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Abstract: In this paper, based on the density functional theory, through thermodynamic and
mechanical stability criteria, the crystal cell model of intermetallic compounds with vacancy and
anti-site point defects is constructed and the lattice constant, formation heat, binding energy, elastic
constant, and elastic modulus of Mg2X (X = Si, Ge) intermetallics with or without point defects are
calculated. The results show that the difference in the atomic radius leads to the instability and
distortion of crystal cells with point defects; Mg2X are easier to form vacancy defects than anti-site
defects on the X (X = Si, Ge) lattice site, and form anti-site defects on the Mg lattice site. Generally, the
point defect is more likely to appear at the Mg position than at the Si or Ge position. Among the four
kinds of point defects, the anti-site defect xMg is the easiest to form. The structure of intermetallics
without defects is more stable than that with defects, and the structure of the intermetallics with
point defects at the Mg position is more stable than that at the Si/Ge position. The anti-site and
vacancy defects will reduce the material’s resistance to volume deformation shear strain, and positive
elastic deformation, and increase the mechanical instability of the elastic deformation of the material.
Compared with the anti-site point defect, the void point defect can lead to the mechanical instability
of the transverse deformation of the material and improve the plasticity of the material. The research
in this paper is helpful for the analysis of the mechanical stability of the elastic deformation of
Mg2X (X = Si, Ge) intermetallics under the service condition that it is easy to produce vacancy and
anti-site defects.

Keywords: Intermetallic compounds; Thermodynamic stability; Elastic mechanical stability; Mg2X
(X = Si, Ge); Vacancy point defects; First principle method

1. Introduction

Mg2X (X = Si, Ge) intermetallics have such advantages as high-temperature resistance, good
corrosion resistance, high hardness, high conductivity, high-temperature electric potential and low
thermal conductivity, etc.; and have important application prospects in the fields of metal matrix
composite materials, structural materials, thermoelectric materials, battery materials, hydrogen storage
devices, etc. [1–3]. At present, the theoretical research on it mainly focuses on structure stability,
electronic structure, mechanical properties, and thermodynamic properties, and so on. According to
the first principles and molecular dynamics, the structure, elasticity, and thermodynamic properties of
Mg2Si were predicted in Reference [4–6]. The effects of strain, deformation and high pressure on the
electronic, optical, and thermoelectric properties of Mg2Si have been calculated in reference [7–10].
Hirayama [11,12] theoretically studied the influence of doping on the structural parameters of Mg2Si.
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The lattice structure, mechanical properties, and phase transitions Mg2X (X = Si, Ge) have been studied
in Reference [13–17]. Reference [18–21] studied the electronic structure of doping defects of Mg2X (X =

Si, Ge and Sn) anti-fluorine compounds. References [22–24] used the first principle to calculate the
interface structure of Mg2Si and related compounds. Kessair [25] studied the structural characteristics
of seven different types of Mg2Si and found that the thermoelectric potential of cubic CaF2 structure is
very high, which may be the preferred material in thermoelectric applications. Vacancy point defects
play a decisive role in the physical properties of thermoelectric materials and are used as a new way to
improve thermoelectric properties. However, there are few studies on the structures of Mg2X (X = Si,
Ge) with vacancy and anti-site defects.

Therefore, in this paper, the equilibrium lattice constant, formation heat, binding energy, and
elastic constant of Mg2X (X = Si, Ge) system with vacancy defect structure are calculated by Density
Functional Theory (DFT). The effect of vacancy defect on the structure and properties of Mg2X (X = Si,
Ge) intermetallics is explored from the microscopic point of view.

2. Computational Method

In this paper, based on the density functional theory (DFT) [26,27], we use the CASTEP [28] module
in Materials Studio 8.0. The exchange-correlation potential was in the form of Perdew–Burke–Ernzerh
(PBE) of the generalized gradient approximation (GGA) [29,30]. Considering computational accuracy
and efficiency [31], the final cutoff energy of plane wave Ecut was set to be 380 eV. The Brillouin zone
integral is in the form of 8 × 4 × 8 monkhorst-pack [32], and the super soft pseudopotential of the
reciprocal space is selected as the potential function [33].

