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Abstract: In this work, CoFe2O4 nanowire was fabricated by using a self-designed double-pass
porous alumina template. The double-pass porous alumina template was prepared by a two-step
oxidation method using a mixed acid (phosphoric acid and oxalic acid) electrolyte and polymethyl
methacrylate (PMMA) filler. The combustion of aluminum foil at a high voltage has been effectively
resolved by using this mixed acid electrolyte. Additionally, the range of pore diameters has been
obviously increased to 230–400 nm by using PMMA as the filler, which can prevent contact between
the pore and solution when removing the barrier layer. Subsequently, CoFe2O4 ferrite nanowire arrays
were successfully fabricated into the double-pass porous alumina template by an electrochemical
deposition method, and show an anisotropic feature of magnetic properties.
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1. Introduction

Recently, one-dimensional magnetic nanomaterials such as nanowires, nanotubes, and nanorods
have attracted much attention due to their potential applications in magnetic integrated nanosystems,
perpendicular magnetic records, microwave absorbing, and spintronic nanodevices [1,2]. Cobalt spinel
ferrite CoFe2O4 (CFO) is well known for its high coercivity, giant magnetostriction, unique light-induced
coercivity change, and remarkable chemical stability. CFO has various applications, such as humidity
sensors, photodetectors, biomedical, and magnetoelectric devices [3,4]. Various methods have been
used to prepare ferrite magnetic nanomaterials, such as the hydrothermal method [5–7], sol–gel
template-assisted method [8–10], electrochemical deposition template-assisted method [11–13],
and physical vapor deposition template-assisted method [14–16]. Obviously, template-assisted methods
are the most universal and effective methods. Therefore, various templates, such as mesoporous
molecular sieves [17], polymer porous membranes [18], porous silicon [19], and alumina templates [20],
have been widely used. Among them, the alumina template is favorable in the preparation of
one-dimensional nanostructures because of its adjustable template parameters, uniform pore size,
hexagonal structure arrangement, parallel pores, highly ordered structure, good physical and chemical
stability, and low production cost.

In 1995, H. Masuda successfully prepared self-ordered porous anodized alumina oxide (AAO) [21]
and then established a two-step anodization method to further optimize the morphology of the
template. The two-step oxidation method involves etching of the oxide layer produced by the first
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oxidation and then a second oxidation on the aluminum surface with regular pit morphology, thereby
increasing the order of the porous alumina pores. Subsequently, the AAO template parameters,
including the pore diameter and thickness, were adjusted by the oxidation conditions, such as the
etching time, anodization time and electrolytes [22,23]. For example, AAO templates have been
successfully prepared in different electrolytes: 10–30 nm pore diameter in sulfuric acid [24,25] and
30–100 nm pore diameter in oxalic acid [26]. However, the preparation of AAO with pore diameters
larger than 100 nm still faces some difficulty, which plays an important role in nanodevices. Moreover,
the double-pass AAO template, especially the ultrathin template, can be used to prepare functional
nanoarray materials, which have a significant role in nanodevices. Therefore, the preparation of
double-pass AAOs with large-diameter pores has great significance but also faces some problems.

First, phosphoric acid has been widely used as the electrolyte for large-pore-diameter AAO;
however, the oxide film formed in phosphoric acid is easily burned under high voltage. Various studies
have used organic compound-assisted phosphoric acid as an electrolyte to alleviate this problem, such as
ethanol-assisted oxalic acid electrolytes [27] and methanol-assisted phosphoric acid electrolytes [28,29].

Second, the whole wall will become very thin and even completely dissolve during etching of the
barrier layer. Removal of the barrier layer is an essential step for double-pass AAO and always results
in etching of the whole wall in the etching solution. Therefore, choosing a suitable reagent to fill the
pores and avoid pore contact with the solution is an effective and significant method.

