Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods and Instrumentation
2.3. Crystal Structure Determination
2.4. Synthesis
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. X-ray Structure
3.3. NMR Spectral Studies
3.4. Thermal Studies
3.5. IR Spectroscopy
3.6. Electronic Spectra
3.7. Fluorescence Sensing Property
3.8. DFT Studies
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Han, D.; Zhao, M. Facile and simple synthesis of novel iron oxide foam and used as acetone gas sensor with sub-ppm level. J. Alloys Compd. 2020, 815, 152406. [Google Scholar] [CrossRef]
- Baharuddin, A.A.; Ang, B.C.; Haseeb, A.S.M.A.; Wong, Y.C.; Wong, Y.H. Advances in chemiresistive sensors for acetone gas detection. Mater. Sci. Semicond. Process. 2019, 103, 104616. [Google Scholar] [CrossRef]
- Wu, G.Y.; Chen, L.J.; Xu, L.; Zhao, X.L.; Yang, H.B. Construction of supramolecular hexagonal metallacycles via coordination-driven self-assembly: Structure, properties and application. Coord. Chem. Rev. 2018. [Google Scholar] [CrossRef]
- Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev. 2015, 44, 815–832. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.W.; Kaes, C.; Katz, A. Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2,2’-bipyridine units. Chem. Rev. 2000, 100, 3553–3590. [Google Scholar]
- Monro, S.; Colón, K.L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119, 797–828. [Google Scholar] [CrossRef]
- Qin, Q.-P.; Wang, Z.-F.; Tan, M.-X.; Huang, X.-L.; Zou, H.-H.; Zou, B.-Q.; Shi, B.-B.; Zhang, S.-H. Complexes of lanthanides (iii) with mixed 2,2′-bipyridyl and 5,7-dibromo-8-quinolinoline chelating ligands as a new class of promising anti-cancer agents. Metallomics 2019, 11, 1005–1015. [Google Scholar] [CrossRef]
- Pohkrel, S.; Decato, D.; Rosenberg, E.; Ross, J.B.A.; Terwilliger, M. Synthesis, structure, photophysical and electrochemical properties of Ru(TFA)(CO)(PPh 3) 2 (L) (L=2-phenylpyridine, 2-p-tolylpyridine) and Ru(CO)(PPhMe 2 ) 2 (L)(L′) (L= TFA, H) (L′= bipyridine, L′= 4,4′-dimethylbipyridine) relationships between ancill. J. Organomet. Chem. 2017, 849–850, 306–314. [Google Scholar] [CrossRef]
- Solovyev, I.V.; Kondinski, A.; Monakhov, K.Y.; Koshevoy, I.O.; Grachova, E.V. Synthesis, photophysical properties and cation-binding studies of bipyridine-functionalized gold(i) complexes. Inorg. Chem. Front. 2018, 5, 160–171. [Google Scholar] [CrossRef]
- Saleh, N.; Srebro, M.; Reynaldo, T.; Vanthuyne, N.; Toupet, L.; Chang, V.Y.; Muller, G.; Williams, J.A.G.; Roussel, C.; Autschbach, J.; et al. Enantio-Enriched CPL-active helicene-bipyridine-rhenium complexes. Chem. Commun. 2015, 51, 3754–3757. [Google Scholar] [CrossRef]
- Toal, S.J.; Trogler, W.C. Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 2006, 16, 2871–2883. [Google Scholar] [CrossRef]
- Yu, X.F.; Lu, L.; Zhong, Y.R.; Luo, A.W.G.; Wang, J. Syntheses and luminescence of three lanthanide complexes constructed by flexible carboxylate ligand. Russ. J. Coord. Chem. 2017, 43, 244–251. [Google Scholar] [CrossRef]
- Xu, H.; Liu, F.; Cui, Y.; Chen, B.; Qian, G. A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. Chem. Commun. 2011, 47, 3153–3155. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Iftikhar, K. Efficient Layers of Emitting Ternary Lanthanide Complexes for Fabricating Red, Green, and Yellow OLEDs. Inorg. Chem. 2015, 54, 11209–11225. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xu, H.; Su, S.; Cai, J.; Dang, S.; Xiang, S.; Qian, G.; Zhang, H.; O’Keeffe, M.; Chen, B. A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem. Commun. 2011, 47, 5551–5553. [Google Scholar] [CrossRef]