The parameter conditions are set as follows: the total energy of the system converges within 5.0
× 10−6 ev/atom, the force on each atom is less than 0.01 eV/Å, the stress deviation is lower than 0.02
GPa, the tolerance deviation is less than 5 × 10−4 Å.; the maximum convergence tolerance of energy
and self-consistent field (SCF) convergence threshold are 5.0 × 10−6 eV/atom and 5.0 × 10−7 eV/atom,
respectively. Both Mg2Si and Mg2Ge belong to the face-centered cubic (FCC) structure of anti-fluorite
(CaF2).

In this paper, we use 1 × 1 × 2 and 2 × 2 × 2 supercell models, so that we can more easily verify
whether the calculated data is reasonable, and can compare the influence of different supercell sizes on
the calculation results. The 1 × 1 × 2 Mg16X8 supercell crystals are shown in Figure 1. There are two
vacancy defects Vmg, Vx, two anti-site defects MgX, XMg in the crystals, and the small red box indicates
the location of the point defect.
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anti-site defects, (a) Mg16X8, (b) Mg16X7 (VX), (c) Mg15X8 (VMg), (d) Mg15X9 (XMg), and (e) Mg17X7 (MgX). 
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The 2 × 2 × 2 supercell model with 96 atoms is shown in Figure 2. The small red circle indicates 
the position of point defect, and the point defect concentration is reduced to a quarter of the former. 

Mg X = Si or Ge 

Figure 1. 1 × 1 × 2 supercell crystal structure of Mg2X (X = Si, Ge) with vacancy point defects or
anti-site defects, (a) Mg16X8, (b) Mg16X7 (VX), (c) Mg15X8 (VMg), (d) Mg15X9 (XMg), and (e) Mg17X7

(MgX). The red squares represent the position of the vacancy or anti-site defects.
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The 2 × 2 × 2 supercell model with 96 atoms is shown in Figure 2. The small red circle indicates
the position of point defect, and the point defect concentration is reduced to a quarter of the former.
We have made some comparative studies with the related calculation results of 1 × 1 × 2 supercells in
this work.
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Figure 2. 2 × 2 × 2 supercell crystal structure of Mg2X (X = Si, Ge) with vacancy point defects or
anti-site defects, (a) Mg64X32, (b) Mg63X32 (VMg), (c) Mg64X31 (VX), (d) Mg65X31 (MgX) and (e) Mg63X33

(XMg). The red squares represent the position of the vacancy or anti-site defects.

3. Results and Discussion

3.1. Equilibrium Lattice Stability of Intermetallics with or without Point Defects

The equilibrium lattice constants of Mg2X (X = Si, Ge) intermetallic compounds have been
calculated and shown in Table 1.

Table 1. Calculated equilibrium lattice constants of 1 × 1 × 2 Mg2X (X = Si, Ge) cells with or without
two types of point defects.

Intermetallics a (Å) b (Å) c (Å) V (Å3)

Mg16Si8 6.351 6.351 12.702 512.338
Mg16Si7(VSi) 6.380 6.380 12.764 519.551

Mg15Si8(VMg) 6.372 6.372 12.758 518.005
Mg15Si9(SiMg) 6.369 6.369 12.962 525.793
Mg17Si7(MgSi) 6.405 6.405 13.140 539.056

Mg16Ge8 6.385 6.385 12.770 520.586
Mg16Ge7(VGe) 6.434 6.434 12.793 529.584
Mg15Ge8(VMg) 6.427 6.427 12.872 531.695

Mg15Ge9(GeMg) 6.447 6.447 12.894 535.924
Mg17Ge7(MgGe) 6.464 6.464 13.229 552.751
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The lattice constants of Mg16Si8 and Mg16Ge8 with point defects are listed in Table 1, and Figure 2
is the comparison of lattice constants of Mg2X (X = Si, Ge) with point defects. It can be seen from
Table 1 that the equilibrium lattice constants calculated in this paper are very close to the experimental
values [34,35], which shows that the method adopted is reliable. It also can be seen from Table 1
that when the cell contains vacancy or anti vacancy point defects, lattice distortion occurs in the cell,
resulting in cell expansion and a lattice constant increase. At the same time, as shown in Figure 3, the
lattice constant of Mg16Ge8 with vacancy and anti-site defects is larger than that of Mg16Si8, which is
due to the following relationship between the relative atomic radius: RSi (0.118 nm) < RGe (0.123 nm) <

RMg (0.160 nm).
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Figure 3. Comparison of lattice constants of Mg2X (X = Si, Ge) with point defects.

