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Abstract: A series of complexation reactions of silver(I) and copper(I) in the presence of a polyhedral
weakly coordinating [B10Cl10]2− anion has been carried out. The effect of the solvent and the
presence of Ph3P on the composition and structure of the reaction product were studied. Eight
novel complexes were obtained and characterized by 11B Nuclear magnetic resonance, Infra-Red,
and Raman spectroscopies as well as powder and single-crystal X-ray diffraction techniques. The
[B10Cl10]2− anion demonstrated weaker coordinating ability towards coinage metals than [B10H10]2−

at similar reaction conditions. The [B10Cl10]2− anion remains unreacted in the copper(I) complexation
reaction, while in the absence of competing ligands, we obtained the first complexes containing
decachloro-closo-decaborate anion directly coordinated by the metal atom. The bonding between
metal atoms and the boron cluster anions was studied using the atomic Hirshfeld surfaces. Besides
edge and face coordination of the polyhedral anion, this method allowed us to reveal the Ag–Ag
bond in crystal of {Ag2(DMF)2[B10Cl10]}n, the presence of which was additionally supported by the
Raman spectroscopy data.

Keywords: atomic Hirshfeld surface; boron cluster; copper(I); decachloro-closo-decaborate anion;
decahydro-closo-decaborate anion; silver(I)

1. Introduction

Boron cluster anions and their analogs, carboranes and metallocarboranes [1–4], are fascinating
objects in modern inorganic and organoboron chemistry because of their geometric and electronic
structures and promising properties. Possessing 3D aromaticity and a tendency to participate in
reactions of electrophilic and nucleophilic substitution, boron clusters form numerous derivatives with
exo-polyhedral substituents [5–7]. In addition, boron cluster anions form complexes and salts with
different composition and structure [8–10]. Boron clusters are used to design compounds that can be
applied in boron neutron capture therapy, for radionuclide diagnostics and therapy, in catalysis, for
preparation of safety coatings and thermally stable polymers, extraction of radionuclides, etc. [11–15].

Boron clusters and their derivatives are considered as soft Lewis bases because of their large size
and relatively low charge; quite logically, they form a great variety of inner-sphere complexes with
metals that are soft Lewis acids, such as silver(I), copper(I), lead(II), etc. Different positions of metal
atoms around a bulky boron cage results in the preparation of positional isomers of mononuclear and
binuclear copper(I) and silver(I) complexes, which are discussed in detail in references [16–18].
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In crystallography, polyhedral boranes and carboranes and their halogen derivatives are considered
weakly coordinating anions [19–22], and X-ray diffraction data allow metal atoms and various
polyhedral boranes to be ranked in accord with their ability to form salts or complexes. For
partially substituted halogen derivatives of boron cages, competition between halogen atoms and
unsubstituted BH groups to form M . . . Hal–B or three-centered two-electron MHB bonds can give
an insight about the relative coordination ability of a boron cage and its (per)halogenated analog.
For example, in the structure of two silver mononuclear complexes [Ag(Ph4P)4][Ag(Ph3P)2[An]],
where [An] are the [B10H10]2− and [B10H9Cl]2− anions cocrystallized [17] (positional isomers with
an equatorial and an apical edges coordinated), it has been found that the monosubstituted
anion [B10H9Cl]2− in both isomers is coordinated by the metal atom through the appropriate
edge opposite to the chlorine atom introduced into the boron cage. Thus, one can propose
that decahydro-closo-decaborate has stronger coordinating ability toward a silver(I) atom than its
perchlorinated derivative. Indeed, the decachloro-closo-decaborate anion acts as a counterion in
X-rayed complexes of copper(II) [23], cobalt(II) [24], and manganese(II) [25] complexes with phen
(1,10-phenanthroline) and bipy (2,2-bipyridyl), and of silver complex of the [Ag(NH3)2]2[B10Cl10]
composition [26]. For the latter complex, weak non-bonding Ag . . . Cl interactions as long as 3.25–3.41 Å
manifest themselves in 35Cl NQR spectra; thus, X-ray diffraction and associated methods of analysis of
chemical bonding remain the best choice to reveal any M . . . Hal–B bonding.

In contrast with [B10Cl10]2− complexes, chloro-, bromo- and iododerivatives of carboranes and
a dodecaborane are better represented in the Cambridge Structural Database [27] (see, for example,
references [28–35]). Thus, in this study we investigate the coordination ability of the [B10Cl10]2−

anion towards silver(I) and copper(I) atoms in the absence of N-donor ligands. Complexation
reactions in the presence of Ph3P and without it were carried out; and various solvents were attested
that allowed the first complexes of coordinated [B10Cl10]2− to be obtained, and Ag . . . Cl–B bonds
in these complexes can be compared with those in silver(I) complexes with chlorocarboranes and
dodecacloro-closo-dodecaborane.

2. Experimental

2.1. Synthesis

Commercially available organic solvents (HPLC acetonitrile and DMF) and anhydrous Ph3P
were purchased from Aldrich (St. Louis, MO, USA). All the reactions were carried out in air.
[HNEt3]2[B10H10] was synthesized from decaborane-14 according to the known procedure [36]. The
reaction between [HNEt3]2[B10H10] and KOH afforded K2[B10H10] with release of Et3N. Chlorination
of aqueous K2[B10H10] by chlorine was carried out in accordance with the procedure reported [37]
to form K2[B10Cl10]. [HNEt3]2[B10Cl10] precipitated from aqueous solutions of K2[B10Cl10] and
the corresponding alkylammonium chloride as reported in Reference [26]. [Ag(Ph3P)3NO3] was
synthesized according to the method reported in Reference [38]. [Cu(Ph3P)3Cl] was synthesized
according to the known procedure [39]

