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Abstract: Crystallization-based separation of curcumin from ternary mixtures of curcuminoids
having compositions comparable to commercial extracts was studied experimentally. Based on
solubility and supersolubility data of both, pure curcumin and curcumin in presence of the two
major impurities demethoxycurcumin (DMC) and bis(demethoxy)curcumin (BDMC), seeded cooling
crystallization procedures were derived using acetone, acetonitrile and 50/50 (wt/wt) mixtures of
acetone/2-propanol and acetone/acetonitrile as solvents. Starting from initial curcumin contents
of 67–75% in the curcuminoid mixtures single step crystallization processes provided crystalline
curcumin free of BDMC at residual DMC contents of 0.6–9.9%. Curcumin at highest purity of
99.4% was obtained from a 50/50 (wt/wt) acetone/2-propanol solution in a single crystallization step.
It is demonstrated that the total product yield can be significantly enhanced via addition of water,
2-propanol and acetonitrile as anti-solvents at the end of a cooling crystallization process.
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1. Introduction

Curcumin (abbreviated CUR), known as diferuloyl methane, is an intense orange-yellow
solid and a natural ingredient of the plant rhizome of Curcuma Longa L. Two derivatives of CUR,
demethoxycurcumin (abbreviated DMC) and bis(demethoxy)curcumin (abbreviated BDMC), can be
found in the plant as well. Altogether they are known as curcuminoids (abbreviated CURD).
Depending on the soil condition, the total content of CURDs in the plant rhizome varies between 2
and 9%. With approximately 70% of the total CURD content CUR represents the major component
in turmeric [1–3]. As highlighted in Figure 1, the presence or absence of a methoxy functional group
on o-position to a phenolic group represents the only difference in the chemical structure of the three
CURDs. The molecular structure of CUR comprising two equally substituted aromatic rings linked
together by a diketo group, which exhibits keto-enol tautomerism, plays a crucial role in the reactivity
of CUR [4,5].
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breast tumor cells, followed by CUR and BDMC [16]. Ruby et al. described the higher bioavailability 
and cytotoxic activity of BDMC in animal cells [17].  

 
Figure 1. Curcuminoids extracted from the rhizome of Turmeric (Curcuma longa L.) and molecular 
structures of the three major constituents (curcumin (CUR), demethoxycurcumin (DMC) and 
bis(demethoxy)curcumin (BDMC)). 

Due to the higher reactivity of CUR associated with the stronger pharmacological activity on the 
human body comparable to the two other derivatives, CUR currently remains the targeted turmeric 
compound [18]. Despite the diverse pharmacological effects, the practical insolubility of CUR in 
water results in a very low bioavailability of the molecule and therewith leads to a limited usage as a 
drug [19]. To improve the bioavailability, formulation of curcumin nanoparticles or metal complexes 
were successfully implemented [20,21]. In addition, the application of CUR together with artemisinin 
in a CUR-artemisinin combination therapy against malaria was reported to decrease the drug 
resistance [22]. Moreover, the formulation of a CUR-artemisinin co-amorphous solid showed a higher 
therapeutic effect in the treatment of cancer than the single drug formulation [23]. For each of the 
application, CUR has to be available in chemically pure form and in sufficient amount.  

H.J.J. Pabon described the preparation of synthetic CUR and related compounds [24]. Kim et al. 
recently published a process for production of CURDs in engineered Escherichia coli [25]. 
Nevertheless, the separation of CUR by means of solvent extraction from the plant rhizome still 
represents the most economical way of CUR production. In addition to plant proteins, oils and fats, 
the final extract contains 80% of the ternary CURD mixture [26]. In this mixture CUR is the major 
component with approximately 64% share of the total CURD content, together with 21% DMC and 
15% BDMC [27]. Commercially available mixture usually contains 77% CUR, 17% DMC and 6% 
BDMC [28]. Consequently, CUR has to be purified from the ternary mixture. 

There are two methods for separation of CUR from the mixture of CURDs described in the 
literature: by means of column or thin layer chromatography and by crystallization from solution. 

For the chromatographic separation of CUR, silica gel (untreated or impregnated with sodium 
hydrogen phosphate) is commonly used as a stationary phase and various binary solvent mixtures 
of dichloromethane, chloroform, methanol, acetic acid, ethyl acetate and hexane as the mobile phase 
[29]. At the end of the process, three chromatographic fractions are enriched with the three CURDs, 
respectively [30,31]. Usually crystallization is applied as the final formulation step providing the solid 
product with desired specifications.  