The calculated results of lattice parameters of 1 × 1 × 2 supercells and 2 × 2 × 2 supercells (as
shown in Table 2) are compared, and the results are consistent.

Table 2. Calculated equilibrium lattice constants of 2 × 2 × 2 Mg2X (X = Si, Ge) cells with or without
two types of point defects.

Intermetallics A = b = c (Å) V (Å3) Intermetallics a = b = c (Å) V (Å3)

Mg64Si32 12.741 2068.290 Mg64Ge32 12.771 2083.054
Mg64Si31(VSi) 12.761 2078.015 Mg64Ge31(VGe) 12.870 2131.974

Mg63Si32(VMg) 12.768 2081.463 Mg63Ge32(VMg) 12.879 2136.209
Mg63Si33(SiMg) 12.760 2077.480 Mg63Ge33(GeMg) 12.884 2138.745
Mg65Si31(MgSi) 12.808 2100.947 Mg65Ge31(MgGe) 12.918 2155.592

3.2. Effects of Vacancy and Anti-Site Points Defects on Thermodynamic Stability

The smaller the bond energy is, the less energy is needed to break the bond, the easier it is to be
broken, the more unstable it is, so the harder it is to generate. The larger the bond energy is, the more
energy is needed to destroy the bond. The less likely the bond is to be destroyed, the more stable the
bond is, and the easier the crystal formed by the bond is. The calculation formula of the formation heat
of Mg16X8 (X = Si, Ge) intermetallics with point defects is [36]:

∆H f =
EAB

tot −NAEA
solid −NBEB

solid
NA + NB

(1)
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where, EAB
tot represents the average total energy of each crystal cell of Mg2X intermetallic compound, N

indicates the number of atoms in the crystal cell, and EA
solid, EB

solid represent the ground state energy of

each atom in the solid cell, EMg
solid = −973.95 eV, ESi

solid = −107.26 eV, and EGe
solid = −107.29 eV.

The binding energy Ecoh of a crystal is the energy needed to decompose the crystal into a single
atom, which is usually negative. Therefore, the larger the absolute value of the binding energy, the
higher the stability of the intermetallics. The calculation formula of binding energy is [37]:

Ecoh =
EAB

tot −NAEA
atom −NBEB

atom
NA + NB

(2)

where, EAorB
atom represents the energy of each atom in the crystal cell in the free state, EMg

atom =

−972.48 eV, ESi
atom = −101.85 eV and EGe

atom = −102.71 eV.
The calculated formation heat and binding energy of Mg2X (X = Si, Ge) cells with or without point

defects are listed in Table 3. The more negative ∆H f of the crystal is, the easier it is to form. That is to
say, the absolute ∆Hf of the crystal is larger, it is not easy to be damaged, and it is easier to form.

Table 3. Computed formation heat (∆Hf) and binding energy (Ecoh) of Mg16X8 and Mg64X32 (X=Si, Ge)
with or without (anti) vacancy point defects.

1 × 1 × 2
Intermetallics

∆Hf (eV/atom) Ecoh (eV/atom)
2 × 2 × 2

Intermetallics
∆Hf (eV/atom) Ecoh (eV/atom)

Mg16Si8 −0.180 −3.113 Mg64Si32 −0.170 −2.949
Mg16Si7(VSi) −0.084 −2.911 Mg64Si31(VSi) −0.148 −2.899

Mg15Si8(VMg) −0.092 −3.078 Mg63Si32(VMg) −0.155 −2.947
Mg17Si7(MgSi) −0.072 −2.852 Mg65Si31(MgSi) −0.142 −2.880
Mg15Si9(SiMg) −0.108 −3.103 Mg63Si33(SiMg) −0.155 −2.945

Mg16Ge8 −0.281 −2.953 Mg64Ge32 −0.259 −2.761
Mg16Ge7(VGe) −0.167 −2.756 Mg64Ge31(VGe) −0.236 −2.716
Mg15Ge8(VMg) −0.197 −2.910 Mg63Ge32(VMg) −0.248 −2.761
Mg17Ge7(MgGe) −0.155 −2.708 Mg65Ge31(MgGe) −0.230 −2.700
Mg15Ge9(GeMg) −0.211 −3.002 Mg63Ge33(GeMg) −0.248 −2.753

As shown in Table 3 that the absolute value of ∆H f of Mg2X (X = Si, Ge) with point defects is
less than that without point defects, which means that the structure with point defects is easy to be
destroyed, and it is easy to be in an unstable state before formation, that is to say; it is difficult to
form compounds (For example, it can forms a stable structure with point defects at 0 K and 0 GPa,
and the formed structure may become unstable under the influence of external factors, which is not
contradictory to the relationship between binding energy and crystal stability in the following section
of this paper).

