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Abstract: A combination of tetrasulfonylcalix[4]arene (3-4H) together with a calix[4]arene
dicarboxylate derivative 2-4H led, in the presence of MII(NO3)2 (M = Co, Ni, Zn), to the formation of
three novel isostructural metallomacrocycles of formula [M3(DMF)2(µ3-H2O)-(2-2H)-3]. The structure
of the prepared coordination compounds was studied in the solid state using single crystal/powder
X-ray diffraction studies. The X-ray diffraction on single crystal revealed that the structure of the
obtained supramolecular complexes is composed of a trinuclear metallic cluster [M3]+6 held between
one di-deprotonated molecule of (2-2H)2− offering two carboxylate groups for binding metal cations
and one tetra-deprotonated compound 34−, where four oxygen atoms, belonging to four deprotonated
phenolic moieties and three oxygen atoms coming from three SO2 groups, are coordinated with the
cluster core. Thus, an example of an easily reproducible molecular recognition pattern involving
two different types of calix[4]arene based ligands, displaying different coordination moieties, and
trinuclear metallic clusters, is reported here. In addition, it has been shown that the cone moieties of
the calixarene also encapsulate solvent molecules.

Keywords: metallomacrocycle; tetrasulfonylcalix[4]arene; carboxylic derivatives of calix[4]arene;
trinuclear clusters; coordination compounds

1. Introduction

In recent decades, metallamacrocyles, discrete complex supramolecular architectures, composed
of polytopic ligands and metal ions, have attracted much attention because of their intriguing
features [1–8]. Metallamacrocyles of different sizes and nuclearities have been reported, some of
them presenting catalytic, magnetic, optical, redox or photophysical properties, essentially due to the
presence of confined metal centers.

The investigation of the propensity of different molecular species to form metallamacrocyles has
been of significant importance in the last decades. To date, in the literature, a series of recognition
patterns based on the self-assembly of complementary organic ligands and metallic ions that allows
to obtain hybrid discrete supramolecular species, among them, metallamacrocyles, have been well
documented [9]. Concerning organic ligands, macrocycles generally present a well-adapted shape for
the formation of metallamacrocyles: we can cite, for example, porphyrins, [10,11] or calix[4]arenes.
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Calixarene [12,13] is a family of versatile macrocyclic compounds that, when functionalized or not,
are able to bind metallic cations, thus forming coordination compounds of various dimensionalities
(0D-3D) that present attractive physical properties [14,15]. In particular, the calix[4]arenes cone
conformers of 1-4H, 3-4H and 4-4H (Figure 1), are of interest because of their remarkable ability to
form high-nuclearity metal complexes [16,17], which can also be combined with auxiliary ligands to
form metallomacrocycles.
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Figure 1. Classical p-tert-butylcalix[4]arene (1-4H), the targeted macrocyclic ligand (2-4H),
Tetrasulfonylcalix[4]arene (3-4H) and thiacalix[4]arene (4-4H).

In this aspect, the tetrasulfonylcalix[4]arene 3-4H [18,19], as shown in Figure 1, represents a very
suitable polydentate ligand offering four phenolate groups together with four sulfonyl moieties as
coordinating sites, to form metallomacrocycles as well as supramolecular capsules or cages when
interacting with metallic cations [20]. The formation of supramolecular coordination compounds of
highly nuclearities, based on its parent compound 4-4H has been recently documented [21–26].

It should be noted that metacyclophanes, a subclass of calix[4]arene compounds, have been
reported as being able to form metallamacrocycles, using metallic cations like Co(II), Cu(II), Zn(II),
Hg(II) and Ag(I) [27–30].

In this work, we present the synthesis and structure of a series of three isostructural coordination
compounds that were obtained using two different types of macrocyclic ligands blocked in cone
conformation, among them 3-4H (Figure 1) and another auxiliary macrocyclic ligand, a classical
calixarene appended with two propoxycarbonyl-coordinating moieties, 2-4H [31]; both organic ligands
are able to cap trinuclear clusters composed of Co(II), Ni(II) or Zn(II) cations.

