

Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone

Mohd. Muddassir ^{1,*}, Mohammad Usman ², Abdullah Alarifi ¹, Mohd. Afzal ¹, Khulud Abdullah Alshali ¹, Abeer Beagan ¹, Abhinav Kumar ³, Naaser A. Y. Abduhd ¹ and Musheer Ahmad ^{4,*}

- ¹ Department of Chemistry, College of Science, King Saud University, Riyadh 11451, KSA; arifi@ksu.edu.sa (A.A.); Afzalanalytical@gmail.com (M.A.); 437202938@student.ksu.edu.sa (K.A.A.); abeagan@ksu.edu.sa (A.B.); 439106262@ksu.edu.sa (N.A.Y.A.)
- ² Department of Chemistry, IIT Kanpur, Uttar Pradesh 208016, India; mohammadusman148@gmail.com
- ³ Department of Chemistry, Faculty of Science, University of Lucknow, 226 007, India; abhinavmarshal@gmail.com
- ⁴ Department of Applied Chemistry, Aligarh Muslim University, Aligarh 202002, India
- * Correspondence: mmohammadarshad@ksu.edu.sa (M.M.) amusheer4@gmail.com (M.A.)

Crystal structure determination

Single crystals of Zn complex were coated with a trace of Fomblin oil and quickly transferred to the goniometer head of a Bruker Quest diffractometer with a fixed chi angle, a sealed tube fine focus X–ray tube, single crystal curved graphite incident beam monochromator, a Photon100 CMOS area detector and an Oxford Cryosystems low-temperature device. Examination and data collection were performed with Mo K α radiation (λ = 0.71073 Å) at 150 K.

Data were collected, reflections were indexed and processed, and the files scaled and corrected for absorption using APEX3[1]. The space groups were assigned, and the structures were solved by direct methods using XPREP within the SHELXTL suite of programs [2,3] and refined by full–matrix least squares against F² with all reflections using Shelxl2018 [4,5] using the graphical interface Shelxle[6]. H atoms attached to carbon and nitrogen atoms as well as hydroxyl hydrogens were positioned geometrically and constrained to ride on their parent atoms. C–H bond distances were constrained to 0.95 Å for aromatic and alkene C-H moieties. N–H bond distances were constrained to 0.88 Å for planar (sp² hybridized) N-H groups. Figures were drawn using ORTEP–3.3 [7] and MERCURY–4.1.0 [8].

Computational methodology

The full geometry optimizations have been carried out at DFT level of theory using the B3LYP functional [9–11] with the help of the Gaussian–09 program package [12]. The calculations were performed using 6–31G* basis sets[13,14] for C, H, N, O, Cl atoms and def2-TZVP basis set for Zn atom. All the DFT calculations were performed with counter ions by employing the polarizable continuum model, CPCM (DMSO as solvent) [15–17]. No symmetry restrictions have been applied during geometry optimization. The Hessian matrix was calculated analytically for the optimized structures in order to prove the location of correct minima (no imaginary frequencies). The Cartesian atomic coordinates of the calculated optimized structures in DMSO are also provided below.

Zn-complex

1	30	-1.495821000	-0.196993000	0.444160000
2	8	-2.227674000	0.981163000	2.045308000
3	1	-3.188971000	0.891123000	2.159155000
4	1	-2.064962000	1.951545000	1.888098000
5	7	0.425101000	-0.215333000	1.378902000
6	7	-0.171200000	-0.250000000	-1.230480000