In this work, a double-pass AAO template with a pore diameter range of 230–400 nm was prepared
by using two-step anodization with a mixed acid (phosphoric acid and oxalic acid) as the electrolyte
and polymethyl methacrylate (PMMA) as a pore filler. The obtained large range of pore diameters of the
AAO template is believed to be highly applicable for fabricating magnetic nanomaterials. Subsequently,
the CFO ferrite nanowires was successfully fabricated into the double-pass porous alumina template
by the electrochemical deposition method.

2. Experimental

2.1. Preparation of Double-Pass AAO Template

2.1.1. The Pretreatment of Aluminum Film

AAO was prepared by using aluminum foil (15 mm× 10 mm) with a purity of 99.99%. To eliminate
defects and stresses in the aluminum foil, pretreatment of aluminum foil is indispensable. The aluminum
foil was first annealed at a high temperature (400 ◦C) for two hours in a nitrogen atmosphere and
degreased and then cleaned with acetone, alcohol, and deionized water sequentially. Finally, it was
electrochemically polished in a solution of perchloric acid: alcohol = 1:4 (volume ratio) with a voltage
of 20 V for 2 min.

2.1.2. Two-Step Anodization

In the two-step anodic oxidation, a mixed solution of 0.5 wt % phosphoric acid and 0.01 M oxalic
acid was used as the electrolyte. The temperature of the bath was kept at 5 ◦C, and the anodizing
voltage was 195 V. After the first oxidation, the oxide layer was etched with a solution consisting of
6 wt % phosphoric acid and 1.5 wt % chromic acid. Thereafter, a second anodization was carried out
under the first oxidation conditions. The particular experimental parameters are shown in Table 1.
In addition, the two-step voltage method was used at the beginning of the anodization process,
and 145 V was applied initially. After one minute, another 50 V was applied to reach the predetermined
voltage (195 V). The high voltage was applied by a DC regulated power supply (MP1501D), and the
temperature of the bath was maintained by the Cryostat (DC-0506).



Crystals 2020, 10, 331 3 of 11

Table 1. The experimental parameters of two-step anodic oxidation.

- First Anodization Oxide Removal Second Anodization

Solution 0.5 wt % H3PO4 +
0.01 M C2H2O4

6 wt % H3PO4 +
1.5 wt % H2CrO4

0.5 wt % H3PO4 +
0.01 M C2H2O4

Temperature 5 ◦C 60 ◦C 5 ◦C

Time 2 h 2 h -

2.1.3. Removal of the Barrier Layer

For comparison, removal of the barrier layer can be accomplished by two schemes: (1) the porous
film was directly immersed in the 5 wt % phosphoric acid solution at room temperature and (2) the
porous film was first immersed in the 0.3 g/mL PMMA colloid for 30 min and then dried by an oven
lamp. Subsequently, the PMMA-filled porous film was immersed in the 5 wt % phosphoric acid
solution at room temperature. Last, the double-pass AAO was obtained after the PMMA was dissolved
in an acetone solution.

2.2. Preparation of CFO Nanowires

CFO nanowire arrays were synthesized by the electrochemical deposition method with two
electrodes systems. The double-pass AAO with a metal layer on one side as the cathode electrode,
the anode electrode is a graphite. The metal (Cu) layer was deposited by the electron beam evaporation
(EBE). The following composition of electrolyte was used: FeSO4·7H2O, CoSO4·7H2O, ascorbic
acid (C6H8O6) and boric acid (H3BO3), and the PH of electrolyte solution be controlled at 3.0 by
H3BO3. FeSO4·7H2O and CoSO4·7H2O were dissolved in deionized water with a molar ratio of 1:2.
The magnetic alloy was deposition into the AAO under the DC at 2.5 V. After that, the AAO with
the CoFe2 nanowire arrays was annealing in open air at 720 ◦C for 10 h. The schematic diagram of
synthesis mechanism of CFO nanowire is shown in Figure 1.
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Figure 1. Schematic diagram of synthesis mechanism of the CFO nanowire.