Below, we focus on the formation of low-nuclearity compounds, like trinuclear species.
Several examples of trinuclear metallamacrocycles based on different ligands have been documented
in the literature, involving Ni(II) [32], Pt(II) and Pd(II) [33], Fe(II) [34], or Ru(II) [35], exhibiting some
interesting magnetic or photoswitchable properties [36].

The structural analysis of the unprecedented unsymmetrical trinuclear metallamacrocycles,
obtained using a strategy based on interaction between two different types of calix[4]arene ligands
with metallic ions, will be presented in detail. To the best of our knowledge, the examples presented
below are the first reported trinuclear metallomacrocycles based on the cooperative association of two
different calix[4]arene ligands.
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2. Materials and Methods

2.1. Materials

2-4H [37,38] and Tetrasulphonylcalix[4]arene 3-4H [18] were synthesized following already
described procedures. All solvents and reagents used in the synthesis were of analytical grade and
used without further purification. Nitrate salts of cobalt (II), nickel (II) and Zinc (II) were obtained
from commercial sources.

2.2. Synthesis of Co3(H2O)(DMF)2-(2-2H)-3

Compounds 2-4H (25 mg, 29,4 mmol), 3-4H (24 mg, 29,4 mmol) together with Co(NO3)2·6H2O
(43 mg, 148 mmol) were dissolved in DMF/MeOH mixture (2/1, 9 mL) and put into a Pyrex crystallization
reactor equipped with a screw cap. Then, the solution was heated under MW irradiation conditions
(100 W) and stirred for 3 hours. After cooling and filtration, pink single crystals suitable for X-ray
diffraction were obtained upon slow evaporation of the mother liquor at room temperature under
aerobic conditions for 1 week. Total yield: 35 mg (44%).

Anal. Found for (C40H44O12S4)(C52H66O8)Co3(C3H7NO)2(H2O)·(C3H7NO)5(H2O)2: C, 56.40;
H, 6.91; N, 4.07; S, 5.33%. Calc.: C, 56.92; H, 6.93; N, 4.80; S, 5.17 %.

2.3. Synthesis of Ni3(H2O)(DMF)2-(2-2H)-3

The green single-crystals of Ni3(H2O)(DMF)2-2-3 were obtained by following similar crystallization
conditions described for Co3(H2O)(DMF)2-(2-2H)-3, using Ni(NO3)2·6H2O. Total yield: 40 mg (51%).

Anal. Found for (C40H44O12S4)(C52H66O8)Ni3(C3H7NO)2(H2O)·(C3H7NO)5(H2O): C, 56.84;
H, 6.88; N, 4.11; S, 5.37%. Calc. C, 56.92; H, 6.97; N, 4.80; S, 5.17 %.

2.4. Synthesis of Zn3(H2O)(DMF)2-(2-2H)-3

The colorless single crystals of Zn3(H2O)(DMF)2-2-3 were obtained by following the similar
crystallization conditions as described for Co3(H2O)(DMF)2-(2-2H)-3, using Zn(NO3)2•6H2O.
Total yield: 48 mg (61%).

Anal. Found for (C40H44O12S4)(C52H66O8)Zn3(C3H7NO)2(H2O)·(C3H7NO)5(H2O)2: C, 55.53;
H, 6.89; N, 4.01; S, 5.25%. Calc.: C, 56.25; H, 6.93; N, 4.75; S, 5.11%.

2.5. Physical Measurements

Elemental analysis was performed on a Vario Macro CHN Analyzer (Elementar
Analysensysteme GmbH, Langenselbold, Germany).