It can also be seen from Table 3 that on the X (X = Si, Ge) lattice site, the absolute value of ∆H f
of intermetallic compounds with vacancy defects is larger than that with anti-site defects, indicating
that the metal bond energy with vacancy defects on the X lattice site is larger than that with anti-site
defects, and it is not easy to be damaged, and it is easier to form crystals, that is to say, intermetallic
compounds are easier to form vacancy defects than anti-site on the X (X = Si, Ge) lattice site. However,
Mg2X is easier to form anti-site defects on the Mg lattice site.

It is also found that for 1 × 1 × 2 Mg2Si intermetallics, the ∆H f (−0.092 eV/atom) of vacancy point
defects at Mg position is smaller than that at Si position (−0.084 eV/atom), the absolute value is larger,
and it is not easy to be destroyed, so it is easier to form; The formation energy (−0.108 eV/atom) of
the anti-site defect at Mg position is smaller than that at Si position (−0.072 eV/atom), the absolute
value is larger, it is not easy to be damaged, and it is easier to form, which indicates that the point
defect is more likely to appear at the Mg position than at the Si position; The same analysis shows
that for Mg2Ge intermetallics, point defects are more likely to form at the Mg position than at the Ge
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position. From Table 3, we can also find that this conclusion is also applicable to Mg64X32 (X = Si, Ge)
intermetallics with 2 × 2 × 2 supercells.

It is also found that no matter 1 ×1× 2 supercells or 2 × 2 × 2 supercells, the absolute value of the
binding energy of the intermetallics without point defects is higher than that of the intermetallics with
point defects, which indicates that the energy required for atom bonding is higher and the structure is
more stable when there is no defect. For the same type of defects, the absolute value of the binding
energy at the Mg position is larger than that at the Si/Ge position, so the structure of the intermetallics
forming point defects at the Mg position is more stable than that at the Si/Ge position.

The defect formation energies of vacancy and anti-site can be calculated by the following
expression:

∆E f = Etotal(de f ect) − Etotal(per f ect) −
∑

i

∆niµi (3)

where, Etotal(per f ect) and Etotal(de f ect) represent the total energy of perfect supercell and defect
supercell of Mg2X (X = Si, Ge), respectively; n i represent the number of atoms added or removed in
Mg2X (X = Si, Ge) intermetallics, µ i represent the corresponding chemical potential of the atom, i.e.,
the defect formation energies of vacancy and anti-site in Mg2X (X = Si, Ge) are shown in Table 4.

Table 4. Computed ∆E f
vac and ∆E f

anti of Mg16X8 and Mg64X32 (X = Si, Ge) with vacancy and anti-site
point defects.

Intermetallics
∆Ef

vac (eV/atom) ∆Ef
anti (eV/atom)

∆Evac
Mg ∆Ex

vac ∆Evati
Mg ∆Ex

anti

1 × 1 × 2
Mg16Si8 3.68 7.82 −2.23 6.57
Mg16Ge8 3.45 7.24 −1.68 5.90

2 × 2 × 2
Mg64Si32 3.09 7.67 −2.55 6.62
Mg64Ge32 2.77 7.02 −2.10 5.83

As shown in Table 4, for Mg2X (X = Si, Ge), the ∆Evac and ∆Eanti at the Si or Ge position is bigger
than that at the Mg position, which indicates that the point defect is more likely to appear at Mg
position than at Si or Ge position. Among the four kinds of point defects, the defect forming energy of
the anti-site defect ∆Eanti

Mg is the smallest, which indicates that the anti-site defect xMg is the easiest to

form in Mg2X. Compared with other point defects, the ∆Eanti
Mg is negative, which means it can form

spontaneously in 1 × 1 × 2 and 2 × 2 × 2 supercells. The defect formation of vacancy ∆Evac and
inversion ∆Eanti (except MgSi) in Mg2X (X = Si, Ge) can decrease with the increase of supercell size,
which shows that only the anti-site defect MgSi is easy to form in 1 × 1 × 2 supercells, while other point
defects tend to form in 2 × 2 × 2 supercell.