In the last decade, crystallization as a single separation technique was studied to purify CUR 
from the ternary mixture of curcuminoids [32–34]. Processes were described exploiting anti-solvent 
addition or system cooling, using methanol, ethanol and 2-propanol as process solvents and water as 
anti-solvent (Table 1).  

As summarized in Table 1, from initial CURD mixtures crystalline CUR with purities of 92.2%, 
96.0% and 99.1% at overall yields between 40 and 50% were obtained. The used separation methods 
were implemented as multi-step processes consisting of at least two successive sub-steps. It is 
reported that the main part of BDMC could be depleted after the first separation step, full removal 
was achieved after the second crystallization step [33,34]. DMC was always present in the final 
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Studies show that CUR can be potentially used to treat over 25 diseases due to its anti-oxidative,
immunosuppressive, wound-healing, anti-inflammatory and phototoxic effects [6–8]. These include,
in particular, neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, diabetes,
heart sickness, bacterial, viral and fungal diseases, AIDS and over 20 different cancers [9–12]. In addition
to CUR, also the potential use of DMC and BDMC in the prevention of cancer was emphasized [13–15].
It was reported that DMC has the stronger effect on the inhibition of human breast tumor cells,
followed by CUR and BDMC [16]. Ruby et al. described the higher bioavailability and cytotoxic
activity of BDMC in animal cells [17].

Due to the higher reactivity of CUR associated with the stronger pharmacological activity on the
human body comparable to the two other derivatives, CUR currently remains the targeted turmeric
compound [18]. Despite the diverse pharmacological effects, the practical insolubility of CUR in water
results in a very low bioavailability of the molecule and therewith leads to a limited usage as a drug [19].
To improve the bioavailability, formulation of curcumin nanoparticles or metal complexes were
successfully implemented [20,21]. In addition, the application of CUR together with artemisinin in a
CUR-artemisinin combination therapy against malaria was reported to decrease the drug resistance [22].
Moreover, the formulation of a CUR-artemisinin co-amorphous solid showed a higher therapeutic
effect in the treatment of cancer than the single drug formulation [23]. For each of the application,
CUR has to be available in chemically pure form and in sufficient amount.

H.J.J. Pabon described the preparation of synthetic CUR and related compounds [24]. Kim et al.
recently published a process for production of CURDs in engineered Escherichia coli [25]. Nevertheless,
the separation of CUR by means of solvent extraction from the plant rhizome still represents the most
economical way of CUR production. In addition to plant proteins, oils and fats, the final extract
contains 80% of the ternary CURD mixture [26]. In this mixture CUR is the major component
with approximately 64% share of the total CURD content, together with 21% DMC and 15%
BDMC [27]. Commercially available mixture usually contains 77% CUR, 17% DMC and 6% BDMC [28].
Consequently, CUR has to be purified from the ternary mixture.

There are two methods for separation of CUR from the mixture of CURDs described in the
literature: by means of column or thin layer chromatography and by crystallization from solution.

For the chromatographic separation of CUR, silica gel (untreated or impregnated with sodium
hydrogen phosphate) is commonly used as a stationary phase and various binary solvent mixtures of
dichloromethane, chloroform, methanol, acetic acid, ethyl acetate and hexane as the mobile phase [29].
At the end of the process, three chromatographic fractions are enriched with the three CURDs,
respectively [30,31]. Usually crystallization is applied as the final formulation step providing the solid
product with desired specifications.

In the last decade, crystallization as a single separation technique was studied to purify CUR
from the ternary mixture of curcuminoids [32–34]. Processes were described exploiting anti-solvent
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addition or system cooling, using methanol, ethanol and 2-propanol as process solvents and water as
anti-solvent (Table 1).

Table 1. Overview of the results of published studies on CUR purification via crystallization: References
1–3 relate to [32–34], respectively.

Reference

Raw Mixture
Content of Solvent Crystallization

Method
No. of

Crystallization
Steps

Product
Content of

Total
Yield

%CUR
%

DMC
%

CUR
%

DMC
%

1 / 1 / 1 Methanol
Anti-solvent

addition,
water

3 92.2 7.8 40

2 82.0 16.0 Ethanol Cooling, 70 ◦C
to 5 ◦C 2 96.0 4.0 / 1

3 78.6 17.7 2-Propanol Cooling, 60 ◦C
to 20 ◦C 3

>98/
99.12

<2/
0.92 50 2

1 not specified; 2 optimized crystallization conditions.

