ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Well Aligned ZnO Nanowire Arrays
2.2. Preparation of TiO2 Shell
2.3. Fabrication of DSSCs
3. Characterizations
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agarkar, S.A.; Dhas, V.V.; Muduli, S.; Ogale, S.B. Dye sensitized solar cell (DSSC) by a novel fully room temperature process: A solar paint for smart windows and flexible substrates. RSC Adv. 2012, 2, 11645–11649. [Google Scholar] [CrossRef]
- O’Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Thavasi, V.; Renugopalakrishnan, V.; Jose, R.; Ramakrishna, S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater. Sci. Eng. R 2009, 63, 81–99. [Google Scholar] [CrossRef]
- Forro, L.; Chauvet, O.; Emin, D.; Zuppiroli, L.; Berger, H.; Lévy, F. High mobility n-type charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 1994, 75, 633–635. [Google Scholar] [CrossRef]
- Greijer, A.H.; Boschloo, G.; Hagfeldt, A. Conductivity studies of nanostructured TiO2 films permeated with electrolyte. J. Phys. Chem. B 2004, 108, 12388–12396. [Google Scholar] [CrossRef]
- Van de Krol, R.; Goossens, A.; Meulenkamp, E.A. Electrical and optical properties of TiO2 in accumulation and of lithium titanate Li0.5TiO2. J. Appl. Phys. 2001, 90, 2235–2242. [Google Scholar] [CrossRef]
- Dai, S.Y.; Wang, K.J. Optimum nanoporous TiO2 film and its application to dye-sensitized solar cell. Chin. Phys. Lett. 2003, 20, 953. [Google Scholar]
- Xu, C.; Shin, P.H.; Cao, L.; Wu, J.; Gao, D. Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem. Mater. 2009, 22, 143–148. [Google Scholar] [CrossRef]
- Yu, K.H.; Chen, J.H. Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 2009, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ajmal Khan, M.; Ishikawa, Y.; Kita, I.; Fukunaga, K.; Fuyukib, T.; Konagai, M. Control of verticality and (111) orientation of In-catalyzed silicon nanowires grown by the vapour-liquid-solid mode for nanoscale device applications. J. Mater. Chem. C 2015, 3, 11577–11580. [Google Scholar] [CrossRef]
- Song, H.; Lee, K.H.; Jeong, H.; Um, S.H.; Han, G.S.; Jung, H.S.; Jung, G.Y. A simple self-assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells. Nanoscale 2013, 5, 1188. [Google Scholar] [CrossRef] [PubMed]
- Ajmal Khan, M.; Ishikawa1, Y.; Kita1, I.; Tani1, A.; Yano, H.; Fuyuki, T.; Konagai, M. Investigation of crystallinity and planar defects in the Si nanowires grown by vapor–liquid–solid mode using indium catalyst for solar cell applications. Jpn. J. Appl. Phys. 2016, 55, 01AE03. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P.E.; Lévy, F. Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 1994, 75, 2042–2047. [Google Scholar] [CrossRef]
- Bae, H.S.; Yoon, M.H.; Kim, J.H.; Im, S. Photodetecting properties of ZnO-based thin-film transistors. Appl. Phys. Lett. 2003, 83, 5313–5315. [Google Scholar] [CrossRef]
- Martinson, A.B.F.; McGarrah, J.E.; Parpia, M.O.K.; Hupp, J.T. Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2006, 8, 4655–4659. [Google Scholar] [CrossRef] [Green Version]
- Jennings, J.R.; Ghicov, A.; Peter, L.M.; Schmuki, P.; Walker, A.B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 2008, 130, 13364–13372. [Google Scholar] [CrossRef]
- Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2005, 6, 215–218. [Google Scholar] [CrossRef]
- Feng, X.; Shankar, K.; Varghese, O.K.; Paulose, M.; Latempa, T.J.; Grimes, C.A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786. [Google Scholar] [CrossRef]