3.3. Effects of Vacancy and Anti-Site Points Defects on Elastic Mechanical Stability

3.3.1. Elastic Constants of Stability Criteria

Elastic constants are used to measure the ability of materials to resist external force and deformation
and can be used to predict the mechanical stability of materials. To determine the elastic stability of a
crystal, three independent elastic constants [38] are needed for the cubic structure: C11, C12, C44. For
tetragonal structures, six independent elastic constants [39] are needed: C11, C12, C13, C33, C44, C66. In
this paper, Mg2X (X = Si, Ge) cells with point defects belong to tetragonal structure, and Mg2X (X = Si,
Ge) cells without point defects belong to cubic structure [40,41].

The calculated elastic constants of Mg2X (X = Si, Ge) cells with (without) point defects are listed in
Table 5. It can be seen that our calculation results are close to others’ theoretical calculation results [42],
indicating that the selection of the parameters is reasonable.
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Table 5. Computed elastic constants Ci j (GPa) of Mg2X (X = Si, Ge) with or without a point defect (a
vacancy or an anti-site defect) in different supercells.

Supercell Intermetallics C11 C12 C13 C33 C44 C66

- Mg2Si 113.40 22.71 - - 45.09 -
- Cal. [42] 114.07 19.56 - - 33.32 -

1 × 1 × 2

Mg16Si7(VSi) 91.55 27.67 21.98 94.37 19.64 28.76
Mg15Si8(VMg) 90.70 27.25 29.12 89.98 29.91 33.24
Mg17Si7(MgSi) 91.83 24.34 25.26 84.48 38.07 31.50
Mg15Si9(SiMg) 100.74 27.37 27.37 97.76 29.78 30.69

2 × 2 × 2

Mg64Si31(VSi) 103.94 24.76 32.46
Mg63Si32(VMg) 105.98 25.23 38.96
Mg63Si33(SiMg) 107.95 23.45 39.83
Mg65Si31(MgSi) 102.69 25.95 36.64

- Mg2Ge 105.32 20.83 - - 42.58 105.32
- Cal. [43] 107.3 21.1 - - 41.8 107.3

1 × 1 × 2

Mg16Ge7(VGe) 86.30 24.62 19.36 89.24 22.13 86.30
Mg15Ge8(VMg) 84.38 25.08 26.89 83.96 29.24 84.38
Mg17Ge7(MgGe) 83.71 21.32 25.99 80.78 32.83 83.71
Mg15Ge9(GeMg) 94.53 25.42 24.64 92.92 30.48 94.53

2 × 2 × 2

Mg64Ge31(VGe) 98.69 22.22 32.46
Mg63Ge32(VMg) 98.05 23.14 37.08
Mg63Ge33(GeMg) 103.14 22.97 38.42
Mg65Ge31(MgGe) 95.57 23.53 34.59

In the case of cubic crystals, the conditions of elastic stability are well known [43]:

C11 −C12 > 0; C11 + 2C12 > 0; C44 > 0 (4)

The elastic Born stability criteria for the tetragonal system are [43]:

C11 > |C12|; 2C2
13

〈
C33(C11 + C12); C44

〉
0; C66 > 0 (5)

Based on the computed elastic constants, the effects of point defects on the mechanical stability of
Mg2X (X = Si, Ge) intermetallics can be evaluated. Obviously, the elastic constants Ci j calculated in
Table 3 meet the mechanical stability criteria. Therefore, the Mg2X (X = Si, Ge) intermetallic compounds
with and without vacancy or anti-vacancy point defects are all mechanically stable structures.