[Ag(PPh3)2(DMF)2]2[B10Cl10] (1) A solution of Ph3P (4 mmol) in DMF (10 mL) was added to a
DMF solution (10 mL) containing AgNO3 (2 mmol) and (Et3NH)2[B10Cl10] (1 mmol). The resulting
colorless solution was allowed to stand at room temperature in air. Slow evaporation of the reaction
solution (about a week) gave compound 1 as colorless crystals 1 · 2 DMF (yield, 74%). The resulting
crystals were filtered off and dried in air. Single crystal 1 · 2 DMF used for X-ray diffraction was chosen
directly from the reaction mixture. 11B NMR (64.297 MHz, [D7]DMF, 25 ◦C): δ = 4.65 (2B, s, Bap);
−2.71 (8B, s, Beq); IR (NaCl, Nujol mull, cm−1): 1665s, 1309, 1182, 1158s, 1093s, 1002s, 846, 745s, 695s;
elemental analysis calcd (%) for Ag2C90H102B10Cl10N6O6P4 (2166.08): Ag 9.96, C 49.90, H 4.75, N 3.88,
B 4.99; found: Ag 10.02, C 49.81, H 4.65, N 3.78, B 5.03.

[Ag(PPh3)3(H2O)]2[B10Cl10] (2) A solution of [Ag(Ph3P)3NO3] (6 mmol) in DMF (10 mL) was
added to a DMF solution (10 mL) containing (Et3NH)2[B10Cl10] (3 mmol). Slow evaporation of the
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reaction solution in air (about 72 h) gave compound 2 as colorless crystals 2 · 4 DMF (76%). The
resulting crystals were filtered off and dried in air. Single crystal 2 · 4 DMF used for X-ray diffraction
was chosen directly from the reaction mixture. IR (NaCl, Nujol mull): 3524, 3461w, 1665s, 1157s, 1093s,
1004s; 1093, 846, 745s, 695s; elemental analysis calcd (%) for Ag2C120H122B10Cl10N4O6P6 (2580.49): Ag
8.36, C 55.85, H 4.77, B 4.19; found: Ag 8.24, C 55.79, H 4.69, B 4.13.

[Cu(Ph3P)3Cl] · 2DMF (3 · 2DMF) and [Cu2(Ph3P)3(µ-Cl)2] (4) A solution of [Cu(Ph3P)3Cl]
(6 mmol) in DMF (10 mL) was added to a DMF solution (10 mL) containing (Et3NH)2[B10Cl10] (3 mmol).
Slow evaporation of the reaction solution in air (about 36 h) gave a mixture of compounds 3 · 2DMF
and 4 as colorless crystals. The resulting crystals were filtered off and dried in air. Single crystals 3 ·
2DMF and 4 suitable for X-ray diffraction studies were chosen directly from the reaction mixture.

[Ag(Ph3P)4][Ag(Ph3P)2[B10H10]] (5) A solution of [Ag(Ph3P)3NO3] (6 mmol) in DMF (10 mL) was
added to a DMF solution (10 mL) containing (Et3NH)2[B10H10] (3 mmol). Slow evaporation of the
reaction solution in air (about 72 h) gave compound 5 as colorless crystals (yield, 79%). The resulting
crystals were filtered off and dried in air. Single crystal 5 · 0.1H2O was used for X-ray diffraction. 11B
NMR (64.297 MHz, [D7]DMF, 25◦C): δ = 1.19 (2B, d, Bap); −29.27 (8B, d, Beq); IR (NaCl, Nujol mull,
cm−1): 2451br, 2299br, 1673w, 1310, 1159, 1093s, 1027, 998, 745s, 695s; elemental analysis calcd (%) for
Ag2C108H100B10P6 (1907.63): Ag 11.31, C 68.00, H 5.28, B 5.67; found: Ag 11.24, C 59.96, H 5.19, B 5.63.

[Ag2[B10Cl10]]n (6) A solution of AgNO3 (6 mmol) in water (10 mL) was added to a water solution
(10 mL) containing K2[B10Cl10] (3 mmol). The resulting colorless solution was allowed to stand in air at
room temperature gradually acquiring grey color. Grey crystals 6 and white powder KNO3 precipitated
after 72 h, when water was almost completely evaporated (yield, 95%). For physicochemical studies,
grey crystals were chosen mechanically from the mixture. 11B NMR (64.297 MHz, [D7]DMF, 25 ◦C):
δ = 4.34 (2B, s, Bap); −2.85 (8B, s, Beq); IR (NaCl, Nujol mull, cm−1): 1159, 1007, 850, 744; Raman
(cm−1): 2936, 2310, 2284, 1369, 1151, 937, 734, 564, 385, 309s, 281, 111; elemental analysis calcd (%) for
Ag2B10Cl10 (678.38): Ag 31.80 B 15.94; found: Ag 31.65, B 15.79.

[Ag2(DMF)2[B10Cl10]]n (7) A solution of AgNO3 (6 mmol) in DMF (10 mL) was added to a DMF
solution (10 mL) containing (Et3NH)2[B10Cl10] (3 mmol). The resulting colorless solution was allowed
to stand in air at room temperature gradually acquiring black color because of partial reduction of
silver. Slow evaporation of the reaction solution in air (about 72 h) gave compound 7 as grey crystals
(65%). The resulting crystals were filtered off and dried in air. Single crystal 6 chosen directly from
the reaction solution was used for X-ray diffraction studies. IR (NaCl, Nujol mull, cm−1): 1665,
1159, 1007, 849, 745; Raman (cm−1): 1600, 1386, 1127, 1069s, 845, 308s, 185; elemental analysis calcd
(%) for Ag2C6H14N2O2B10Cl10 (824.56): Ag 26.16, C 8.74, H 1.71, B 13.11; found: Ag 26.07, C 8.62,
H 1.63, B 13.13.