As summarized in Table 1, from initial CURD mixtures crystalline CUR with purities of 92.2%,
96.0% and 99.1% at overall yields between 40 and 50% were obtained. The used separation methods
were implemented as multi-step processes consisting of at least two successive sub-steps. It is reported
that the main part of BDMC could be depleted after the first separation step, full removal was achieved
after the second crystallization step [33,34]. DMC was always present in the final product. Ukrainczyk
et al. observed an exponential decrease of the removal efficiency of DMC with increasing number of
successive crystallization steps [34].

In order to reach the desired product purity and also to improve the overall process yield,
a combination of the two separation techniques, chromatography and crystallization, was recently
studied. Horvath et al. successfully implemented this integrated process for recovery of 99.1%
pure artemisinin from an effluent of a photocatalytic reactor with 61.5% yield [35]. Heffernan et al.
demonstrated the purification of single CURDs from the crude curcumin extract. There, the firstly
performed crystallization process comprised three crystallization cycles, which provided 99.1% pure
CUR in the final crystalline product. In the second process step, the remaining mother liquor was
processed by column chromatography to isolate DMC and BDMC with purities of 98.3% and 98.6%
and yields of 79.7% and 68.8%, respectively [36].

As has been demonstrated for other natural product mixtures, crystallization is a powerful
technique to isolate a target compound from a multicomponent mixture within a single crystallization
step [37,38]. Due to the fact that a 98% minimum purity of CUR is already sufficient for further
drug application in pharmaceutical preparations [22], this study is directed to develop a separation
process for isolation of pure crystalline CUR from the ternary mixture of CURDs within a single
crystallization step.

To separate a target compound from a multi-component mixture, seeded cooling crystallization is
preferably applied. Anti-solvent is usually added either at the beginning of the cooling step to generate
the supersaturation in the solution or at the end of the process to increase the overall crystallization
yield [39].

To purify CUR from the crude CURD mixture, seeded cooling crystallization processes were
designed on the basis of solubility and nucleation measurements of pure CUR and CUR in presence of
the CURDs mixture components in acetone, acetonitrile, ethanol, methanol, 2-propanol and selected
binary mixtures thereof. Finally, with respect to the solubility results, 2-propanol, acetonitrile and
water were considered as anti-solvents to improve the overall process yield.
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2. Materials and Methods

2.1. Materials

Solid standards of curcumin, demethoxycurcumin (both >98%, TCI Chemicals) and
bis(demethoxy)curcumin (>99%, ChemFaces China) were used as standards for HPLC and X-ray
powder diffraction (XRPD) analysis. The solid standard of curcumin was also used to determine the
solubility and nucleation behaviors. During the study, four crude solid mixtures of CURDs were
purchased from Sigma Aldrich and Acros. The content of CUR, DMC and BDMC in the solids,
determined by means of HPLC, is summarized in Table 2.

Table 2. Comparison of the crude solids purchased from Sigma Aldrich (crude solids No. 1–3) and
Acros (crude solid no. 4), each representing a ternary mixture of the three CURDs.

Crude Solid No. CUR Content wt% DMC Content wt% BDMC Content wt%

1 67.2 25.5 7.3
2 70.8 23.5 5.7
3 75.0 19.2 5.8
4 80.7 16.5 2.8

The highest CUR content of 80.7% was found in the crude solid obtained from Acros. The CUR
content in the crude solids from Sigma Aldrich varies between 67.2% and 75.0% depending on the
purchased charge, but is most similar to that of plant extract [28]. Accordingly, the solids from Sigma
Aldrich were used as crude mixture for crystallization experiments. It should be emphasized that the
analyzed significant differences of the CUR content in the three solid charges made the implementation
of the designed crystallization process more challenging.

Acetone, acetonitrile, ethanol, methanol and 2-propanol (>99.8%, HiPerSolv CHROMANORM,
VWR Chemicals, Germany) were used for solubility studies and for the crystallization experiments.

2.2. Analytical Methods

An analytical HPLC unit (Agilent 1200 Series, Agilent Technologies Germany GmbH) was used
to characterize the solid standards, to quantify the CUR, DMC and BDMC contents in the crude
mixtures as well as in the final crystallization products. The reversed phase method reported by
Jadhav et al. [40] was adjusted as follows: the mobile phase composition was fixed to 50/50 (vol/vol)
acetonitrile/0.1% acetic acid in water. Before usage water was purified via Milli-Q Advantage devices
(Merck Millipore). The eluent flow-rate was set to 1 mL/min. Solid samples preliminarily dissolved in
acetonitrile were injected (injection volume 1 µL) in the column (LUNA C18, 250 × 4.6 mm, 10 µm,
Phenomenex GmbH, Germany, column temperature 25 ◦C) and analyzed at a wavelength of 254 nm.
Figure 2 shows chromatograms of the solid standards of BDMC, DMC and CUR compared to a ternary
mixture of CURDs (exemplarily crude solid No. 3).

