-TDI-Oct | 1605 ± 63 | 0.35 |
Sample | Β (°C/min) | n | Z | t½ (min) |
---|---|---|---|---|
PBS | 4 | 3.6 ± 0.1 | 0.05 ± 0.03 | 2.0 ± 0.1 |
6 | 3.7 ± 0.0 | 0.19 ± 0.03 | 1.5 ± 0.1 | |
8 | 3.8 ± 0.1 | 0.30 ± 0.02 | 1.3 ± 0.1 | |
10 | 3.8 ± 0.0 | 0.39 ± 0.02 | 1.1 ± 0.1 | |
PBS+CNCs-TDI-Eth | 4 | 3.4 ± 0.0 | 0.03 ± 0.00 | 3.0 ± 0.0 |
6 | 3.4 ± 0.0 | 0.11 ± 0.04 | 2.1 ± 0.0 | |
8 | 3.4 ± 0.0 | 0.12 ± 0.01 | 1.7 ± 0.1 | |
10 | 3.3 ± 0.0 | 0.29 ± 0.03 | 1.4 ± 0.0 | |
PBS+CNCs-TDI-But | 4 | 3.4 ± 0.1 | 0.03 ± 0.01 | 2.6 ± 0.2 |
6 | 3.2 ± 0.2 | 0.08 ± 0.01 | 1.9 ± 0.1 | |
8 | 3.7 ± 0.2 | 0.20 ± 0.02 | 1.7 ± 0.0 | |
10 | 3.5 ± 0.2 | 0.32 ± 0.03 | 1.3 ± 0.0 | |
PBS+CNCs-TDI-Hex | 4 | 3.7 ± 0.1 | 0.07 ± 0.01 | 2.6 ± 0.0 |
6 | 3.4 ± 0.1 | 0.10 ± 0.02 | 1.7 ± 0.0 | |
8 | 3.1 ± 0.2 | 0.31 ± 0.04 | 1.3 ± 0.1 | |
10 | 3.0 ± 0.1 | 0.33 ± 0.05 | 1.1 ± 0.0 | |
PBS+CNCs-TDI-Oct | 4 | 3.2 ± 0.1 | 0.03 ± 0.01 | 2.0 ± 0.2 |
6 | 3.6 ± 0.3 | 0.14 ± 0.01 | 1.7 ± 0.0 | |
8 | 3.1 ± 0.0 | 0.30 ± 0.02 | 1.3 ± 0.0 | |
10 | 3.4 ± 0.1 | 0.40 ± 0.04 | 1.1 ± 0.1 |
Sample | Contact Angle (°) | Tc (°C) | Tm (°C) | X (%) | n | Z | t½ (min) | Ea (kJ/mol) | φ |
---|---|---|---|---|---|---|---|---|---|
PBS | 77 | 74.7 | 115.7 | 56.5 | 3.8 | 0.39 | 1.1 | 169 | - |
PBS+CNCs-TDI-Eth | 34 * | 82.2 | 115.8 | 53.4 | 3.3 | 0.29 | 1.4 | 266 | 0.82 |
PBS+CNCs-TDI-But | 52 * | 83.4 | 115.9 | 53.3 | 3.5 | 0.32 | 1.3 | 236 | 0.63 |
PBS+CNCs-TDI-Hex | 104 * | 84.5 | 115.8 | 59.2 | 3.0 | 0.33 | 1.1 | 225 | 0.52 |
PBS+CNCs-TDI-Oct | 120 * | 86.6 | 115.9 | 61.0 | 3.4 | 0.40 | 1.1 | 196 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abushammala, H.; Mao, J. Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate). Crystals 2020, 10, 196. https://doi.org/10.3390/cryst10030196
Abushammala H, Mao J. Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate). Crystals. 2020; 10(3):196. https://doi.org/10.3390/cryst10030196
Chicago/Turabian StyleAbushammala, Hatem, and Jia Mao. 2020. "Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate)" Crystals 10, no. 3: 196. https://doi.org/10.3390/cryst10030196
APA StyleAbushammala, H., & Mao, J. (2020). Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate). Crystals, 10(3), 196. https://doi.org/10.3390/cryst10030196