2.3. Characterizations of AAO and CFO Nanowires

The morphology of the porous anodic alumina and nanowires were characterized by scanning
electron microscopy (SEM, JEOL, JSM-7800F, Tokyo, Japan). The composition of CFO nanowires was
further analyzed by an energy dispersive spectrometer (EDS, INCA Energy). The phase of nanowires
was examined by x-ray diffraction (Cu Ka radiation, XRD, Ultima IV, Rigaku, Tokyo, Japan). The static
magnetic properties of the sample with size of 2 × 2 mm2 were investigated by a physical property
measurement system (PPMS-9T from Quantum Design, CA, USA) at different temperatures.
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3. Results and Discussion

3.1. Using a Mixed Acid of Phosphoric Acid and Oxalic Acid as the Electrolyte

The variation in the current with the oxidation time in different electrolytes is shown in Figure 2.
First, the inset in Figure 2a displays the high stability of the two-step voltage process at oxidation
times < 80 s, which plays an important role in the preparation of the AAO template. However, in the
electrolyte consisting of phosphoric acid only, the current instantaneously rose at 800 s (shown as the
blue curve in Figure 2a), and combustion occurred on the surface of the aluminum foil. The difference
is that the current tended to gradually stabilize in the mixed acid electrolyte (0.5 wt % H3PO4 and
0.01 M H2C2O4), which is shown as the pink curve in Figure 2a. This phenomenon indicates that the
mixed acid electrolyte effectively resolves the problem of burning of the oxide film under high voltage.
The reason can be illustrated as follows: in the mixed acid electrolyte, the generated Al3+ prefers to
coordinate with acid anions (C2O4

2−) to form a complex, which could reduce the migration of ions and
inhibit the anodization process, thereby avoiding “burning” of the aluminum foil.
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Additionally, the formation mechanism of the AAO film can be explained from the curve of
current–time variation [30], which is shown in Figure 2b. The curve is mainly divided into three
stages: (1) The sudden appearance of the applied electric field will generate a pulse current signal,
and then an oxide layer (high resistance) is formed on the surface of the aluminum foil, which hinders
the transmission of charged ions in the solution so that the current drops instantaneously from more
than 20 mA to a minimum of 2.8 mA. (2) When the oxidation time reaches 130 s, the current starts to
increase. In this stage, the oxide layer gradually becomes thicker, the volume expansion causes cracks,
and then the solution penetrates the crack. A field-assisted dissolution reaction occurs under the action
of the electric field. The pores are initially nucleated, and the current gradually increases and reaches
a maximum (4.5 mA at 450 s). (3) Subsequently, the current tends to stabilize at an oxidation time
of 720 s after adjustment. At this moment, the rates of both increasing and decreasing current have
reached a dynamic balance.

3.2. Using PMMA as Filler

For comparison, the AAO template was also prepared without using PMMA, and parameters
such as the interpore distance (Dc), thickness, and pore diameter were studied. First, the interpore
distance is mainly determined by the oxidation voltage [31]:

Dc=λc·U (1)
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where the proportionality constant λc is approximately 2.5 nm·V−1. Here, the theoretical value of Dc is
approximately 487 nm at U = 195 V, which is very close to the value (496 ± 10 nm) measured from the
SEM image, as shown in Figure 3a.