X-ray powder diffraction (XRPD) was applied to characterize the purchased solid standards,
solid fractions obtained during the solubility studies and the crystallization products. For the
measurements, solid samples were ground in a mortar and prepared on background-free Si single
crystal sample holders. Data were collected on an X‘Pert Pro diffractometer (PANalytical GmbH,
Germany) using Cu-Kα radiation. Samples were scanned in a 2Theta range of 4 to 30◦ with a step size
of 0.017◦ and a counting time of 50 s per step.

2.3. Solubility and Metastable Zone Width Measurements

Solubility investigations of pure CUR in acetone, acetonitrile, ethanol, methanol and 2-propanol
were carried out via the classical isothermal method [41]. To evaluate the impact of the main impurities
(DMC and BDMC) on the solubility behavior of CUR, the crude mixture of CURDs no. 2 was used
in selected process solvents. Suspensions containing excess of solid CUR and 5 mL solvent were



Crystals 2020, 10, 206 5 of 16

introduced in glass vials. To guarantee efficient mixing of the prepared suspensions, vials were
equipped with a magnetic stirrer and sealed. Samples were placed in a thermostatic bath and
allowed to equilibrate at constant temperatures between 5 and 70 ◦C for at least 48 h under stirring.
Afterwards, samples of equilibrated slurries were withdrawn with a syringe and filtered through a
0.45 µm PTFE filter. Obtained liquid phases were analyzed for solute content by HPLC. To preserve
equilibrium conditions for low temperature samples, syringes and filters were precooled before usage.
The corresponding wet solid fractions were characterized by XRPD.
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mixture No. 3 (see Table 1).

Metastable zone width data of pure CUR in selected process solvents were acquired by means of the
multiple reactor system Crystal16TM (Avantium Technologies BV, Amsterdam). Suspensions containing
known excess amount of solid in solvent were prepared in standard HPLC glass vials, equipped with
magnetic stirrers and subjected to a heating step from 5 to 60 ◦C and a subsequent cooling step from 60 to
−15 ◦C, both at a moderate rate of 0.1 ◦C/min. Temperatures of a “clear” and “cloud” point representing
the respective saturation and nucleation temperatures were obtained via turbidity measurement.

Batch crystallization experiments were conducted in a jacketed 200 mL glass vessel equipped with
a Pt-100 resistance thermometer (resolution 0.01 ◦C) connected to a thermostat (RP845, Lauda Proline,
Germany) to control the system temperature. A magnetic stirrer was used for agitation.

With respect to the determined solubility behavior of CUR, four process solvents were selected.
Consequently, four cooling crystallization processes were derived and conducted. Table 3 gives an
overview of the chosen process solvents and the CURD mixtures to be separated. Exact solution
composition data (Table 5) and the applied crystallization procedures are presented and discussed in
connection with crystallization process design in Sections 3.2 and 3.3.

Table 3. Overview of the selected process solvents and the corresponding crude solids.

Process
Process Solvent

Crude Solid
No. No.

1 Acetone 3
2 50/50 (wt/wt) acetone/2-propanol 2
3 50/50 (wt/wt) acetone/acetonitrile 1
4 Acetonitrile 1
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3. Results and Discussion

3.1. Selection of Solvents for Crystallization

To design a crystallization-based purification process, the selection of an appropriate solvent is
crucial. The operation parameters for the crystallization process are established based on the specific
solubility and nucleation behavior of the target compound in the corresponding solvent.

3.1.1. CUR Solubility in Acetone, Acetonitrile, Methanol, Ethanol and 2-propanol

Acetone, acetonitrile, methanol, ethanol and 2-propanol were selected as possible process solvents
because of their low toxicity. CUR solubilities determined in these solvents are shown in Figure 3.
As seen CUR solubilities increase with increasing temperature in all solvents. Compared to acetone,
CUR is significantly less soluble in the other solvents (less than 1 wt%, except in acetonitrile at 40 ◦C).
Hence, acetone was chosen as a suitable solvent for seeded cooling crystallization and acetonitrile,
methanol, ethanol and 2-propanol were considered as potential anti-solvents. According to the
published very poor solubility of CUR in water (approx. 1.3 × 10−7 wt% at 25 ◦C) water was also taken
into account as anti-solvent without extra solubility studies [20].
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Symbols represent experimental data, fitted curves just serve as guide to the eyes.