7	7	-3.379396000	-0.130428000	-0.590478000	
8	7	-2.228871000	-2.164759000	0.726952000	
9	6	-3.298658000	-4.715957000	0.892405000	
10	1	-3.723808000	-5.712595000	0.950449000	
11	6	3.005732000	-0.286110000	2.386218000	
12	1	4.023022000	-0.314416000	2.762817000	
13	6	-0.553641000	-0.266974000	-2.515545000	
14	1	-1.619856000	-0.193814000	-2.699430000	
15	6	2.786282000	-0.343339000	1.010846000	
16	1	3.632441000	-0.419779000	0.340000000	
17	6	-3.975111000	-3.710669000	0.203556000	
18	1	-4.921123000	-3.930462000	-0.274169000	
19	6	-3.416869000	-2.430985000	0.136565000	
20	6	-4.071104000	-1.292703000	-0.566746000	
21	6	1.141972000	-0.337586000	-0.918842000	
22	6	-1.578543000	-3.132927000	1.388916000	
23	1	-0.632236000	-2.852883000	1.839111000	
24	6	1.710954000	-0.465354000	-3.253777000	
25	1	2.453333000	-0.550835000	-4.040882000	
26	6	-5.874118000	-0.265966000	-1.789828000	
27	1	-6.851739000	-0.327432000	-2.256782000	
28	6	1.474679000	-0.302569000	0.531089000	
29	6	0.355368000	-0.371993000	-3.563937000	
30	1	0.003098000	-0.379912000	-4.589096000	
31	6	0.638523000	-0.154829000	2.702029000	
32	1	-0.247563000	-0.068456000	3.321011000	
33	6	2.113295000	-0.448667000	-1.919169000	
34	1	3.165576000	-0.525178000	-1.670425000	
35	6	1.917696000	-0.188281000	3.251805000	
36	1	2.047156000	-0.136627000	4.326937000	
37	6	-5.331062000	-1.387238000	-1.164402000	
38	1	-5.890891000	-2.313443000	-1.142321000	
39	6	-5.153525000	0.926551000	-1.802465000	
40	1	-5.543456000	1.821102000	-2.274585000	
41	6	-3.904922000	0.952196000	-1.185718000	
42	1	-3.299480000	1.853306000	-1.155864000	
43	6	-2.078276000	-4.427099000	1.499888000	
44	1	-1.521128000	-5.179705000	2.045753000	
45	17	-1.039830000	4.029542000	0.398788000	
46	8	-1.862114000	3.636101000	1.613646000	
47	8	0.357529000	3.542544000	0.578910000	
48	8	-1.066215000	5.510640000	0.278227000	
49	8	-1.644370000	3.401737000	-0.818009000	

2 of 12

50	17	6.540888000	-0.560175000	-0.471796000	
51	8	7.099477000	0.559377000	-1.287941000	
52	8	7.568229000	-1.632115000	-0.306143000	
53	8	5.340479000	-1.136617000	-1.170579000	
54	8	6.130378000	-0.044622000	0.873452000	
Zn-co	omplex +	acetone			
1	30	-1.734924000	-0.158995000	0.401872000	
2	8	-3.007393000	0.736617000	1.834120000	
3	1	-3.914048000	0.389412000	1.783234000	
4	1	-3.088677000	1.717302000	1.679958000	
5	7	-0.065444000	0.417277000	1.590668000	
6	7	-0.231553000	0.153065000	-1.065495000	
7	7	-3.422574000	-0.606130000	-0.865139000	
8	7	-1.975100000	-2.239813000	0.697305000	
9	6	-2.421762000	-4.965162000	0.931156000	
10	1	-2.603486000	-6.031562000	1.016979000	
11	6	2.229030000	1.166765000	2.946972000	
12	1	3.132327000	1.460352000	3.472282000	
13	6	-0.391273000	-0.022207000	-2.385240000	
14	1	-1.386299000	-0.300538000	-2.714904000	
15	6	2.243665000	1.042570000	1.558492000	
16	1	3.157621000	1.234984000	1.008258000	
17	6	-3.234422000	-4.185506000	0.109255000	
18	1	-4.040842000	-4.650025000	-0.443621000	
19	6	-2.990462000	-2.813280000	0.008927000	
20	6	-3.806224000	-1.902817000	-0.842345000	
21	6	0.980443000	0.500330000	-0.575575000	
22	6	-1.187120000	-2.991844000	1.479691000	
23	1	-0.371501000	-2.479389000	1.975529000	
24	6	1.905338000	0.496239000	-2.796958000	
25	1	2.752709000	0.625143000	-3.462411000	
26	6	-5.623593000	-1.409414000	-2.344426000	
27	1	-6.483907000	-1.732438000	-2.921582000	
28	6	1.069700000	0.661544000	0.900956000	
29	6	0.652554000	0.138584000	-3.291897000	
30	1	0.479700000	-0.015420000	-4.350959000	
31	6	-0.078890000	0.542459000	2.926323000	
32	1	-1.028371000	0.345474000	3.411359000	
33	6	2.073916000	0.683447000	-1.426114000	
34	1	3.047724000	0.956506000	-1.039658000	
35	6	1.051052000	0.914271000	3.648678000	
36	1	1.000981000	1.003142000	4.727947000	