[Ag2(CH3CN)2[B10Cl10]]n (8) A solution of AgNO3 (6 mmol) in acetonitrile (10 mL) was added to
a solution containing K2[B10Cl10] (3 mmol) in acetonitrile (10 mL). White powder KNO3 precipitated
from the reaction mixture immediately after fusing both solutions, which was filtered off. The resulting
colorless mother solution was allowed to stand in air at room temperature. Slow evaporation of the
reaction solution in air (about 24 h) gave compound 8 as white crystals (95%). The resulting crystals
were filtered off and dried in air. Single crystal 8 chosen directly from the reaction solution was used
for X-ray diffraction studies. IR (NaCl, Nujol mull, cm−1): 2314, 2287, 1157, 1003, 845, 721; Raman
(cm−1): 2936, 2311, 2285, 1369, 1152, 1046, 937, 735, 265, 309s, 282, 111; elemental analysis calcd (%)
for Ag2C8H12N4B10Cl10 (842.58): Ag 25.60, C 11.40, H 1.44, N 6.65; B 12.83; found: Ag 25.27, C 11.19,
H 1.51, N 6.48, B 12.94.

2.2. Methods

Elemental analysis for carbon and hydrogen was carried out on a Carlo Erba CHNS-3 FA 1108
automated elemental analyzer (Carlo Erba Instruments, Milan, Italy). Determination of boron and
metals was performed on an iCAP 6300 Duo ICP emission spectrometer (Thermo Scientific, Waltham,
MA, USA) with inductively coupled plasma. For elemental analysis, samples were dried in vacuum to
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constant weight. IR spectra of compounds were recorded on a Lumex Infralum FT-02 Fourier-transform
spectrophotometer in the range of 4000–600 cm−1 at a resolution of 1 cm−1. Samples were prepared as
Nujol mulls (Aldrich, St. Louis, MO, USA); NaCl pellets were used. Raman spectra of solid samples of
compounds 6–8 were measured using a VERTEX 70 spectrometer (Bruker Optics, Ettlingen, Germany)
equipped with a RAM II FT-Raman module. IR spectra of complexes 1–8 and Raman spectra of 6–8 are
shown in Figures S1–S7 (see Electronic Supporting Information, ESI). 11B NMR spectra of compounds
1, 5, and 6 in [D7]DMF were recorded on a Bruker AC 200 spectrometer (Bruker AXC, Inc., Karlsruhe,
Germany) at a frequency of 64.297 MHz using BF3·Et2O as an external standard.

2.3. X-ray Diffraction

For single-crystal X-ray diffraction, the intensities of reflections were collected with a Bruker Apex
II CCD diffractometer with MoKα radiation (λ = 0.71073 Å, graphite monochromator). Single crystals
of 1–8 were obtained from reaction mixtures. Intensities of the reflections were measured with a Bruker
Apex II CCD diffractometer (Bruker AXS, Inc., Madison, WI, USA) using graphite monochromated
MoKα radiation (λ = 0.71073 Å). The structures were solved by direct method and refined by full-matrix
least squares against F2. Non-hydrogen atoms were refined anisotropically, except for some disordered
fragments. The boron cage in 5 is equally disordered over two sites, and boron atoms of the cage
were refined isotropically. Positions of hydrogen atoms were calculated, and all hydrogen atoms were
included in the refinement by the riding model with Uiso(H) = 1.5Ueq(X) for methyl groups and water
molecules, and = 1.2Ueq(X) for the other atoms. All calculations were made using the SHELXL2014 [40]
and OLEX2 [41] program packages. Experimental details and crystal parameters are listed in Table 1.

The crystallographic data for 1–8 have been deposited with the Cambridge Crystallographic
Data Centre (CCDC no. 1937727–1937734). These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/structures/.

The X-ray powder diffraction patterns for 1 · 2DMF, 6, and 7 were obtained on a Bruker D8 Advance
Vario diffractometer equipped with a Ge(111) monochromator and a LynxEye position-sensitive detector
(CuKα radiation, λ = 1.540596 Å, (Bruker AXS, Inc., Madison, WI, USA) at the Shared Equipment
Center of the Kurnakov Institute (IGIC RAS). The X-ray powder diffraction data agrees with the
calculated X-ray single crystal data, indicating that each sample predominately represents a single
phase (Figures S9–S11, see ESI).

http://www.ccdc.cam.ac.uk/structures/
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Table 1. X-ray crystallographic data for complexes 1–8.

Parameter 1 · 2DMF 2 · 4DMF 3 · 2DMF 4 5 · 0.1H2O 6 7 8

Formula C90H102Ag2B10Cl10N6O6P4 C120H122Ag2B10Cl10N4O6P6 C60H59ClCuN2O2P3 C54H45Cl2Cu2P3 C108H100.2Ag2B10O0.1P6 Ag2B10Cl10 C6H14Ag2B10Cl10N2O2 C8H12Ag2B10Cl10N4
Fw 2165.99 2580.37 1031.99 984.76 1909.34 678.34 824.52 842.56

Crystal system, space
group Monoclinic, C2/c Monoclinic, C2/c Triclinic, P1 Monoclinic, P21/c Triclinic, P1 Hexagonal, P6222 Monoclinic, C2/c Tetragonal, P41212

T (K) 120.0(2) 120.0(2) 120.0(2) 120.0(2) 120.0(2) 120.0(2) 120.0(2) 120.0(2)
a (Å) 36.319(2) 37.202(3) 10.6772(4) 18.942(2) 13.5059(6) 9.1869(7) 16.195(4) 11.2878(3)
b (Å) 12.2841(7) 13.1519(11) 13.0436(5) 9.7711(13) 14.8623(7) 9.1869(7) 12.987(3) 11.2878(3)
c (Å) 23.3211(14) 27.6119(19) 20.3604(7) 37.198(4) 24.1499(11) 19.476(3) 12.289(3) 22.2808(12)
α (◦) 90 90 108.352(1) 90 91.598(1) 90 90 90
β (◦) 107.761(1) 114.188(2) 103.547(1) 138.248(3) 102.758(1) 90 97.082(5) 90
γ (◦) 90 90 90.535(1) 90 102.758(1) 120 90 90