In Figure 4, CUR solid phase XRPD patterns are shown obtained from isothermal equilibration
of CUR suspensions (Figure 4a), and by (polythermal) cooling of saturated CUR/solvent mixtures
(Figure 4b–f). Measured patterns are compared with references for the three CUR polymorphs derived
from single crystal data given in the Cambridge Structural Database (CSD) [42].

Commercial solid standard of CUR, which represents the initial solid for isothermal solubility
studies, and all CUR solid phases obtained in equilibrium with saturated solutions in the solvents
studied (Figure 4a) perfectly match the pattern of the known CUR polymorph I. XRPD patterns
obtained for CUR recrystallized polythermally from acetone and acetonitrile solutions (Figure 4b,c)
can be assigned to CUR I as well. CUR phases obtained by cooling of saturated methanol, ethanol and
2-propanol solutions (Figure 4d–f) do not match any shown reference phase, but (except a small
missing reflex at 6.8◦ in the ethanol pattern) are identical to each other. Aside from that, their XRPD
patterns differ from the CUR I phase only by some additional reflexes in the 2Theta range of 6◦–8◦.
One hypothesis explaining this behavior might be incorporation of small amounts of respective alcohol
molecules in the crystal structure without changing the structure type. Further, according to the
known complex solid phase behavior of CUR [42–48] and BDMC [49,50], also the formation of a new
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metastable form of CUR in the three alcohols or a solvate phase from ethanol are possible explanations.
Since elucidation of the CUR phase behavior was not the main focus of the present study, this issue has
to be verified in future investigations.Crystals 2020, 10, 206 7 of 15 
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Figure 4. X-ray powder diffraction (XRPD) patterns of CUR crystalline phases (a) obtained from
isothermal equilibration of CUR suspensions, and (b–f) recrystallized by cooling of saturated CUR
solutions in acetone (b), acetonitrile (c), methanol (d), ethanol (e), 2-propanol (f). The topmost
diffractogram refers to the CUR solid standard. The three lowermost diffractograms specify the
reference crystal structures of CUR polymorphs I-III simulated from CSD single crystal data [42].

With the aim to selectively crystallize pure CUR (form I) from the crude CURD solution and to
suppress spontaneous nucleation of undesired DMC and BDMC components, seeding with CUR solid
standard (form I) was applied in cooling crystallization experiments.

To evaluate the anti-solvents effect on the CUR solubility in acetone, saturation concentrations
of CUR (solid standard) were measured at 30 ◦C in the 50/50 (wt/wt) acetone/anti-solvent mixtures,
exemplarily. Figure 5 shows that the obtained solubility data of CUR in the four binary solvent
mixtures deviate from the ideal linear behaviors. Moreover, it is seen that the addition of methanol,
ethanol and 2-propanol induces a dilution effect rather than the expected supersaturation of the solution.
Since the relative dilution effect of ethanol and methanol is larger than that of 2-propanol, they are not
considered further for crystallization process design. In contrast, the addition of acetonitrile increases
the supersaturation of CUR in acetone. Therefore, a high product yield can be expected. Consequently,
the following four process solvents were selected to conduct the seeded cooling crystallization of
CUR: pure acetone and acetonitrile as well as 50/50 (wt/wt) mixtures of acetone/2-propanol and
acetone/acetonitrile.

3.1.2. Effect of DMC and BDMC on CUR Solubility in the Selected Process Solvents

Before designing seeded cooling crystallizations, the solubility behavior of CUR was evaluated
in presence of the main impurities DMC and BDMC in acetone, 50/50 acetone/2-propanol,
50/50 acetone/acetonitrile and acetonitrile. In Figure 6, the resulting solubility data are compared with
the solubility values of pure CUR in the respective solvents.
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CUR in acetone at 30 °C. Symbols represent experimental data, curves are just guide to the eyes. 
Figure 5. Effect of anti-solvents methanol, ethanol, 2-propanol and acetonitrile on the solubility of
CUR in acetone at 30 ◦C. Symbols represent experimental data, curves are just guide to the eyes.
Dashed curves originate from experimentally determined solubility values in the respective 50/50
(wt/wt) acetone/anti-solvent mixtures. Thin solid lines represent ideal linear solubility behaviors.
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CUR in presence of the main impurities (solid circles, colored curves). Symbols represent experimental
data, fitted curves serve as guide to the eyes.