Second, the thickness of the AAO is determined by the oxidation time. Figure 3b–e shows the
cross-sectional image of the template after oxidation for 1 h, 2 h, 3 h and 4 h. The nanopore walls
are smooth, straight and parallel to each other. Additionally, the thickness increased with increasing
oxidation time. Figure 3f also displays a linear relation between the film thickness and the oxidation
time. The growth rate was approximately 6.3 µm/h, which is influenced by the second anodization time.
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Last, the pore diameter was determined by the etching time. The impact of the pore-widening
duration on the diameter of the pores is depicted in Figure 4. The pore diameter gradually increased
with increasing etching time. Figure 5 shows the linear relation between the pore diameter and
etching time, and the etching rate was calculated to be approximately 1.06 nm/min. When the etching
time reached 300 min, the pore diameter was increased to 400 nm, and the pores show a hexagonal
morphology. Furthermore, the morphology of the barrier layer is also given in the upper right corner
of Figure 4, indicating that obtaining the double-pass AAO required an etching time of ≥200 min.
However, the pore diameter was close to 300 nm after etching for this time. Therefore, based on only
the above steps (method), there was a limitation in the pore diameter of the double-pass AAO film,
which would limit the application of the template.
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Therefore, the PMMA colloid that did not react with acids but dissolved in acetone was chosen
as the reagent to fill the pores in this work. A schematic diagram is shown in Figure 6. In brief,
the PMMA colloid was filled into the single-pass AAO, and then the barrier layer was removed in a
phosphoric acid solution. Finally, the double-pass AAO was obtained after removal of the PMMA
colloid in acetone. Figure 7a,b shows that the dried PMMA has filled into the pore, as seen in the SEM
images of the removed AAO area and the cross-sectional view. Figure 7c–f shows the morphology
of the AAO template and barrier layer after etching the PMMA/AAO composite for different times.
Notably, the barrier layer was completely removed after etching for 8 h.
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Figure 7. (a) Top view of the PMMA/AAO composite film; (b) cross-sectional view of the PMMA/AAO
composite film; and (c–h) SEM images of the PMMA/AAO composite film after different etching times.

After removal of the barrier layer, the pore diameter can be further increased by etching in solution.
Figure 8 shows SEM images of the AAO film (after 8 h of barrier layer removal) after etching for
different times (0 min, 20 min, 40 min, 60 min and 80 min). The variation in pore diameter as a function
of etching time is shown in Figure 9. It is clearly demonstrated that the pore diameter is dependent on
the etching time. The pore diameter increased from 230 to 310 nm after 80 min of etching. The average
etching rate is calculated to be 1 nm/min, which is basically consistent with the comparison experiment.
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The pore diameter can be controlled in the range of 230–400 nm by using the PMMA colloid, which is
wider than the pore diameter of AAO without using PMMA (300–400 nm). Therefore, using a PMMA
colloid can effectively avoid pore contact with the solution and achieve a wide pore diameter range in
the double-pass AAO.
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3.3. Characterization of CFO Nanowires

Subsequently, the CFO nanowires was fabricated into the above made double-pass AAO template
with a 255 nm pore diameter by the electrochemical deposition method. The morphologies of CFO
nanowires after annealing at 720 ◦C for 10 h were observed by SEM. On the left of Figure 10a shows a
represent SEM image of the AAO template with CFO nanowires, proving that the nanowires grow
closely along the template channels, and the nanowire diameter was approximately equal to the
template pore diameter. A uniform length (5 µm) and straight nanowire arrays were obtained after
the AAO template was dissolved away, which is shown on the right. EDS spectrum (Figure 10b)
quantitative analysis of CFO nanowires indicates an approximately 1:2 atomic ratios of Co:Fe, inferring
a CoFe2O4 compositions for the nanowire prepared under these experimental conditions.