V (Å3) 9908.8(10) 12,323.7(18) 2605.85(17) 4584.7(10) 4719.1(4) 1423.5(3) 2564.9(11) 2838.9(2)
Z 4 4 2 4 2 3 2 4

µ (cm−1) 0.784 0.667 0.608 1.186 0.566 3.449 2.580 2.331
No. of meas., indep. and

obs. refl. 72,769, 16,960, 12,277 57,468, 14,880, 11,554 43,302, 20,507, 14,307 48,895, 12,935, 6575 41,719, 18,266, 13,442 20,906, 1595, 1387 18,259, 4748, 3764 28,810, 4927, 3373

Rint 0.0712 0.0595 0.0431 0.1904 0.0434 0.1126 0.0594 0.0702
R[F2 > 2σ(F2)], wR(F2), S 0.0422, 0.0944, 1.004 0.0425, 0.1151, 0.999 0.0481, 0.1203, 1.006 0.0655, 0.0921, 1.007 0.0411, 0.0944, 0.987 0.0343, 0.0694, 1.058 0.0395, 0.1018, 0.996 0.0403, 0.0855, 0.998

∆ρmax, ∆ρmin (e Å−3) 0.91, −0.33 2.45, −1.09 1.01, −0.52 0.98, −0.88 1.28, −0.57 0.79, −0.80 2.15, −1.51 0.75, −0.49
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3. Results

3.1. Complexes with Non-Coordinated [B10Cl10]2− Anion

A great number of mononuclear and binuclear silver complexes have been prepared where the
unsubstituted [B10H10]2− anion was allowed to react with [Ag(Ph3P)3NO3] and a mixture of AgNO3

+ Ph3P in organic media [16,17]. Taking this fact into consideration, the coordination ability of the
perchlorinated anion was studied in the same conditions in the presence of Ph3P.

First, the reaction between the [B10Cl10]2− anion, AgNO3, and a two-fold excess of Ph3P was
studied. The reaction was found to proceed according to Scheme 1.
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Scheme 1. Synthesis of complex 1.

The reaction proceeded in DMF which slowly evaporates at room temperature, and crystals
[Ag(PPh3)2(DMF)2]2[B10Cl10] · 2DMF (1 · 2DMF) precipitated directly from the reaction solution after
a week of keeping the solution in air.

In this compound, the coordination sphere of silver is formed by Ph3P and DMF molecules
(Figure 1). This cation has not been found in compounds containing the boron cluster anions before.
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When previously prepared silver complex [Ag(Ph3P)3NO3] was used as the initial reagent, the
reaction proceeded according to Scheme 2 and crystals [Ag(Ph3P)3(H2O)]2[B10Cl10] · 4DMF (2 · 4DMF)
precipitated from the reaction mixture.
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In this case, the metathesis reaction proceeded in the coordination sphere of silver atom when the
nitrate anion was replaced by H2O molecule while the number of coordinated Ph3P ligands remained
unchanged (Figure 1). It seems that the source of water molecules is air, because we use HPLC solvents;
however, the reaction mixture was allowed to stand in air for a continuous time and some water vapor
could dissolve in the reaction mixture.

It is known that the boron cluster anions form copper(I) complexes with Ph3P with a general formula
[(Ph3P)4Cu2[BnHn]] (n = 6, 10, 12) [42–46]. Therefore, we attempted to obtain analogous compounds
with copper(I) according to similar reactions using [Cu(Ph3P)3Cl] and salts of the [B10Cl10]2− anion.
However, when [Cu(Ph3P)3Cl] was added to the reaction mixture containing [B10Cl10]2−, copper(I)
complexes with Ph3P and chloride anions 3 · 2DMF and 4 precipitated (Scheme 3), with the [B10Cl10]2−

salts being in the reaction solution.
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Both crystals 3 · 2DMF and 4 are colorless, precipitated together, and contain no boron cluster
(Figure 2). Both compounds were characterized only by the X-ray single crystal diffraction; the
elemental analysis could not be carried out because it is hardly possible to separate both types of
crystals from the mixture in required amounts. Crystal structures of pure 3 and 4 as well as some
of their solvates have previously been published [39,47–49]; none of these previous publications
mentioned the cocrystallization of the monomer 3 and dimer 4. The structure of 3 · 2DMF is novel,
and this crystal is isostructural with previously reported acetone solvate [39]. Crystal parameters of 4
do not coincide with those for the {CTPPCU} Refcode family in the Cambridge Structural Database
(see, for example, {CTPPCU03} [47]) due to different space group settings, however theoretical powder
XRD patterns indicate that these phases are identical (Figure S8, Supplementary Materials). The initial
closo-decaborate salt remains in the solution and precipitates after about two weeks of standing in air.