3.3.2. Elastic Modulus of Mechanical Stability

The yield limit σs and strength limit σb obtained in the tensile test reflect the bearing capacity of
the material to the force, while the elongation δ or section shrinkage ψ reflect the plastic deformation
capacity of the material. In order to express the difficulty of material resisting deformation in the
elastic range, the meaning of material elastic modulus E is usually reflected by the rigidity of parts
in practical engineering, because once the parts are designed according to the stress, the rigidity is
judged by the deformation generated by the load in the service process in the elastic deformation
range. Generally, the load-causing unit strain is the rigidity of the part. For example, for tension and
compression parts, the rigidity is EA0, and A0 is the cross-section area of the part. It can be seen that in
order to improve the stiffness EA0 of the parts, which is to reduce the elastic deformation of the parts,
the materials with high elastic modulus can be selected, and the cross-sectional area A0 of the bearing
can be appropriately increased. The importance of stiffness is that it determines the stability of parts in
service, especially for slender rod-shaped parts and thin-walled parts. Therefore, for the theoretical
analysis and design calculation of components, the elastic modulus E is an important mechanical
performance index that is often used.
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Elastic modulus E is defined as the ratio of stress to corresponding strain when the ideal material
has small deformation. The nature of modulus depends on the nature of deformation. Elastic modulus
E (unit: GPa) includes the Young’s modulus E (tensile stress/tensile strain, also called positive elastic
modulus, tensile modulus), shear modulus G (shear stress/shear strain angle), compression modulus K
(compressive stress/shrinkage strain), bulk modulus B (bulk pressure/bulk strain)—the reciprocal of
the modulus is called the flexibility expressed in J. When it is not easy to cause confusion, the elastic
modulus of general metal materials refers to the young’s modulus, that is, the positive elastic modulus.

From the macroscopic point of view, the modulus of elasticity is a measure of the ability of an
object to resist elastic deformation. From the microscopic point of view, it is a reflection of the bonding
strength among atoms, ions, or molecules. All the factors that affect the bonding strength can affect
the elastic modulus of the material, such as bonding mode, crystal structure, chemical composition,
microstructure, temperature, etc. The young’s modulus E of metal materials will fluctuate by 5% or
more due to different alloy compositions, heat treatment state and cold plastic deformation. However,
generally speaking, the elastic modulus of metal material is a mechanical property index that is not
sensitive to the structure. Alloying, heat treatment (fiber structure), cold plastic deformation, and other
factors have little influence on the elastic modulus E, and the external factors such as temperature and
loading rate have little influence on it, so the elastic modulus E is regarded as a constant in general
engineering application.

Poisson’s ratio ν refers to the ratio of the absolute value of the transverse positive strain and
the positive axial strain when the material is under tension or compression in a single direction, also
known as the transverse deformation coefficient, which is the elastic constant reflecting the transverse
deformation of the material. When the material extends (or shortens) along the load direction, it will
also shorten (or lengthen) in the direction perpendicular to the load. The negative value of the ratio of
the strain εl in the vertical direction to the strain ε in the load direction is called Poisson’s ratio of the
material, i.e., ν = −εl/ε. Poisson’s ratio ν of materials is generally determined by test method. For
traditional materials, ν is generally constant in the elastic working range, but beyond the elastic range,
ν increases with the increase of stress until v = 0.5. For the material with large Poisson’s ratio, the
amount of transverse deformation is larger than that of the longitudinal deformation after the material
is stressed and before plastic deformation, otherwise, the amount of transverse deformation is smaller
than that of the longitudinal deformation.

In Table 6, we compare the results of calculation when there are vacancy point defects in different
supercells of Mg2X (X = Si, Ge) intermetallic compounds; it is found that for Mg2Si type intermetallics,
the B, G, and E of Mg2X with Mg vacancy (VMg) are higher than those of Mg2X with X vacancy
(VX). The above results show that the vacancy defects in Mg position, compared with those in the Si
position and Ge position, will lead to the stronger resistance to volume deformation, shear strain and
elastic deformation of crystal materials, the greater the rigidity, the less deformation, the stronger the
brittleness and the worse the plasticity.

For intermetallic compounds with anti-site point defects, the B, G and E of Mg2X (X = Si, Ge) with
the XMg anti-site are higher than those of Mg2X with the MgX anti-site, indicating that when the Si or
Ge atom replace the Mg atom to form anti-vacancy defects, compared with Mg atom replacing Si or Ge
atom to form anti vacancy defect, the material has a strong resistance to volume deformation, shear
strain and elastic deformation, but poor plasticity. Besides, for Mg2X (X = Si, Ge) with same point
defect structure, the B, G, and E of 1 × 1 × 2 supercells are smaller than those of 2 × 2 × 2 supercells,
which indicates that the Mg2X (X = Si, Ge) with point defects are easier to form in 2 × 2 × 2 supercells.
Therefore, the point defects generated on the Mg position of 2 × 2 × 2 supercells can enhance the
mechanical stability of the material, while the plasticity is poor.
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Table 6. Lists the calculated bulk modulus, B.; the shear modulus, G.; Young’s modulus, E.; Poisson’s
ratio ν and G/B.