Figure 10c shows the XRD pattern of CFO nanowires within the AAO template. Strong diffraction
peaks of crystalline Al2O3 could be observed due to the oxidized of AAO at high annealing temperature.
Although for the noise signal, the diffraction peaks of CFO could also be indexed according to the
PDF#22-1086 standard for CFO. The result indicates that the obtained CFO nanowires had no preferred
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crystallite orientation. Additionally, a diffraction peak of Fe (100) could also be observed in the XRD
pattern, which declared incomplete oxidation for the CoFe2 alloy nanowire with a 250 nm diameter
even for 10 h.
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The static magnetic properties of CFO nanowires in AAO templates were studied by using the
hysteresis loops as shown in Figure 10. The representative hysteresis curves of the CFO nanowires
at three temperatures (4 K, 100 K, and 300 K) are displayed. It can be obtained that the coercivity
(HC) and saturation magnetization (Ms) increased by 118% and 22% respectively, with the decrease
of temperature from 300 to 4 K. The static magnetic properties of CFO nanowires in AAO templates
were studied by using the hysteresis loops as shown in Figure 11. The representative hysteresis
curves of the CFO nanowires at three temperatures (4 K, 100 K, and 300 K) are displayed. One of
the remarkable features in Figure 11a is that the magnetization did not saturate at low temperature,
especially at 4 K. It could be attributed to the disordered spins at the surface of nanoparticles that
are difficult to align along the field direction causing an unsaturated magnetization in these particles.
The inset of the figures shows a magnified region around the origin to make the coercivity more visible
at various temperatures. It can be obtained that the coercivity (HC) and saturation magnetization
(Ms) increased by 118% and 22% respectively, with the decrease of temperature from 300 K to 4 K.
The thermal fluctuation affected the blocked moment across the anisotropy barrier, which is a reason
for the increase in HC with a decrease in temperature. The Kneller’s law as follows in Equation (2) can
well explain the relationship between coercivity and temperature (<TB, TB is the superparamagnetic
blocking temperature of the nanoparticles) of the magnetic nanostructure with anisotropy [32].

HC = H0(1− T/TB)
1
2 (2)
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Here, H0 is the coercivity at T = 0 K. It is obtained that the HC was increasing with the decrease
of temperature. Similarly, the relation between saturation magnetization and temperature can be
explained by the Bloch’s law and the modified Bloch’s law [33] as:

Ms = M0(1− T/T0)
α (3)

Here, M0 is the magnetization at T = 0 K, and T0 is the temperature when the Ms is zero. (1/T0)
α

is called the Bloch’s constant (B) that depends upon the structure of the material. For the nanoparticles,
the Bloch exponent α is large than 3/2 [34]. Therefore, the Ms also increases with a decrease in
temperature of the sample.

The hysteresis loop of the CFO nanowire arrays with the applied field parallel and vertical to
the longitudinal nanowires were also given in Figure 11b. It is shown that their hysteresis loops were
different, which means that the CFO nanowires fabricated show an anisotropic behavior. This behavior
was mainly due to the larger shape anisotropy of the nanowires. It is interesting to find that the
hysteresis curves vertical to the longitudinal nanowires demonstrated an obvious wasp-waisted
hysteresis loop. It is worth to note that the hysteresis curve exhibited obvious constricted M–H loops
characterized by a small coercivity at low fields whereas at higher field these M–H loops were open
at both ends. If there were further raising of the field, closing of loops and magnetization saturation
could be observed. The reason for this type of hysteresis loop is generally observed in bimagnetic
exchange spring systems consisting of two chemically different magnetic phases; one soft phase and
the other one hard phase [35–37]. In this work, the hard phase of CFO and soft phase of Fe coexisted
in the nanowires, which was confirmed from the XRD results. As a result, a wasp-waisted structure
formed in the low field. Furthermore, this phenomenon was more obvious in the vertical direction
than the parallel direction, which might be for its high shape anisotropy.
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Figure 11. Magnetism of the obtained CFO nanowires, (a) hysteresis loops along the parallel direction
at 4 K, 100 K, and 300 K and (b) hysteresis loops along the parallel and vertical direction at 300 K.
The insets show the magnified region.

4. Conclusions

A double-pass AAO template was prepared by a two-step oxidation method using a mixed acid of
phosphoric acid and oxalic acid as the electrolyte and PMMA as the filler. The combustion of aluminum
foil at a high voltage was effectively resolved by using this mixed acid. Additionally, the range
of pore diameters was obviously increased to 230–400 nm by using PMMA as the filler, which can
prevent contact between the pores and the solution when removing the barrier layer. Subsequently,
CFO ferrite nanowire arrays were successfully fabricated into the double-pass AAO template, and show
an anisotropic feature of magnetic properties.
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