The cation [Ag(Ph3P)3(H2O)]+ found in 2 · 4DMF was earlier obtained in silver complexation
reactions with the [B20H18]2− anion when using [Ag(Ph3P)3NO3] as the initial reagent to form
[Ag(Ph3P)4][Ag(Ph3P)3(H2O)][B20H18] [17,18]. At the same time, for the paternal [B10H10]2− anion, the
reaction between [B10H10]2− and [Ag(Ph3P)3NO3] has been studied only in CH3CN when a binuclear
complex [Ag2(Ph3P)4[B10H10]] with the [B10H10]2− coordinated was obtained [16]. Thus, in order
to study the silver complexation with [B10H10]2− and [B10Cl10]2− in similar conditions (in the same
solvent), the silver complexation with the [B10H10]2− was performed in DMF instead of CH3CN. It
was found that the reaction results in [Ag(Ph3P)4][Ag(Ph3P)2[B10H10]] (5) according to Scheme 4. This
compound is isostructural with previously reported [Ag(Ph4P)4][Ag(Ph3P)2[An]], where [An] are the
[B10H10]2− and [B10H9Cl]2− anions cocrystallized in the 50:50 ratio [17].
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In the IR spectra of compounds 1 · 2DMF and 2 · 4DMF, bands ν(BCl) (near 1155 cm−1 and
1000 cm−1) from the boron cluster and ν(CO) (near 1660 cm−1) from DMF molecules are observed, as
well as a set of bands in the region 1100–600 cm−1 corresponded to Ph3P coordinated by metal atom.
In the IR spectrum of crystals 5 · 0.1H2O, bands ν(BH) and ν(BH)MHB corresponded to the BH groups
free and coordinated by the metal atom, respectively, are observed in the region 2500–2200 cm−1. A
weak band with a maximum near 1673 cm−1 is assigned to ν(CO) of solvent DMF molecules contained
in freshly prepared crystals. Water molecule is not seen in the IR spectrum of crystals. In addition, a set
of bands in the region 1100–600 cm−1 corresponded to Ph3P coordinated by metal atom is observed. As
in the case of 2 · 4DMF, the source of water molecules seems to be air because of continuous standing
of the reaction mixture in air.

Complexes 1–5 obtained from DMF at presence of Ph3P contain no coordinated [B10Cl10]2− anion.
In complexes 1, 2, and 5 silver(I) is tetracoordinated (Figures 1 and 3). Coordination polyhedra AgIP2O2
(1 · 2DMF), AgIP3O (2 · 4DMF), and AgIP4 or AgIP2H2 (5 · 0.1H2O) possess tetrahedral geometry.
Bond lengths Ag–P increase from bis to tetrakis Ph3P-substituted complexes due to steric hindrances
(Table 2). The Ag–O bonds in 1 · 2DMF strongly deviate from each other (Table 2), although both
correspond to interactions between a metal atom and a DMF molecule. Crystals of 1 · 2DMF and
2 · 4DMF contain also solvent DMF molecules, while 2 · 4DMF and 5 · 0.1H2O contain a coordinated
and an uncoordinated water molecules, respectively. The [B10Cl10]2− anion in 1 · 2DMF and 2 · 4DMF
acts as a counterion involved in numerous C–H . . . Cl intermolecular interactions with hydrogen
atoms of Ph and Me groups. The [B10H10]2− anion in 5 · 0.1H2O is coordinated by silver(I) atom via
one of equatorial edges. The same coordination accompanied with the anion disorder was observed
in its’ monochlorosubstituted isostructural analog [17]. Two disordered anions are coordinated via
2–6 or 2–9 edges of the boron polyhedral anion. One of two copper(I) atoms in 4 and that in 3 also
exhibit tetrahedral geometry. Bond distances reflect the fact that copper(I) atom has smaller radius
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than silver(I). For both bis (1, 4) and tris (2, 3) PPh3-containing complexes, the M–P bond distances are
shorter in copper(I) complexes. The Cu(2) atom in 4 has the trigonal-planar coordination. Molecular
geometries of 3 and 4 are very similar with previously published analogs [39,47–49]. Both the M–P
and M–Cl distances are the shortest among compounds under discussion for this atom.Crystals 2020, 10, x FOR PEER REVIEW 3 of 19 
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Table 2. Selected geometrical parameters (Å) of coordination polyhedra of 1–5.

Bond 1 · 2DMF 2 · 4DMF 3 · 2DMF 4 5 · 0.1H2O

M AgI AgI CuI CuI AgI

M–P 2.4174(5)–2.4262(5) 2.4873(7)–2.4967(7) 2.3125(5)–2.3197(4) 2.177(1)–2.236(1) 2.4921(8)–2.6516(8)

M–O 2.374(2)–2.536(2) 2.476(2)

M . . . B 2.646(6)–2.758(6)

M–Cl 2.3358(4) 2.245(1)–2.452(1)

The obtained data allow us to compare the coordination ability of the three boron clusters in
silver(I) complexation at presence of Ph3P as the following: [B10H10]2− > [B20H18]2− > [B10Cl10]2−.
This conclusion is made based on the fact that no silver(I) complexes with uncoordinated [B10H10]2−

can be found among numerous silver(I) complexes with Ph3P known to date (polymeric, isomers of
mononuclear silver complexes, isomers of dinuclear silver complexes); for [B20H18]2−, complexes with
coordinated and non-coordinated eicosaborate anion can be formed depending on the reagent ratio;
as for the perchlorinated anion, only compounds with outer-sphere boron cluster have been isolated.
The obtained data indicate also that it is more favorable for copper(I) to form neutral mononuclear or
binuclear complex with Ph3P and Cl rather than a cationic copper(I) complex with the [B10Cl10]2− anion
as counterion. It seems that the Cu–Cl bonds are not favorable to be formed with the perchlorinated
closo-decaborate anion, at least in the conditions studied here, thus further studies were carried out
only for silver(I) atoms.

3.2. Silver Complexes with Coordinated [B10Cl10]2− Anion

It is known that the secondary Ag . . . Hal bonds are found in a number of halogenated
carboranes [28–35]; thus, to synthesize silver(I) complexes with the coordinated [B10Cl10]2− anion,
a series of complexation reactions was carried out in the absence of organic ligands. AgNO3 and salts
of [B10Cl10]2− were used as the reagents.