Crystals 2020, 10, 324

Crysta	ls 2020 , 10,	324			
37	6	-4.913398000	-2.333188000	-1.579474000	
38	1	-5.227293000	-3.368860000	-1.560776000	
39	6	-5.220723000	-0.075479000	-2.354500000	
40	1	-5.749580000	0.673418000	-2.933006000	
41	6	-4.111257000	0.286305000	-1.594267000	
42	1	-3.755370000	1.311376000	-1.552916000	
43	6	-1.377755000	-4.363050000	1.629195000	
44	1	-0.718775000	-4.934797000	2.272422000	
45	17	-2.459442000	4.017534000	0.291935000	
46	8	-3.316678000	3.397337000	1.381247000	
47	8	-1.042443000	4.057606000	0.751634000	
48	8	-2.963540000	5.390620000	0.027534000	
49	8	-2.568525000	3.180866000	-0.944972000	
50	17	6.078765000	0.662643000	-0.814289000	
51	8	7.240300000	1.412286000	-1.377212000	
52	8	6.559827000	-0.336886000	0.190657000	
53	8	5.353677000	-0.044718000	-1.919576000	
54	8	5.142857000	1.631198000	-0.146237000	
55	6	3.040198000	-2.747079000	0.469608000	
56	8	1.858406000	-2.524678000	0.698946000	
57	6	4.089809000	-2.669934000	1.557898000	
58	1	4.871822000	-1.954251000	1.274445000	
59	1	3.633959000	-2.369837000	2.504008000	
60	1	4.577990000	-3.645185000	1.678080000	
61	6	3.529412000	-3.088398000	-0.921961000	
62	1	4.158873000	-3.985682000	-0.903928000	
63	1	2.682996000	-3.239996000	-1.595639000	
64	1	4.152014000	-2.265987000	-1.298128000	

 Table 1. Crystallographic data of {[Zn(bipy)2(H2O)](ClO4)2} (1).

CCDC No.	CCDC 766185
Color	Colorless
Molecular formula	$C_{20}H_{18}N_4OZn.2(ClO_4)$
Molecular weight	594.65
(g/mol)	
Crystal system	P21/c
Space group	Monoclinic
a (Å)	8.988 (3)
b (Å)	12.812 (4)
c (Å)	19.921 (5)
U (Å ³)	2214.8 (12)
$\beta = (^{\circ})$	105.095 (12)

Crystals 2020, 10, 324

DX (Mg m-3)	1.783
Ζ	4
F (000)	1208
Crystal size/mm	$0.30 \times 0.25 \times 0.20$
$\mu(\text{mm}^{-1})$	1.41
θ (°)	2.4–27.5
Index ranges	-10 < h < 10; -15 < k < 14;
	-15 < l < 23
No. of reflections collected	ed 1115
No. of independent reflec	tions (Rint) 3907 (0.055)
No. of observed $[I > 2\sigma(I)]$] reflections 3218
No. of data/restraints/ par	ameters 3907/0/325
$R[F2 > 2\sigma(F2)]$	0.050
wR(F2)	0.129
$\Delta \rho max$ and $\Delta \rho min$ (e Å ⁻³) 0.77 and -0.81

 $\label{eq:Table 2. Selected bond lengths [Å] and bond angles [°] of \{[Zn(bipy)_2(H_2O)](ClO_4)_2\} \ (1).$