- Liu, B.; Aydil, E.S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [Google Scholar] [CrossRef]
- Xu, C.; Wu, J.; Desai, U.V.; Gao, D. Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 8122–8125. [Google Scholar] [CrossRef] [PubMed]
- Abd-Ellah, M.; Moghimi, N.; Zhang, L.; Thomas, J.P.; McGillivray, D.; Srivastava, S.; Leung, K.T. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale 2016, 8, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C.F. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167. [Google Scholar] [CrossRef] [PubMed]
- Law, M.; Greene, L.E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. ZnO−Al2O3 and ZnO−TiO2 core−shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, T.; Kieven, D.; Rusu, M.; Belaidi, A.; Tornow, J.; Schwarzburg, K.; Lux-Steiner, M. Current-voltage characteristics and transport mechanism of solar cells based on ZnO nanorods/In2S3/CuSCN. Appl. Phys. Lett. 2008, 93, 053113. [Google Scholar]
- Kieven, D.; Dittrich, T.; Belaidi, A.; Tornow, J.; Schwarzburg, K.; Allsop, N.; Lux-Steiner, M. Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber. Appl. Phys. Lett. 2008, 92, 153107. [Google Scholar]
- Lévy-Clément, C.; Tena-Zaera, R.; Ryan, M.A.; Katty, A.; Hodes, G. CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv. Mater. 2005, 17, 1512–1515. [Google Scholar]
- Liu, L.Q.; Hong, K.Q.; Liu, H.J.; Luo, Z.W.; Zhao, F.G.; Xu, M.X. Rapid growth of copper oxide nanorod arrays by a microwave heating approach. Physica E 2013, 53, 106–109. [Google Scholar] [CrossRef]
- Liu, L.Q.; Ou, H.L.; Hong, K.Q.; Wang, L.X. Evidence of a strong electronehole separation effect in ZnO@TiO2 core/shell nanowires. J. Alloys Compd. 2018, 749, 217–220. [Google Scholar] [CrossRef]
- Manthina, V.; Correa, B.J.P.; Liu, G.; Agrios, A.G. ZnO–TiO2 nanocomposite films for high light harvesting efficiency and fast electron transport in dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 23864–23870. [Google Scholar] [CrossRef]
- Park, K.; Zhang, Q.; Garcia, B.B.; Zhou, X.; Jeong, Y.H.; Cao, G. Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Adv. Mater. 2010, 22, 2329–2332. [Google Scholar] [CrossRef] [PubMed]
- Palomares, E.; Clifford, J.N.; Haque, S.A.; Lutz, T.; Durrant, J.R. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem. Commun. 2002, 14, 1464–1465. [Google Scholar] [CrossRef] [PubMed]
Samples | Jsc (mA/cm2) | Voc (V) | FF | η (%) |
---|---|---|---|---|
1# | 4.03 | 0.64 | 0.27 | 0.71 |
2# | 6.23 | 0.65 | 0.31 | 1.24 |
3# | 6.89 | 0.71 | 0.30 | 1.46 |
4# | 8.63 | 0.68 | 0.35 | 2.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wang, H.; Wang, D.; Li, Y.; He, X.; Zhang, H.; Shen, J. ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells. Crystals 2020, 10, 325. https://doi.org/10.3390/cryst10040325
Liu L, Wang H, Wang D, Li Y, He X, Zhang H, Shen J. ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells. Crystals. 2020; 10(4):325. https://doi.org/10.3390/cryst10040325
Chicago/Turabian StyleLiu, Liqing, Hui Wang, Dehao Wang, Yongtao Li, Xuemin He, Hongguang Zhang, and Jianping Shen. 2020. "ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells" Crystals 10, no. 4: 325. https://doi.org/10.3390/cryst10040325
APA StyleLiu, L., Wang, H., Wang, D., Li, Y., He, X., Zhang, H., & Shen, J. (2020). ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells. Crystals, 10(4), 325. https://doi.org/10.3390/cryst10040325