3.2.1. Synthesis in Water

First, the complexation reaction between (Et3NH)2[B10Cl10] and AgNO3 was performed in
water. By the same approach [Ag2[B10H10]]n was previously obtained [50,51] in a quantitative yield
immediately after fusing aqueous solutions of (Et3NH)2[B10H10] and AgNO3 taken in the 1:2 molar
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ratio. [Ag2[B10H10]]n precipitates as white powder and its 3D framework structure was succeeded to
be determined by in situ synchrotron radiation powder X-ray diffraction [52]. However, when aqueous
solutions of (Et3NH)2[B10Cl10] and AgNO3 (in the 1:2 molar ratio) were poured in one beaker, no
precipitate was observed. After continuous standing of the reaction mixture in air at room temperature,
when water is almost evaporated, single crystals of [Ag2[B10Cl10]]n (6) formed (Scheme 5).
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Scheme 5. Synthesis of complex 6.

Note that the reaction mixture becomes black because of partial reduction of silver to form
Ag0; in the above experiments. The presence of Ph3P stabilized Ag+ in the reaction mixture
(complexes 1 · 2DMF and 2 · 4DMF were prepared in air at daylight conditions, the reaction mixtures
remained colorless and transparent and no black or grey color was observed).

Molecular structure of complex 6 and the environment of both ions are depicted in Figure 4a. The
cation coordinates three anions in a chelate mode through five-membered Cl–B–B–Cl–Ag rings to form
an AgCl6 octahedron with bond distances varying from 2.706(1) to 2.893(1) Å (Table 3). Each anion
interacts with six cations. Four of them coordinate one apical and one equatorial chlorine atom, and
two silver atoms interact with two equatorial chlorine atoms (Figure 4b). The resulting 3D network
contains isolated pores (see Figure S12), but no residual electron density was found in these regions.
Note that in [Ag2[B12Cl12]]n [34], similar octahedral coordination of cations was found, and each anion
bridges six cations, but total connectivity of 3D networks is different. Simplification of 3D frameworks
of [Ag2[B10Cl10]]n and [Ag2[B12Cl12]]n results to 3,6-connected underlying nets (3-connected silver
atoms and 6-connected anions) with topology of hexagonal anatase and pyrite.
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Table 3. Selected parameters (Å) of silver(I) coordination polyhedra in complexes with some chlorinated
boron cages.

Complex M–Cl M–N M–O Reference

6 2.706(1)–2.893(1) This work
7 2.6364(9)–3.4908(8) 2.391(2) This work
8 3.000(1)–3.619(1) 2.158(6)–2.159(6) This work

[Ag2[B12Cl12]]n 2.825(2)–2.851(2) [31]
[Ag(CH3CN)[(Me3N)B12Cl11]]n 2.652(1)–3.016(1) 2.188(3)–2.227(3) [28]
{[Ag2(SO2)[(Me3N)B12Cl11]2] ·

SO2}n
2.652(1)–2.899(1) 2.523(4) [32]

{[Ag[(Me3N)B12Cl11]] ·
0.5CH2Cl2}n

2.668(2)–2.957(1) [32]

The preparation of solvent-free crystals containing [B10Cl10]2− anion is a rare case, because
this anion tends to form numerous secondary interactions with solvent molecules containing in the
structures. This is the only structure besides [Ag(NH3)2]2[B10Cl10] [26] that contains no solvent
molecules. It seems that the coordination capacity of the boron cluster in 6 is spent to form numerous
Ag–Cl bonds, which resulted in isolation of solvent-free crystals.

3.2.2. Synthesis in DMF

When AgNO3 was allowed to react with (Et3NH)2[B10Cl10] in DMF, the reaction mixture became
black because of partial silver reduction to Ag0. Grey crystals of target complex [Ag2(DMF)2[B10Cl10]]n

(7) precipitated from the reaction solution (Scheme 6).
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Scheme 6. Synthesis of complex 7.

Asymmetric unit of 7 contains a silver(I) ion, a DMF molecule, and half an anion (Figure 5a).
DMF acts as a bridge ligand, and the anion is bridge-chelate octadentate. While Ag–ODMF distances
in 1 are comparable with the shortest Ag–ODMF distance in 7, the Ag–Cl bonds vary in a wide range
from 2.6364(9) to 3.4908(8) Å (Table 3). Besides, the Ag–Ag bond seems to be present in the complex
as short as 3.2023(8) Å. Eight chlorine atoms of the 10-vertex anion participate in coordination with
four silver(I) atoms. Two cations interact with the anion through the cage edges including one apical
and two equatorial atoms, and two others form six-membered Ag1–Ag1–Cl3–B3–B3–Cl3 rings. The
presence of bridge DMF molecules and anions results in formation of infinite chains of complex 7
parallel with the crystallographic axis c (Figure 5b).

Note that when studying the analogous silver(I) complexation reaction in the presence of
the [B10H10]2− anion, polymeric complex [Ag2(DMF)[B10H10]]n [53] was obtained having a 3D
framework structure (containing no Ag–Ag bonds); eight BH groups form the AgHB bonds with the
complexing agent.
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It is interesting to note that because of high solubility of compound 7 (as well as it was noted for 6),
crystals 7 precipitated only when the reaction solution was almost evaporated. Moreover, when the same
reaction with AgNO3 was performed using K2[B10Cl10] instead of (Et3NH)2[B10Cl10], colorless crystals
were formed after 24 h on the surface of the reaction mixture, but the cell parameters coincided with those
reported for K2[B10Cl10] · DMF · 2 H2O [54]. High solubility of decachloro-closo-decaboratodisilver(I)
in DMF resulted in precipitation of initial reagent K2[B10Cl10] with lower solubility; therefore, the
target complex cannot be prepared from potassium salts. The starting compounds should be selected
accurately when dealing with the [B10Cl10]2− anion, whereas for the paternal [B10H10]2− anion, the
nature of the starting cation has no effect on the reaction affording [Ag2[B10H10]] to precipitate
immediately when Cat2[B10H10] (1 mol) was allowed to react with AgNO3 (2 mol) when using
Cat = Na+, K+, Cs+, R4–nNHn

+ (R = Me, Et, Pr, Bu), Ph4P+, As4P+ [51].