2.6. Single Crystal X-Ray Diffraction Studies

Data sets for single crystals M3(DMF)2-2-3 (M = Co, Ni and Zn) were collected on a Rigaku
XtaLab Synergy S instrument with a HyPix detector and a PhotonJet microfocus X-ray tube using Cu
Kα (1.54184 Å) radiation at 100 K. Images were indexed and integrated using the CrysAlisPro
data reduction package. Data were corrected for systematic errors and absorption using the
ABSPACK module. The GRAL module was used for the analysis of systematic absences and space
group determination. Using Olex2 [39], the structure was solved by direct methods with SHELXT [40]
and refined by the full-matrix least-squares on F2 using SHELXL [41]. Non-hydrogen atoms were
refined anisotropically. The figures were generated using the Mercury 4.1 program [42]. Disordered
fragments were refined with reasonable constraints and restraints. DMF molecules were placed using
lia’s fragment library [43]. For Zn3(DMF)2-2-3 a solvent mask was calculated and 15 electrons were
found in a volume of 135 Å3 in five voids per unit cell. This is consistent with the presence of 0.5 H2O
per unit cell. Crystal data are summarized in the crystallographic table (Table 1).
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Table 1. Crystallographic data for Co3(DMF)2-2-3, Ni3(DMF)2-2-3 and Zn3(DMF)2-2-3.

Co3(H2O)(DMF)2-(2-2H)-3 Ni3(H2O)(DMF)2-(2-2H)-3 Zn3(H2O)(DMF)2-(2-2H)-3

Formula C98H125Co3N2O23S4,
6.5(C3H7NO)

C98H126N2Ni3O23S4,
6.5(C3H7NO)

C98H126N2O23S4Zn3,
6.5(C3H7NO) 0.5(H2O)

Molecular weight 2479.14 2479.49 2508.48
Crystal System Triclinic Triclinic Triclinic
Space Group P1 P1 P1

a (Å) 13.0582(2) 13.1486(3) 13.12500(10)
b (Å) 22.3247(3) 22.2435(5) 22.4394(2)
c (Å) 22.6890(3) 22.6199(3) 22.5845(2)
α () 76.5080(10) 76.6746(14) 76.5670(10)
β () 79.8350(10) 79.6798(13) 79.7540(10)
γ () 78.3650(10) 77.9782(17) 78.0450(10)

V (Å3) 6241.17(16) 6236.3(2) 6270.11(10)
Z 2 2 2

Color Pink Pale green Colorless
Crystal dim (mm3) 0.258 × 0.186 × 0.084 0.426 × 0.393 × 0.117 0.426 × 0.393 × 0.117

D (g/cm3) 1.319 1.320 1.329
F(000) 2632 2640 2662

µ (mm−1) 4.332 1.773 1.914
Wavelength (Å) 1.54184 1.54184 1.54184

Number of data meas. 198262 75586 213361
Number of data with I >

2σ(I) 25040 5524 [R(int) = 0.0347] 8993 [R(int) = 0.0297]

R 0.0867 0.0714 0.0731
Rw 0.0950 0.0864 0.0793

GOF 1.086 1.022 1.016
Largest peak in final

difference (eÅ−3) −1.335 and 1.833 −0.940 and 1.533 −1.077 and 0.107

CCDC 1989778, 1989779 and 1989780 contain the supplementary crystallographic data for
Co3(H2O)(DMF)2-(2-2H)-3, Ni3(H2O)(DMF)2-(2-2H)-3 and Zn3(H2O)(DMF)2-(2-2H)-3, respectively.
These data are available for free from The Cambridge Crystallographic Data Base [44].

2.7. X-Ray Diffraction on Powder

Powder diffraction studies (PXRD) diagrams were collected on polycrystalline samples, on a
Bruker D8 diffractometer using monochromatic Cu-Kα radiation with a scanning range between 3.8◦

and 40◦ at a scan step size of 2◦ min−1. As already demonstrated and currently admitted, for all
compounds, discrepancies in intensity between the observed and simulated patterns are due to the
preferential orientations of the microcrystalline powders.

3. Results and Discussion

3.1. Synthesis of the Trinuclear Complexes

The coordination compounds M3(H2O)(DMF)2-(2-2H)-3 (M = Co, Ni and Zn) were obtained using
solvothermal conditions, followed by a slow evaporation of the solvents at room temperature under
aerobic conditions (see experimental section).