- Yi, F.Y.; Yang, W.; Sun, Z.M. Highly selective acetone fluorescent sensors based on microporous Cd(ii) metal-organic frameworks. J. Mater. Chem. 2012, 22, 23201–23209. [Google Scholar] [CrossRef]
- Hua, J.A.; Zhao, Y.; Kang, Y.S.; Lu, Y.; Sun, W.Y. Solvent-dependent zinc(ii) coordination polymers with mixed ligands: Selective sorption and fluorescence sensing. Dalt. Trans. 2015, 44, 11524–11532. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhao, Y.; Wang, P.; Kang, Y.S.; Liu, Q.; Zhang, X.D.; Sun, W.Y. Multifunctional metal-organic frameworks with fluorescent sensing and selective adsorption properties. Inorg. Chem. 2016, 55, 11821–11830. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, G. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord. Chem. Rev. 2009, 253, 2891–2911. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, L.; Huang, Y.; Wang, C.; Duan, J.; Wen, L.; Tian, Z.; Li, D. A series of metal-organic frameworks based on 5-(4-pyridyl)-isophthalic acid: Selective sorption and fluorescence sensing. J. Mater. Chem. A 2014, 2, 12413–12422. [Google Scholar] [CrossRef]
- Harrison, W.D.; Kennedy, D.M.; Power, M.; Sheahan, R.; Hathaway, B.J. A structural profile of the bis(2,2′-bipyridyl)monochlorocopper(II) cation. Crystal structures of bis(2,2′-bipyridyl)monochlorocopper(II) perchlorate and the nitrate trihydrate. J. Chem. Soc.Dalt.Trans. 1981, 1556–1564. [Google Scholar] [CrossRef]
- Fereday, R.J.; Hodgson, P.; Tyagi, S.; Hathaway, B.J. Crystal structure and electronic properties of bis(2,2′-bipyridyl)-nitratocopper(II) nitrate monohydrate. J. Chem. Soc.Dalt.Trans. 1981, 2070–2077. [Google Scholar] [CrossRef]
- Wagner-Jauregg, T. Model reactions of phosphorus containing enzyme inactivators. Arzneimittelforschung 1954, 4, 527–531. [Google Scholar] [PubMed]
- Martell, A.E.; Chaberek, S.; Courtney, R.C.; Westerback, S.; Hyytiainen, H. Hydrolytic Tendencies of Metal Chelate Compounds. I. Cu(II) Chelates1. J. Am. Chem. Soc. 1957, 79, 3036–3041. [Google Scholar] [CrossRef]
- Sathish, V.; Ramdass, A.; Velayudham, M.; Lu, K.-L.; Thanasekaran, P.; Rajagopal, S. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalt. Trans. 2017, 46, 16738–16769. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-B.; Wang, P.; Yan, L.; Hao, L.; Khan, M.A.; Liu, G.; Li, H. Crystal structures, red-shifted luminescence and iodide-anion recognition properties of four novel D–A type Zn(ii) complexes. Dalt. Trans. 2020, 49, 4358–4368. [Google Scholar] [CrossRef]
- Germain, M.E.; Vargo, T.R.; Khalifah, P.G.; Knapp, M.J. Fluorescent Detection of Nitroaromatics and 2,3-Dimethyl- 2,3-dinitrobutane (DMNB) by a Zinc Complex: (salophen)Zn. Inorg. Chem. 2007, 46, 4422–4429. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Kapoor, I.P.S.; Kumar, D.; Singh, U.P.; Goel, N. Preparation, X-ray crystallography and thermal decomposition of transition metal perchlorate complexes with perchlorate and 2,2′-bipyridyl ligands. Inorganica Chim. Acta 2009, 362, 4091–4098. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Arjmand, F.; Muddassir, M. Design and synthesis of heterobimetallic topoisomerase I and II inhibitor complexes: In vitro DNA binding, interaction with 5′-GMP and 5′-TMP and cleavage studies. J. Photochem. Photobiol. B Biol. 2010, 101, 37–46. [Google Scholar] [CrossRef]
- Gurunatha, K.L.; Uemura, K.; Maji, T.K. Temperature- and stoichiometry-controlled dimensionality in a magnesium 4,5-imidazoledicarboxylate system with strong hydrophilic pore surfaces. Inorg. Chem. 2008, 47, 6578–6580. [Google Scholar] [CrossRef]