3.2.3. Synthesis in Acetonitrile

Finally, the silver(I) complexation were performed in acetonitrile. Knowing that KNO3 remains
unsolved in acetonitrile, we use potassium salt K2[B10Cl10] to avoid the presence of foreign ions in
the reaction solution. Indeed, when a solution of AgNO3 was added to a solution of K2[B10Cl10] in
the same solvent, KNO3 precipitated almost quantitatively which was filtered off. White precipitate
[Ag2(MeCN)2[B10Cl10]]n (8) was formed in the mother solution after 24 h (Scheme 7).Crystals 2020, 10, x FOR PEER REVIEW 7 of 19 
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Scheme 7. Synthesis of complex 8.

The effect of a complexing agent on the coordination ability of the perchorinated boron cage can
additionally be demonstrated on the example of [Ag2(MeCN)2[B10Cl10]]n (8). Its asymmetric unit is
depicted on Figure 6a. Silver atom also coordinates two solvent molecules and two anions to form an
AgN2Cl4 coordination polyhedron, but acetonitrile is a stronger donor of the electron density; thus,
the Ag–N coordination bonds in 8 are shorter than the Ag–O bonds in 7, while the Ag–Cl bonds are
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elongated despite less steric hindrances from acetonitrile. Each anion is involved in bonding with four
metal atoms; as a result, a 3D network occurs as depicted on Figure 6b.
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(b) fragment of crystal packing of 8.

In the IR spectra of compound 6, only bands ν(BCl) are present. The bands are observed at
the same regions as in salts K2[B10Cl10] and (Et3NH)2[B10Cl10]. Therefore, we are unable to discuss
the structure of compound 6 based in IR spectra only. In the IR spectrum of compound 8, ν(C≡N)
corresponding to acetonitrile molecules and ν(BCl) bands are observed. In the Raman spectrum of
7 there are bands at 308 and 281 cm−1 which could be assigned to ν(BCl) and ν(AgCl), respectively,
analogously with the spectrum of compound 4. Besides ν(BCl) bands, the spectra of 7 contain the
ν(CO) band corresponding to DMF molecules. In the Raman spectrum of 6 (see Figure S4), a strong
band at 309 cm−1 is observed, which corresponds to ν(BCl) as it was assigned in ref. [55] for [B10Cl10]2−

anion; a band at 281 cm−1 can be attributed to ν(AgCl) based on data indicated for AgCl [56]. In
the Raman spectrum of 8, ν(BCl) and ν(AgCl) bands are observed similarly to the Raman spectra of
compounds 4 and 5.

Summarizing the results obtained for silver complexation, we can confirm that both [B10H10]2−

anion and its perchlorinated analog form coordination bonds with silver atom, but [B10Cl10]2− needs
strict conditions to form inner-sphere complexes. First, no competing ligands and cations should
be present; second, the tendency of the [B10Cl10]2− anion to form numerous Cl . . . X and Cl . . . H–X
interactions (X = C, N, O) with organic cations, ligands, and solvent molecules should be taken into
account. This type of interactions can be assumed based on the X-ray diffraction data and are confirmed
by 35Cl NQR spectroscopic studies for a number of salts and complexes [23,26,54,57]. These interactions
can result in a solvent shell appeared around the [B10Cl10]2− anion in solution, which prevent it from
forming direct contacts with metals and can be a reason for high solubility of its compounds. All
three complexes are the first representatives of the coordinated [B10Cl10]2− anion that demonstrate
inclination of the anion to form five-membered Cl–B–B–Cl–Ag rings via various coordination modes.
High distortion of coordination polyhedra and prominent variation of Ag . . . Cl bond distances makes
it difficult to propose a coordination mode of the anion and coordination environment of the silver(I)
atom. In this case, other approaches besides interatomic distances such as the atomic Hirshfeld surface
can be very helpful.
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3.3. The Hirshfeld Analysis of Ag . . . Cl–B Bonding

The atomic Hirshfeld surfaces (sAHS) proved themselves to be an easy and valuable tool for analysis
of chemical bonding including multicentered one between metal atoms and boron cages [18,58,59].
Besides, the AHS can be used to compare chemical bonding for a series of similar compounds [60,61].
The curvedness plotted on the AHS allows visualization of the degree of covalency for a given bond.
Red regions (flat surface) are associated with covalent bonding position, and green-blue denotes ionic
bonding [62–64]. CrystalExplorer 17.5 [65] was used to obtain AHS of copper(I) atoms in 4, silver(I)
atoms for 5–8 and some chlorinated dodeca(car)boranes.

Visual difference between Ag–H–B and Ag . . . Cl–B is demonstrated on Figure 7. The former
bonds are more sphere-like, and boron atoms take part in this bonding that manifests itself through
corresponding green regions on the atomic Hirshfeld surface mapped with curvedness (ranged from
−1.4 to−0.3). The latter bonds are all flat that is typical for covalent bonds. Even Ag–O and Ag–N bonds
between silver(I) atoms and solvent molecules demonstrate more prominent curvedness. The majority of
coordination polyhedra of silver(I) atoms are much distorted, and Ag–Cl bonds vary in a large range from
2.652(1) to 3.619(1) Å, thus the AHS become a convenient method to distinguish various coordination
isomers of boron cages. Using this approach, it is easy to conclude that [B10Cl10]2− and [B12Cl12]2−