The three compounds are isomorphous, isometric (see Table 1) and thus isostructural.
This synthesis was found to be reproducible, independent on the nature of the starting metallic salts

M(NO3)2·6H2O (M = Co, Ni and Zn). The obtained trinuclear species represent the thermodynamically
stable compounds for this type of reaction.

3.2. Description of the Strutcure of the Trinuclear Complexes

Solvothermal synthesis in DMF/MeOH solution (2/1) between ligands 2-4H, 3-4H and MII(NO3)2

(H2O)6 (M = Co, Ni and Zn) in excess of metal salts, followed by the slow evaporation of the
mother liquor, produced single crystals suitable for X-ray diffraction, which revealed the formation of
isostructural trinuclear complexes M3(H2O)(DMF)2-(2-2H)-3 (M = Co, Ni and Zn) (see Figure 2a,b) in
the crystalline phase. It was established that crystals of M3(H2O)(DMF)2-(2-2H)-3 (triclinic, space group
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P1 as shown in the crystallographic Table 1) present solvates: DMF molecules for Co and Ni-based
compounds and DMF both with water molecules for the Zn-based analogue.
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Figure 2. For M3(H2O)(DMF)2-(2-2H)-3 (M = CoII, NiII and ZnII): view of the formed trinuclear complex,
(a) along the b axis and (b) in the xOz plane. H atoms (excepting the protonated phenolic O atoms of
2-2H2−) and solvent molecules (excepting coordinated DMF molecules) are omitted for clarity. For bond
distances and angles see the text and Table 2. Disordered fragments are not represented.

Crystals of M3(DMF)2(H2O)-2-3 are composed of deprotonated ligands (2-2H)2− and 34−,
three crystallographically independent metallic atoms, forming a trinuclear metallic cluster core,
two coordinated DMF molecules and one µ3-water molecule. In addition, for all the compounds,
4.5 free-solvent DMF molecules and also, in the case of Zn3(H2O)(DMF)2-(2-2H)-3, 0.5 water molecules
are present in the crystalline lattice.

For Ni3(H2O)(DMF)2-(2-2H)-3 and Zn3(H2O)(DMF)2-(2-2H)-3, one of two carboxylate moieties
of (2-2H)2−, as well as one of the coordinated DMF molecules and some of the tertiobutyl groups
belonging to (2-2H)2− and 34− are found to be disordered. In addition, the free DMF molecules are also
disordered in the lattice.

As was already mentioned, ligand (2-2H)2− is double negatively charged due to two deprotonated
carboxylate groups located on the alkyl substituents, which is demonstrated by the C-O distances,
as shown in Table 2, whereas two phenolic moieties of the calixarene platform remain protonated.
In contrast, for ligand 34−, all phenolic OH groups are found to be deprotonated, leading to an overall
charge of 4−. Analyses of the bond lengths and charge balance suggest that all of the metallic ions in
the complexes are MII.

Three crystallographically independent metallic cations are all in a deformed octahedral
O6 environment, as shown in Figures 2a and 3a. The bonds are provided in Table 2. M1 and
M3 are surrounded by six O-atoms, among them three belong to 34−: two O-atoms come from
phenolate groups, with one O-atom coming from sulfonyl moieties. It is also surrounded by one oxygen
atom from a bridging carboxylate moiety of (2-2H)2−, one oxygen from a coordinated DMF molecule
and one µ3-O-atom from a coordinated water molecule located in the middle of the triangle. M2 is
surrounded by three atoms from 34−: two O-atoms from phenolate moieties, one O-atom from sulfonyl
moieties, then two O-atoms from the bridging carboxylate moieties of (2-2H)2− and one µ3-O atom
from the coordinated water molecule. The M-O distances (metal to O from 34− phenolate, and from
(2-2H)2− carboxylate) are in the 1.9577 (312) to 2.2470 (30)Å range (see Table 2). The +2 charge of the
metallic ions is confirmed by the M-O distances found in the three complexes.
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Figure 3. For M3(H2O)(DMF)2-(2-2H)-3 (M = CoII, NiII and ZnII): (a) view of the environment of the
metallic cluster, and (b). view of the packing in the yOz plane. H atoms (except for the protonated
phenol O atoms of (2-2H)2− µ3-O from the coordinated water molecule) and solvent molecules (except
for coordinated DMF molecules) are omitted for clarity