Supercell Intermetallics B/GPa G/GPa E/GPa G/B ν

- Mg2Si 52.94 45.19 105.54 0.854 0.168
- Cal. [42] 51.06 46.12 108.35 0.903 0.150

1 × 1 × 2

Mg16Si7(VSi) 46.74 27.33 68.62 0.585 0.255
Mg15Si8(VMg) 49.15 31.00 76.85 0.631 0.239
Mg17Si7(MgSi) 46.38 34.41 82.77 0.742 0.202
Mg15Si9(SiMg) 51.49 35.53 83.61 0.752 0.239

2 × 2 × 2

Mg64Si31(VSi) 51.16 35.14 85.79 0.687 0.221
Mg63Si32(VMg) 52.15 39.52 94.65 0.758 0.198
Mg65Si31(MgSi) 51.53 37.32 90.19 0.724 0.208
Mg63Si33(SiMg) 51.62 40.78 96.84 0.790 0.187

- Mg2Ge 49.00 42.45 98.81 0.866 0.164
- Cal. [43] 49.80 42.30 98.90 0.847 -

1 × 1 × 2

Mg16Ge7(VGe) 43.48 28.17 69.50 0.648 0.234
Mg15Ge8(VMg) 45.47 29.51 72.79 0.649 0.233
Mg17Ge7(MgGe) 43.88 30.16 73.62 0.688 0.220
Mg15Ge9(GeMg) 47.28 32.76 79.84 0.693 0.219

2 × 2 × 2

Mg64Ge31(VGe) 47.71 34.66 83.71 0.727 0.208
Mg63Ge32(VMg) 48.11 37.23 88.78 0.774 0.193
Mg65Ge31(MgGe) 47.54 35.15 84.61 0.739 0.203
Mg63Ge33(GeMg) 49.69 39.08 92.88 0.786 0.189

Table 6 also shows that the Poisson’s ratio ν (0.168 and 0.164) of Mg16X8 without point defects
is the smallest, and the Poisson’s ratio ν with defects is larger (greater than 0.18), indicating that the
formation of defects makes the transverse deformation of the material larger and the transverse elastic
mechanical instability increased. It was also found that the Poisson’s ratio of Mg2X (X = Si, Ge) with
X vacancy is higher than that of Mg2X with the MgX anti-site. Similarly, the Poisson’s ratio of Mg2X
with Mg vacancy was slightly higher than that of Mg2X with XMg anti-site. Thus, the above results
show that when there are defects in the Mg, Si, and Ge position, the void point defects increase the
instability of transverse deformation more than the anti-void point defects. Note that for Mg2X (X = Si,
Ge) with the same point defect structure (except MgSi), the Poisson’s ratio ν of the 2 × 2 × 2 supercells
is smaller than that of the 1 × 1 × 2 supercells, indicating that the point defects in larger supercells can
only increase the instability of transverse deformation slightly, compared with 1 × 1 × 2 supercells.

According to Pugh’s report [44], G/B can predict the ductility or brittleness of materials, and
materials with G/B value higher than the critical value of 0.57 belong to brittle materials; it can be seen
from Table 6 that both Mg2X (X = Si, Ge) with and without point defects are brittle materials. The
maximum G/B value of Mg2X without point defects indicates that the formation of defects will improve
the ductility of materials; the G/B value of vacancy point defects is smaller than that of anti-site defects,
indicating that vacancy point defects can improve the plasticity of materials more than anti-site defects.
Compared with 2 × 2 × 2 supercells, the G/B of Mg2X with the same point defect structure (except
MgSi) in 1× 1 × 2 supercells can enhance the plasticity of materials.

In theory, only two of the three elastic constants E, G and ν of isotropic materials are independent,
because they have the following relationship: G = E/[2 (1 + ν)]. This is consistent with the essence of
the definition of Poisson’s ratio. For anisotropic materials, the elastic modulus in x, y and z directions,
shear modulus and Poisson’s ratio in xy, xz, and yz planes are required
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3.3.3. Elastic Anisotropy

Anisotropy exists widely in all kinds of materials. In short, crystals have different properties in
different directions. It is easy to confuse anisotropy and inhomogeneity, which are two completely
different concepts. Anisotropy means that the properties of materials are related to directions, while
inhomogeneity means that the properties of materials are related to parts. In the case of single crystals,
at any point in the interior, the structures and properties are the same, but it has different performance
in different directions.