As seen the solubilities of CUR in presence of DMC and BDMC slightly exceed those of pure CUR
in the four solvents. Moreover, comparison of the CUR solubility in 50/50 acetone/2-propanol and 50/50
acetone/acetonitrile shows that with the use of acetonitrile as anti-solvent, a higher supersaturation of
CUR in the solution can be obtained resulting in a higher product yield. This observation confirms the
behavior of pure CUR in the binary solvents discussed in Figure 5.

3.2. Design of the Seeded Cooling Crystallization for Separation of CUR

Based on the solubility curves of CUR in presence of the main impurities and the observed
nucleation behavior of pure CUR in the respective solvents, four seeded cooling crystallization
processes were derived to separate CUR from the CURD mixtures as illustrated in Figure 7.
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Figure 7. Design of the seeded cooling crystallization processes of CUR based on the solubility curves
of CUR in presence of the main impurities (solid lines) and the nucleation border of pure CUR (dashed
lines) in acetone (1), 50/50 acetone/2-propanol (2), 50/50 acetone/acetonitrile (3) and acetonitrile (4).
Black solid/dashed lines with arrows are imaginary curves representing the variation of the CUR
concentration during the crystallization process. (Tstart/Tend: start/end temperature of the cooling step;
stars: temperature of seed addition; ∆cTD: maximal depletion of CUR from solution).

The starting temperatures of the crystallization processes in the 50/50 mixtures of
acetone/2-propanol and acetone/acetonitrile and in acetonitrile were set at 60 ◦C. To avoid uncontrolled
evaporation of acetone, 45 ◦C was chosen as the starting temperature in this solvent.

The temperatures at which seeds of pure CUR (form I) were introduced into the acetone,
50/50 acetone/acetonitrile and acetonitrile solutions were chosen to be at least 5 K below the saturation
temperature of CUR (approximately in the first third of the metastable region). However, the metastable
region of CUR in 50/50 acetone/2-propanol (Figure 7, purple lines) is significantly closer than for the
other three solvent systems. Therefore, the seeds were added at approximately half of the metastable
region. An overview of the selected process parameters for the four seeded cooling crystallization
processes is given in Table 4.

Table 4. Overview of the selected crystallization process parameters.

Process
Process Solvent

Tstart Tsat Tseeds Tend Cooling Rate
No. ◦C ◦C ◦C ◦C K/h

1 Acetone 45 37 30 0 10
2 50/50 acetone/2-propanol 60 51 46 0 10
3 50/50 acetone/acetonitrile 60 57 51 0 10
4 Acetonitrile 60 56 51 0 10

Tstart/Tend: start/end temperature of cooling step; Tsat: CUR saturation temperature; Tseeds: seeding temperature.
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The initial concentrations of CUR in the crude CURD mixtures were selected in accordance
with the set starting temperatures to guarantee undersaturation of CUR in the starting solutions.
The amounts of the crude solids, the process solvents and the calculated initial CUR content in the
four starting solutions are listed in Table 5.

Table 5. Amount of initial substances used in the four crystallization processes.

Process m (CURD) m (Solvent) cstart (CUR) cend = csat (CUR) ∆cTD (CUR) mmax (CUR)
No. g g wt% wt% wt% g

1 19.0 150 8.4 5.1 3.3 5.7
2 14.0 150 6.4 3.2 3.2 5.1
3 11.5 140 5.1 1.5 3.6 5.5
4 5.2 150 2.2 0.5 1.7 2.7

m(CURD), m(Solvent): amounts of CURD mixture and solvent used for the starting solution; cstart(CUR): calculated
concentration of CUR in the starting solution; cend=csat: concentration of CUR at the end of the cooling process,
equal to the respective saturation concentration, from solubility study; ∆cTD(CUR): max. possible change of CUR
concentration at the end of the cooling process, calculated based on the thermodynamic values; mmax: maximal
achievable mass of CUR, calculated based on the thermodynamic values.