The complex displays a “non-tubular” feature, where the fusion of both cone cavities is ensured
by the trinuclear species, as shown in Figure 2b, which blocks the pathway from one cavity to another.

For the triangles formed by the trimetallic units, there are two short M-M distances and one
long M-M distance (see Table 2), which confirms the presence of a water molecule in the middle of
the non-isosceles triangle: 2.9380 (24) to 2.9919 (22)Å for the shortest one and from 3.7823 (23) to
3.8214 (16)Å for the longest one. The MMM angles are also provided in Table 2.

In the unit cell, the metallic complexes are parallelly stacked along the a and b axes, as shown
in Figure 3b. Disordered DMF molecules are encapsulated in the cavities formed by cone ligands
(2-2H)2− and 34− by van der Waals interactions, as shown in Figure 4. For Zn3(H2O)(DMF)2-(2-2H)-3,
water molecules are present with O-O distances of 2.6687 (140) and 3.1517 (169) Å, demonstrating the
hydrogen bonds between H2O and DMF molecules. There are no specific interactions between the
isolated discrete trinuclear species.
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Table 2. The main distances for M3(H2O)(DMF)2-(2-2H)-3 (M = CoII, NiII and ZnII) clusters. 

 Co3(H2O)(DMF)2-(2-2H)-3 Ni3(H2O)(DMF)2-(2-2H)-3 Zn3(H2O)(DMF)2-(2-2H)-3 
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Figure 4. For Zn3(H2O)(DMF)2-(2-2H)-3 (M = CoII, NiII and ZnII), view of the DMF crystal molecules
encapsulated in the cones of (2-2H)2− (green) and 34− (pink) and the water molecules lying between
the clusters.
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Table 2. The main distances for M3(H2O)(DMF)2-(2-2H)-3 (M = CoII, NiII and ZnII) clusters.

Co3(H2O)(DMF)2-(2-2H)-3 Ni3(H2O)(DMF)2-(2-2H)-3 Zn3(H2O)(DMF)2-(2-2H)-3

M-O

2.0097 (30)
2.0236 (36)
2.0623 (34)
2.0755 (30)
2.0775 (29)
2.0844 (29)
2.0924 (32)
2.0999 (27)
2.1077 (30)
2.1081 (31)
2.1159 (29)
2.1446 (29)
2.1832 (29)

1.9917 (546)
1.9956 (272)
1.9994 (29)
2.0227 (28)
2.0129(515)
2.0341 (30)

2.0395 (240)
2.0479 (31)
2.0534 (29)
2.0689 (30)
2.0729 (29)
2.0759 (29)
2.0881 (27)
2.1039 (29)
2.1280 (31)

1.9538 (313)
2.0064 (29)
2.0358 (271)
2.0376 (258)
2.0543 (28)
2.0712 (276)
2.0891 (29)
2.1058 (30)
2.1065 (32)
2.1090 (28)
2.1411 (29)
2.1458 (31)
2.1733 (32)
2.1733 (26)
2.2480 (30)

M-Oµ3water

2.0172 (28)
2.0332 (28)
2.1201 (28)

2.0127 (28)
2.0237 (26)
2.0469 (28)

2.0169(28)
2.0324 (30)
2.0712 (27)

M-ODMF
2.0335 (57)
2.0597 (31)

1.9964 (106)
2.0204 (154)
2.0223 (31)

1.9954 (87)
2.0352 (31)
2.0471(153)