Crystal is anisotropic, with different properties in different directions, and has strict symmetry.
Here, the symmetry is a very remarkable property, which is widely used in mathematics and physics,
and also commonly used in the analysis of material properties. Polycrystalline materials have preferred
orientation and certain anisotropy.

All kinds of materials are elastic, and the elastic properties of most materials are anisotropic [45,46].
For example, in cubic crystals, the [111] direction is usually more difficult to compress than the
[100] direction. The three-dimensional surface Young”s modulus E of intermetallics is calculated as
follows [47]

1
E
= S11 − 2

(
S11 − S12 −

S44

2

)(
l12l22 + l22l32 + l12l32

)
(6)

where S11, S12, and S44 represent the flexibility coefficient, l1, l2, and l3 indicate direction cosines
relative to the x, y, and z directions, respectively.

Figures 4 and 5 show the three-dimensional Young’s modulus E surface of each intermetallic
compound Mg2X (X = Si, Ge) at 0 GPa with 1 × 1 × 2 supercells and 2 × 2 × 2 supercells, respectively.
The near sphere shows that these intermetallic compounds are elastic and anisotropic [48]. Compared
with other point defects of Mg2X, the Mg2X with X vacancy exhibits a relatively obvious deviation
from spherical shape, which indicates that the Mg2X with X vacancy has a relatively strong anisotropy.
The degree of spherical deviation of Mg2X decreases with the increase of supercell size, implying that
Mg2X with point defects show a relatively weak anisotropy in the 2 × 2 × 2 supercells.
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4. Conclusions

In this paper, based on DFT, the influence of point defects on the structure and elastic mechanical
stability of Mg2X (X = Si, Ge) intermetallic is revealed from the microscopic point of view:

(1) The difference of atomic radius, the lattice constant of Mg2Ge type intermetallics with (without)
point defects is larger than that of Mg2Si type, and the existence of point defects leads to the instability
of crystal cells and the expansion of lattice distortion.

(2) The predicted ∆Hf and Ecoh are consistently negative for all Mg2X (X = Si, Ge) with point
defects, implying the thermodynamic stability of Mg2X (X = Si, Ge) with point defects. The absolute
value of ∆H f of Mg2X (X = Si, Ge) with point defects is smaller than that of the cells without point
defects, which indicates that the structure with point defects is relatively difficult to form; intermetallics
are easier to form vacancy defects than anti-site on the X (X = Si, Ge) lattice site and form anti-site
defects on the Mg lattice site; the ∆Hf of the vacancy or anti-site defects of Mg2X at the Si or Ge
position is bigger than that at the Mg position, which indicates that the point defect is more likely to
appear at the Mg position than at the Si or Ge position; the absolute value of the binding energy of the
intermetallics without point defects is higher than that of the intermetallics with point defects, which
indicates that the energy required for atom bonding is higher and the structure is more stable when
there is no defect; the structure of the intermetallics forming point defects at the Mg position is more
stable than that at the Si/Ge position.

(3) When the point defects exist, the bulk modulus B, shear modulus G and Young’s modulus E of
intermetallic compounds become smaller, which indicates that the void and anti-void point defects
will reduce the volume deformation resistance, shear strain resistance, and positive elastic deformation
resistance of materials, and increase the mechanical instability of elastic deformation of materials. When
there is a vacancy or anti-site defect in the Mg position, the resistance to volume deformation, shear
strain and elastic deformation of the crystal is stronger than that in the Si or Ge position. Therefore, the
point defects in the Mg position enhance the mechanical stability of the material, while the plasticity is
poor. The maximum G/B value of Mg2X without point defects indicates that the formation of defects
will improve the ductility of materials; the G/ B value of vacancy point defects is smaller than that of
anti-site defects, indicating that vacancy point defects can improve the plasticity of materials more
than anti-site defects.

(4) The Poisson’s ratio ν of Mg2X without point defects is the smallest, which indicates that the
formation of defects makes the transverse deformation of the material larger, and the transverse elastic
instability increased. Compared with 2 × 2 × 2 supercells, the G/B of Mg2X with the same point defect
structure (except MgSi) in 1 × 1 × 2 supercells can enhance the plasticity of materials.
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