3.3. Implementation of the Purification Process

In the first step, the four initial crude solutions were prepared using the corresponding amount
of the crude solid mixture in the respective solvent (Table 5). The seeded cooling crystallization of
CUR was conducted in a second step following the four process trends shown in Figure 7. Starting at
set temperatures, the unsaturated clear solutions were cooled down to 0 ◦C at a linear rate of 10 K/h.
After exceeding the corresponding saturation temperature, seed crystals of pure CUR form I (ca. 50 mg)
were introduced into the supersaturated solution at Tseeds (Table 4). At the end of the cooling process at
0 ◦C, the obtained product suspensions were stirred for further 0.5 h. Subsequently, solid-liquid phase
separation was carried out on suction filters (pore size of filter paper 0.6 µm). To remove adhering
mother liquor from the filter cake, the collected crystals were washed with about 100 g of cold acetone
(< 0 ◦C, in processes 1-3) or with acetonitrile (< 0 ◦C in process 4). Then, dried at 40 ◦C, the purity of
CUR and the yield were analyzed. During the washing process with acetone a visible dissolution of
the filter cake was observed, caused by the high solubility of CUR in acetone (about 5 wt% at 0 ◦C).
Accordingly, lower product yields could be assumed in the processes of using acetone as washing
solvent (in processes 1-3).

The results of the four conducted seeded cooling crystallizations are summarized in Table 6. The
maximum thermodynamically possible yield of CUR ηTD was calculated according to Equation (1), the
total product yield of CUR η according to Equation (2).

ηTD(CUR) =
mproduct·CUR product content

mmax
(1)

η(CUR) =
mproduct·CUR product content

mstart(CUR)
(2)

Table 6 shows that in the 50/50 acetone/2-propanol mixture (process 2), the highest purity of CUR
(99.4%) in the crystalline product was achieved. However, only 13% of the initial CUR content in the
crude mixture was recovered. Crystalline CUR with decreasing purity of 95.7%, 92.3% and 90.1% but
increasing total product yields of 31%, 55% and 62% was obtained from acetone, acetonitrile and 50/50
acetone/acetonitrile, respectively. The lower total yields from acetone and acetone/2-propanol solutions
are partly associated with the enhanced CUR solubility at the final process temperature compared to
the acetonitrile-containing solutions (see Figure 7), which, however, does not explain the extremely
low yield achieved in the latter case.

The obtained purity results further verify that BDMC could completely be removed from the
crystalline products within a single separation step, while the content of DMC was noticeably reduced.
The presence of DMC as impurity in the products can be probably attributed to the most similar
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molecular structure of DMC and CUR (Figure 1). It can be postulated that DMC molecules compete
with CUR in the solution upon forming the main crystal lattices. To ascertain, whether DMC is
present near CUR in the crystalline form or as amorphous phase, the four crystallization products were
analyzed by XRPD. In Figure 8 the corresponding patterns are compared with the commercial solid
standards of DMC and CUR.

Table 6. Results of the four seeded cooling crystallization processes. Table columns containing the
products purity and yield are highlighted in grey.
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1 Acetone 14.3 75.0 19.2 5.8 5.7 4.6 95.7 4.3 0 77 31

2
50/50

acetone/
2-propanol

9.9 70.8 23.5 5.7 5.1 1.3 99.4 0.6 0 25 13

3
50/50

acetone/
acetonitrile

7.7 67.2 25.5 7.3 5.5 5.3 90.1 9.9 0 87 62

4 Acetonitrile 3.5 67.2 25.5 7.3 2.7 2.1 92.3 7.7 0 72 55

mstart(CUR): calculated amount of CUR in the mixture of CURDs; mmax: max. achievable mass of CUR, based on the
thermodynamic values; m(product): mass of the crystalline product gained; ηTD(CUR): max. thermodynamically
possible yield of CUR; η(CUR): total product yield of CUR.
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Figure 8. XRPD patterns of four crystallization products with increasing CUR content.

Since all XRPD reflexes in the diffractograms from the crystalline products can be clearly
distinguished and are uniformly on the baseline, the presence of an amorphous fraction in the solid
products cannot be confirmed. Moreover, all XRPD patterns seem to be identical to the CUR solid
standard. Despite the increasing DMC content in the crystalline products (0.6–9.9%), none of the
recorded patterns can be clearly assigned to the solid standard of DMC. Only a slight shift of single
reflexes of crystalline products is indicated with increased DMC content in the solids.

Due to the strong similarity of CUR and DMC molecules, partial miscibility at the solid state might
be a possible explanation here. However, dependent on the instrument and the structural similarity of
the compounds used the limit of detection of the XRPD method is known to be 5–7 wt% and 1 wt%
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in best cases. Thus, incorporation of DMC molecules is not readily assessable by XRPD at these low
contents. Clarifying this issue requires further work which was out of the scope of this paper.