Zn—O1	2.028 (3)	Zn—N2	2.061 (3)
Zn—N4	2.070 (3)	Zn—N1	2.091 (3)
Zn—N3	2.104 (3)		
O1—Zn—N2	118.99 (11)	O1—Zn—N4	121.81 (12)
N2—Zn—N4	119.18 (12)	O1—Zn—N189	.67 (11)
N2—Zn—N1	79.03 (13)	N4—Zn—N1	102.44 (13)
O1—Zn—N3	90.58 (10)	N2—Zn—N3	99.86 (12)
N4—Zn—N3	78.39 (12)	N1—Zn—N3	178.83 (13)
Zn—O1—H1A	121.2	Zn—O1—H1	B 107.0
C12—N1—Zn	115.0 (3)	C3—N2—C8	119.0 (3)
C3—N2—Zn	126.1 (2)	C8—N2—Zn	114.9 (2)
C7—N3—C19	118.4 (3)	C7—N3—Zn	114.7 (2)
C19—N3—Zn	126.3 (3)	C9—N4—C6	118.8 (3)
C9—N4—Zn	125.7 (3)	C6—N4—Zn	115.4 (2)

Table 3. The origin of the transitions from I	R, NMR, UV-Vis and T	ГGA and its description.
--	----------------------	--------------------------

IR(KBr, cm ⁻¹)	NMR (¹ H: DMSO–d ₆ , 400 MHz) δ (ppm) ¹³ C: (DMSO–d ₆ , 100 MHz)	UV-Vis UV–Vis (DMSO, nm):	TGA (°C) (25–800 °C)
3481(OH, H ₂ O); 3101 (CH, aromatic); 1442 (CH, aromatic); 1601, 1576, 1493 (bipyridyl N); 1100 (ClO ₄); 413 (Zn–O); 415 (Zn–N)	¹ H NMR; 7.8–8.7 (Ar–H); 3.4 (H ₂ O); 1.0 (trace amount of lattice Ethanol). ¹³ C NMR; 123–149 (Ar– C)	209 (π–π*) 295 (LMCT)	75–160 (Removal of traces of ethanol) 210–350 (Removal of coordinated water molecules)

320–360 (Removal of both the perchlorate anions) 365–600 (Decomposition of the bipyridyl group) 610–800 (Formation of Zinc oxide)

Scheme S1. Synthetic scheme of complex {[Zn(bipy)₂(H₂O)](ClO₄)₂} (1).

Figure S1. Ellipsoidal presentation of the molecular structure of complex {[Zn(bipy)₂(H₂O)](ClO₄)₂} (1) with 30% probability factor.

Figure 2. The ¹H NMR spectrum of complex {[Zn(bipy)₂(H₂O)](ClO₄)₂} (1) in DMSO-d6 at room

Figure S3. The ¹³C NMR spectrum of complex {[Zn(bipy)₂(H₂O)](ClO₄)₂} (1) in DMSO-d6 at room temperature.

Figure S4. Thermogravimetric analysis of complex {[Zn(bipy)2(H2O)](ClO4)2} (1).

 $\label{eq:Figure S5. IR spectrum of complex {[Zn(bipy)_2(H_2O)](ClO_4)_2} (1).$

 $\label{eq:Figure S6. UV-Vis Spectrum of complex {[Zn(bipy)_2(H_2O)](ClO_4)_2} (1).$

Figure S7. Normalized response of fluorescence signal of complex {[Zn(bipy)₂(H₂O)](ClO₄)₂} (1) in the presence of increasing amount of acetone (0 to 1.05 mM) predissolved in DMSO. (λ_{ex} = 295nm; λ_{em} = 325nm).

Figure S8. Frontier molecular orbital of various molecules used in sensing studies.

Figure S9. Frontier molecular orbital of the aggregate of complex $\{[Zn(bipy)_2(H_2O)](ClO_4)_2\}$ (1) with the various used solvents.

Figure S10. Electron localization function (ELF) map of the aggregate of complex {[Zn(bipy)₂(H₂O)](ClO₄)₂} (1) in different solvents.

Figure S11. B3LYP/DFT optimized structures of the aggregate of complex {[Zn(bipy)₂(H₂O)](ClO₄)₂} (**1**) in presence of various organic solvents for sensing. The d…d' distance in angstrom represents the nearest distance between the carbon atoms of bipyridyl moiety of Zn(II)-complex and different solvents.