- Morizzi, J.; Hobday, M.; Rix, C. Gallium (III) organophosphonate adducts with the bidentate. Inorg. Chim. Acta 2001, 320, 67–74. [Google Scholar] [CrossRef]
- Selvakumar, B.; Rajendiran, V.; Uma Maheswari, P.; Stoeckli-Evans, H.; Palaniandavar, M. Structures, spectra, and DNA-binding properties of mixed ligand copper(II) complexes of iminodiacetic acid: The novel role of diimine co-ligands on DNA conformation and hydrolytic and oxidative double strand DNA cleavage. J. Inorg. Biochem. 2006, 100, 316–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belicchi-Ferrari, M.; Bisceglie, F.; Pelosi, G.; Tarasconi, P. Heterocyclic substituted thiosemicarbazones and their Cu(II) complexes: Synthesis, characterization and studies of substituent effects on coordination and DNA binding. Polyhedron 2008, 27, 1361–1367. [Google Scholar] [CrossRef]
- Arjmand, F.; Muddassir, M.; Khan, R.H. Chiral preference of l-tryptophan derived metal-based antitumor agent of late 3d-metal ions (Co(II), Cu(II) and Zn(II)) in comparison to d- and dl-tryptophan analogues: Their in vitro reactivity towards CT DNA, 5′-GMP and 5′-TMP. Eur. J. Med. Chem. 2010, 45, 3549–3557. [Google Scholar] [CrossRef] [PubMed]
- Shustova, N.B.; Ong, T.C.; Cozzolino, A.F.; Michaelis, V.K.; Griffin, R.G.; Dincǎ, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: Implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134, 15061–15070. [Google Scholar] [CrossRef] [Green Version]
- Benesi, H.A.; Hildebrand, J.H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. [Google Scholar] [CrossRef]
- Karmaoui, M.; Leonardi, S.G.; Latino, M.; Tobaldi, D.M.; Donato, N.; Pullar, R.C.; Seabra, M.P.; Labrincha, J.A.; Neri, G. Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10ppb) acetone sensor for biomedical applications. Sens. Actuators B Chem. 2016, 230, 697–705. [Google Scholar]
- Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E.B. Luminescent open metal sites within a metal-organic framework for sensing small molecules. Adv. Mater. 2007, 19, 1693–1696. [Google Scholar] [CrossRef]
- Yang, W.; Feng, J.; Zhang, H. Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J. Mater. Chem. 2012, 22, 6819–6823. [Google Scholar] [CrossRef]
- Li, Y.; Song, H.; Chen, Q.; Liu, K.; Zhao, F.Y.; Ruan, W.J.; Chang, Z. Two coordination polymers with enhanced ligand-centered luminescence and assembly imparted sensing ability for acetone. J. Mater. Chem. A 2014, 2, 9469–9473. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muddassir, M.; Usman, M.; Alarifi, A.; Afzal, M.; Abdullah Alshali, K.; Beagan, A.; Kumar, A.; Abduhd, N.A.Y.; Ahmad, M. Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone. Crystals 2020, 10, 324. https://doi.org/10.3390/cryst10040324
Muddassir M, Usman M, Alarifi A, Afzal M, Abdullah Alshali K, Beagan A, Kumar A, Abduhd NAY, Ahmad M. Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone. Crystals. 2020; 10(4):324. https://doi.org/10.3390/cryst10040324
Chicago/Turabian StyleMuddassir, Mohd., Mohammad Usman, Abdullah Alarifi, Mohd. Afzal, Khulud Abdullah Alshali, Abeer Beagan, Abhinav Kumar, Naaser A. Y. Abduhd, and Musheer Ahmad. 2020. "Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone" Crystals 10, no. 4: 324. https://doi.org/10.3390/cryst10040324
APA StyleMuddassir, M., Usman, M., Alarifi, A., Afzal, M., Abdullah Alshali, K., Beagan, A., Kumar, A., Abduhd, N. A. Y., & Ahmad, M. (2020). Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone. Crystals, 10(4), 324. https://doi.org/10.3390/cryst10040324