3.4. Improvement of the Total Yield by Means of Anti-Solvent Addition

To increase the product yield of the seeded cooling crystallization, it is suitable to conduct
anti-solvent addition to the product suspension at the end of the cooling step [39]. In this work, to
improve the overall yields of processes 1, 2 and 4 addition of water, 2-propanol and acetonitrile as
anti-solvents of CUR in acetone was investigated. The final solvent/anti-solvent ratio was set to 25/75
(wt/wt). The study was conducted using the crude solid no. 1 with the lowest CUR content of 67.2%.

In the first step three equal starting solutions containing 8.5 wt% CUR in acetone were prepared
and three identical seeded cooling crystallization processes were carried out as previously described in
process no. 1. When the set end temperature of the cooling profile (0 ◦C) was reached, cold anti-solvent
(< 0 ◦C) 2-propanol (process 1–2) and acetonitrile (process 1–3) was added to the product suspension,
respectively (see Table 7). Afterwards the system was stirred for 3 h at constant 0 ◦C. The addition of
water (process 1–1) was carried out at 26 ◦C after introducing CUR seeds to the supersaturated acetone
solution. Then the suspension was cooled down to the end temperature 0 ◦C and stirred also for 3 h.
Solid-liquid phase separation was performed at the end of each anti-solvent crystallization process.
The crystalline products were dried at 40 ◦C and the CUR purity and yield analyzed. To maintain the
total product yield and avoid the previously observed dissolution of the filter cake during washing
with cold acetone, the washing step was skipped. The results obtained are summarized in Table 7.

Table 7. Overview of the results to improve total product yield (η(CUR)) via anti-solvent addition.
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In all processes, addition of anti-solvent to the product suspension at the end of the cooling
step led to a significant increase of yields. However, the CUR purity in the final crystalline products
was noticeably decreased. DMC and in addition low amounts of BDMC (≤1.1%) were present as
impurities. In addition to a detrimental effect of abstaining from product washing, an anti-solvent
effect on DMC and BDMC cannot be excluded here (even solubility of DMC and BDMC is reported to
exceed that of CUR in acetonitrile and isopropanol [34]). However, similar to the cooling crystallization
(Table 6), the use of 2-propanol as anti-solvent (process 1–2) provided CUR at highest purity (96.2%)
but at significantly lowest yield (36%). Regarding the reduced yield in presence of 2-propanol it can
only be presumed at this stage, that, as indicated in polythermal (non-seeded) solubility studies from
2-propanol, an additional metastable (and thus higher soluble) polymorph or solvate phase occurs
which causes the respective CUR remaining in the solution phase and thereby reducing the CUR yield
in the solid phase.
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4. Conclusions

In this work, the solubility behavior of pure CUR and CUR in presence of the two main impurities
DMC and BDMC as well as supersolubilities in acetone, acetonitrile, methanol, ethanol, 2-propanol and
their binary mixtures were investigated first. Based on the data obtained, seeded cooling crystallizations
in four different process solvents (acetone, acetonitrile and 50/50 (wt/wt) mixtures of acetone/2-propanol
and acetone/acetonitrile) were designed and implemented. As a result, the purity of CUR could be
increased from initial CUR contents of 67–75% in the curcuminoid mixtures up to values of 90.1–99.4%
in a single crystallization step. All crystallization processes provided crystalline curcumin (form
I) free of BDMC after this single crystallization step. DMC was significantly depleted from initial
contents of 19.2–25.5% in the crude mixtures to residual contents of 0.6–9.9%. Total product yields
were significantly enhanced to 70–79% via addition of water and acetonitrile as anti-solvents at the end
of the cooling crystallization process.

The presence of crystalline or amorphous DMC in the CUR products could not be detected by
XRPD analysis. Whether this is caused by experimental detection limits or by potential formation of
CUR/DMC mixed crystals has to be clarified in future studies.

Based on the work presented, a seeded cooling crystallization from a 50/50 (wt/wt)
acetone/2-propanol solvent mixture is seen as the best purification strategy providing CUR at highest
purity of 99.4%, BDMC free in a single crystallization step. However, there is still space for process
optimization in particular with respect to yield. This includes application of a reduced cooling rate and
a lowered final cooling temperature to increase both crystallization and total yield. Further, to avoid
product losses in downstream processing washing the product with an acetone/anti-solvent mixture
(for example acetonitrile) is suggested. No information regarding the maximum admissible limit
of BDMC and DMC in the crystalline CUR was found in the literature. However, in any case the
CUR purification grade obtained within a simple single crystallization step in this study represents a
significant improvement compared to alternative process concepts.
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