References

- Bruker (2016). Apex3 v2016.9–0, Saint V8.34A, SAINT V8.37A, Bruker AXS Inc.: Madison (WI), USA, 2013/2014, (2016).
 - [2] SHELXTL suite of programs, Version 6.14, 2000–2003, Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin: USA, (n.d.).
 - [3] G.M. Sheldrick, A short history of SHELX., Acta Crystallogr. A. 64 (2008) 112–22. doi:10.1107/S0108767307043930.
 - [4] Sheldrick George M. University of Göttingen, Germany., (2018).
 - [5] G.M. Sheldrick, Crystal structure refinement with SHELXL., Acta Crystallogr. Sect. C, Struct. Chem. 71 (2015) 3–8. doi:10.1107/S2053229614024218.
 - [6] C.B. Hübschle, G.M. Sheldrick, B. Dittrich, ShelXle: A Qt graphical user interface for SHELXL, J. Appl. Crystallogr. 44 (2011) 1281–1284. doi:10.1107/S0021889811043202.
 - [7] L.J. Farrugia, ORTEP-3 for windows A version of ORTEP-III with a graphical user interface (GUI), J. Appl. Crystallogr. 30 (1997) 565. doi:10.1107/S0021889897003117.
 - [8] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Appl. Crystallogr. 39 (2006) 453–457. doi:10.1107/s002188980600731x.
 - [9] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652. doi:10.1063/1.464913.
 - [10] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37 (1988) 785–789. doi:10.1103/PhysRevB.37.785.
 - [11] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98 (1994) 11623–

11627. doi:10.1021/j100096a001.

- M.J.. Frisch, G.W.. Trucks, H.B.. Schlegel, G.E.. Scuseria, M.A.. Robb, J.R.. Cheeseman, G.. Scalmani, V.. Barone, B.. Mennucci, G.A.. Petersson, H.. Nakatsuji, M.. Caricato, X.. Li, H.P.. Hratchian, A.F.. Izmaylov, J.. Bloino, G.. Zheng, J.L.. Sonnenberg, M.. Hada, M.. Ehara, K.. Toyota, R.. Fukuda, J.. Hasegawa, M.. Ishida, T.. Nakajima, Y.. Honda, O.. Kitao, H.. Nakai, T.. Vreven, J.. Montgomery, J. A., J.E.. Peralta, F.. Ogliaro, M.. Bearpark, J.J.. Heyd, E.. Brothers, K.N.. Kudin, V.N.. Staroverov, R.. Kobayashi, J.. Normand, K.. Raghavachari, A.. Rendell, J.C.. Burant, S.S.. Iyengar, J.. Tomasi, M.. Cossi, N.. Rega, J.M.. Millam, M.. Klene, J.E.. Knox, J.B.. Cross, V.. Bakken, C.. Adamo, J.. Jaramillo, R.. Gomperts, R.E.. Stratmann, O.. Yazyev, A.J.. Austin, R.. Cammi, C.. Pomelli, J.W.. Ochterski, R.L.. Martin, K.. Morokuma, V.G.. Zakrzewski, G.A.. Voth, P.. Salvador, J.J.. Dannenberg, S.. Dapprich, A.D.. Daniels, Ö.. Farkas, J.B.. Foresman, J.V.. Ortiz, J.. Cioslowski, D.J. Fox, Gaussian 09 Citation | Gaussian.com, Gaussian, Inc., Wallingford CT,. (2009). http://gaussian.com/g09citation/ (accessed November 11, 2019).
- [13] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270–283. doi:10.1063/1.448799.
- [14] W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284–298. doi:10.1063/1.448800.
- [15] V. Barone, M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A. 102 (1998) 1995–2001. doi:10.1021/jp9716997.
- [16] M. Cossi, V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys. 115 (2001) 4708–4717. doi:10.1063/1.1394921.
- [17] M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem. 24 (2003) 669–681. doi:10.1002/jcc.10189.