anions in respectively [Ag2[B10Cl10]]n (6) or [Ag2(MeCN)2[B10Cl10]]n (8) and [Ag2[B12Cl12]]n [34] are
both coordinated through their edges, while in crystals of (7), [Ag(CH3CN)[(Me3N)B12Cl11]]n [28],
{[Ag2(SO2)[(Me3N)B12Cl11]2] · SO2}n [32] and {[Ag[(Me3N)B12Cl11]] · 0.5CH2Cl2}n [32] the coordination
through boron faces and vertices was found. Although Ag–Cl bonds for these four complexes are
in the same range, and dodecaboron cages are larger than decaboron one, the faces of an AHS
corresponding to all three Ag–Cl bonds with a face of a chlorinated dodecaboron anion are similar,
and those corresponding to the bonds with the [B10Cl10]2− anion in 7 are not equivalent. This fact may
be indicative of lower coordination ability of [B10Cl10]2− than [RB12Cl11]− or of non-equivalence of
apical and equatorial atoms in the former anion. Non-equivalence of AHS faces of silver atoms and the
lengths of Ag–Cl bonds in [Ag2[B10Cl10]]n (6) as compared with [Ag2[B12Cl12]]n support the second
assumption. It is known that the apical vertices of the [B10H10]2− anion are more negatively charged
and are more inclined to take part in MHB bonding. The same is observed for compounds 6–8, where
all apical chlorine atoms are involved in Ag–Cl bonding (Figure 8). The [B10Cl10]2− anion takes part
in bonding with up to six silver(I) atoms that is unusual for the smaller [B10H10]2− analog. All three
anions have different coordination.

In (7), the AHS indicates presence of an Ag–Ag bond (Figure 7d). The AHSs of two metal atoms
share a face that is associated with the concentration of charge density. The spectroscopic evidence of
the presence of the Ag–Ag bond can be provided from the Raman spectrum of complex 7 (Figure S5):
a peak with a maximum at 185 cm−1 can be attributed to the Ag–Ag bond analogously with the data
presented in [66] for Ag4

+; note that in the Raman spectra of {Ag2[B10Cl10]}n (6) this band in absent.
For comparison, metal atoms in the copper-containing dimer 4 do not share any AHS face (Figure 7a),
although the distance between these atoms is shorter than between silver(I) atoms in 7 (2.900(1) Å as
compared with 3.2022(9) Å). This Cu . . . Cu distance is similar with the distance observed in complex
4 crystallized from other polar solvents [47] while crystallization from non-polar media results in
elongation of Cu . . . Cu bonds. Previously reported DFT calculations of 4 demonstrated stabilization
of this dimer due to delocalization of electron density along the four-membered ring [47].

Thus, the atomic Hirshfeld surfaces of metal atoms in silver(I) complexes with coordinated
decachloro-closo-decaborate anions indicate covalent character of Ag–Cl bonding. This approach
allows revealing metal-metal bonding and the coordination mode of cage anions. The anions are prone
to form numerous Ag–Cl bonds through the cage edges and faces; and apical chlorine atoms more
readily form Ag–Cl bonds.
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Figure 7. Curvedness plotted on atomic Hirshfeld surface and mapped from −1.4 (flat; red) to
−0.3 (sphere-like; blue) for the silver atoms in (a) 4, (b) 5, (c) 6, (d) 7, (e) 8, (f) [Ag2[B12Cl12]]n,
(g) Ag(CH3CN)[(Me3N)B12Cl11]]n (only one of four symmetrically independent atoms is depicted),
(h) [Ag2(SO2)[(Me3N)B12Cl11]2] · SO2}n (one of two symmetrically independent atoms is depicted),
(i) {[Ag[(Me3N)B12Cl11]] · 0.5CH2Cl2}n (one of two symmetrically independent atoms is depicted).
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absent. For comparison, metal atoms in the copper-containing dimer 4 do not share any AHS face 
(Figure 7a), although the distance between these atoms is shorter than between silver(I) atoms in 7 
(2.900(1) Å as compared with 3.2022(9) Å). This Cu…Cu distance is similar with the distance 
observed in complex 4 crystallized from other polar solvents [47] while crystallization from 

Figure 8. Coordination mode of [B10Cl10]2− in (a) 6, (b) 7, and (c) 8.
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4. Conclusions

Silver(I) complexation with the [B10Cl10]2− anion was studied in the presence of Ph3P and without it.
It was found that depending on the started Ag+/Ph3P ratio, compounds [Ag(PPh3)2(DMF)2]2[B10Cl10]
or [Ag(Ph3P)3(H2O)]2[B10Cl10] can be selectively isolated, both containing the uncoordinated boron
cage. For comparison, the analogous reaction performed when using [B10H10]2− resulted in
compound [Ag(Ph3P)4][Ag(Ph3P)2[B10H10]], which contains silver mononuclear complexes: anionic
[Ag(Ph3P)2[B10H10]]− and cationic [Ag(Ph3P)4]+. The data obtained indicate lower coordination ability
of the perchlorinated anion in silver(I) complexation in the presence of Ph3P as compared to the
[B10H10]2− anion. However, [B10Cl10]2− can participate in coordination when the reaction is carried
out at the absence of bulky cations and ligands in the reaction mixture. Three complexes with 3D
frameworks were synthesized: [Ag2[B10Cl10]]n, [Ag2(DMF)2[B10Cl10]n, and [Ag2(CH3CN)2[B10Cl10]]n

from water, DMF, and acetonitrile, respectively. The boron cages are coordinated by silver; the
Ag–Ag bonds can be assumed in [Ag2(DMF)2[B10Cl10]n based on the X-ray diffraction and Raman
spectroscopy data. Note that copper(I) reactions in the presence of Ph3P result in preparation of
mononuclear [Cu(Ph3P)3Cl] · 2DMF and binuclear [Cu2(Ph3P)3(µ-Cl)2] copper(I) complexes rather
than boron-containing complexes; the perchlorinated closo-decaborate anion remains unreacted.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/5/389/s1,
Figures S1–S7: IR spectra of complexes 1–8 and Raman spectra of complexes 6–8, Figures S8–S11: X-ray powder
diffraction data for 1 · 2DMF, 4, 6, and 7, Figure S12: Calculated voids in solid 6.
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