M-M
2.9890 (19)
2.9919 (22)
3.7839 (18)

2.9380 (24)
2.9436 (30)
3.7823 (23)

2.9886 (18)
2.9914 (21)
3.8214 (16)

MMM
Angle (◦)

50.720
50.787
78.493

49.913
50.044
80.044

50.249
50.313
79.439

C-O (carboxylate)

(1.2517 (44)
+1.2704 (47))
(1.2578 (64)

+1.2602 (56))

(1.2115 (550)
+1.3617 (327))
(1.2413 (289)

+1.3037 (540))
(1.2608 (44) +
1.2646 (43))

(1.2697 (486)
+1.2918 (412))
(1.2609 (432)

+1.3050 (325))
(1.2622 (47)

+1.2646 (45))

The purity of the M3(H2O)(DMF)2-(2-2H)-3 (M = CoII, NiII and ZnII) polycrystalline samples was
investigated by PXRD on microcrystalline powders (see Figure 5). For all the compounds, a good
match between the observed and calculated patterns from the XRD data was observed, attesting a pure
crystalline phase for each M3(H2O)(DMF)2-(2-2H)-3 (M = CoII, NiII and ZnII)-obtained complex in the
solid state.
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Figure 5. For M3(H2O)(DMF)2-(2-2H)-3 (M = CoII (red), NiII (light blue) and ZnII (green)), comparison
of the simulated and experimental powder X-Ray diffraction studies (PXRD) diagrams.

M3(DMF)2(H2O)-(2-2H)-3 (M = CoII, NiII and ZnII) metallamacrocycles were obtained as pure
trinuclear coordination compounds in the solid state, using solvothermal conditions followed by
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a slow evaporation of the solution. They represent unique examples of unsymmetrical trinuclear
metallamacrocycles based on two different coordinating macrocycles, as schematically represented
in Figure 6. The design of (2-2H)2− is particularly well adapted to act as a “pincer” for the trinuclear
coordination compound formed with 34−, leading to the unique unsymmetrical and non-tubular shape
of M3(DMF)2(H2O)-(2-2H)-3 (M = CoII, NiII and ZnII).
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Figure 6. Schematic representation of the trinuclear complexes M3(H2O)(DMF)2-(2-2H)-3 (M = CoII,
NiII and ZnII) with (2-2H)2− (red) and 34− (blue).

It is important to note that the metallic triangles, resulting from the association of two short
and one long M-M bonds, are maintained by a µ3-O atom from a coordinated water molecule and
are reproducibly obtained. This triangular feature has already been observed in the literature [45].
The observation of triangles with paramagnetic metallic ions is well documented [46,47], leading to
high spin molecules presenting either ferromagnetic or antiferromagnetic interactions, depending on
the geometric parameters.

This example represents the first example of controlled nuclearity for the formation of
metallamacrocycles based on macrocyclic calixarene moieties. This opens the door to series of
coordination compounds with tunable nuclearities associated with tunable encapsulation properties.
Metallamacrocycles offer good alternatives for the formation of new coordination networks, can act
as sensors, and can trap guest molecules, as presented here with DMF molecules.

4. Conclusions

In this work, the formation of the first example of new, unsymmetrical M3(H2O)(DMF)2-(2-2H)-3
(M = CoII, NiII and ZnII) metallamacrocycles involving two different calixarene ligands and a trinuclear
3D metallic cluster core has been demonstrated. It was established that the (2-2H)2− calix[4]arene,
decorated with two appended carboxylate moieties and a flexible alkyl spacer, is especially well designed
for binding the trinuclear clusters supported on tetrasulfonylcalix[4]arene 34−, leading to a easily
reproducible recognition pattern, which may be used for the generation of new metallamacrocycles
involving different types of dicarboxylic ligands based on the macrocyclic platform.

The study of the ability of tetrasulfonylcalix[4]arene 34− to form metallamacrocycles using its
combination with other carboxylic derivatives of calix[4]arene in the presence of d and f metallic
cations is currently in progress.
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