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Abstract: Doped SrTiO3 becomes a metal at extremely low doping concentrations n and is even
superconducting at n < 1020 cm−3, with the superconducting transition temperature adopting
a dome-like shape with increasing carrier concentration. In this paper it is shown within
the polarizability model and from first principles calculations that up to a well-defined carrier
concentration nc transverse optic mode softening takes place together with polar nano-domain
formation, which provides evidence of inhomogeneity and a two-component type behavior with
metallicity coexisting with polarity. Beyond this region, a conventional metal is formed where
superconductivity as well as mode softening is absent. For n ≤ nc the effective electron-phonon
coupling follows the superconducting transition temperature. Effusion measurements, as well as
macroscopic and nanoscopic conductivity measurements, indicate that the distribution of oxygen
vacancies is local and inhomogeneous, from which it is concluded that metallicity stems from filaments
which are embedded in a polar matrix as long as n ≤ nc.

Keywords: SrTiO3; metal – insulator transition; lattice dynamics

1. Introduction

SrTiO3 (STO) is one of the best investigated systems for scientific and technological reasons.
Early on, research activities focused on the cubic to tetragonal phase transition at TS = 105 K [1–6]
and the transverse optic mode softening suggesting a polar instability [7–10]. While the structural
instability was assigned to the rotation of oxygen octahedrons driven by a soft transverse acoustic zone
boundary mode, the polar instability has been shown to be suppressed by quantum fluctuations and
the phase named quantum paraelectric and/or incipient ferroelectric, respectively [1,5]. Ferroelectricity
can, however, be induced by either isotopic substitution of 16O by 18O [11], or by replacing tiny
amounts of Sr by Ca [12]. In the former case, the polar state remains incomplete [13,14], since it
is inhomogeneous with coexisting paraelectric and ferroelectric domains, whereas in the latter, an
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XY pseudospin ferroelectric transition takes place [12]. Recently, it has been shown that the domain
walls of STO in the tetragonal phase carry polar properties related to ferroelectricity [15,16]. Upon
replacing Sr by Ca or La, or Ti with Nb, or removing oxygen, superconductivity has been observed
at low temperature with a dome-like dependence of the transition temperature upon doping [17–25].
In all cases, the carrier concentrations are extremely small and the Fermi energies are an order of
magnitude smaller than the Debye temperature. For oxygen deficient samples, superconductivity has
early on been explained as soft mode- [26–28] or intervalley deformation potential-driven [23,29,30].
Another interpretation has combined both proposals by introducing unconventional anharmonicity [31].
Recent novel interest in STO has invoked ferroelectric mode fluctuations [32], longitudinal optical
phonons [33], or plasmons [34] as possible sources of superconductivity. Besides its superconducting
properties, also the metallic state of STO and its metal / insulator (M/I) transition have attracted intense
attention, since metallicity is observed at a carrier concentration which reaches a critical value defined
by the Mott’s criterion [35]. This transition can be induced through a reduction in high temperatures and
under low oxygen partial pressure, e.g., in a vacuum, Ti-getter, or H2 atmosphere [18,36]. Macroscopic
measurements of the Hall effect indeed provide some evidence that the critical concentration of free
carriers required for the M/I transition should be of the order of n ≈ 1016/cm3 [25,36]. However, effusion
measurements and macroscopic and nanoscopic conductivity measurements show that the removal
of only 1013–1014 oxygen ions/cm3 turns STO into a metallic state [37,38], and thus violate the Mott
criterion. In addition, such an extremely low distribution of oxygen vacancies gives rise to local
inhomogeneity, which implies that the reduction process is of local character and takes place only near
the core of dislocations [37–39]. This so-called self-doping is limited to the network of dislocations,
increasing the local concentration of Ti d1 electrons to 1020–1021/cm3 [37,40,41]. These observations
imply that the Mott criterion is satisfied locally, whereas from the point of view of average properties it
is violated.

In this paper, the dynamical properties of doped STO are investigated and shown to be related to
superconductivity. In particular, it is demonstrated that the soft optic mode persists up to a critical
carrier concentration nc and leads to the formation of polar nano domains. Since ferroelectricity,
and also incipient ferroelectricity as realized in undoped STO, are incompatible with metallicity, an
inhomogeneous state emerges where the metallic conductivity is filamentary [39,42,43]. On the other
hand, mode softening takes place in the embedding matrix which consists of polar nano-regions.
Interestingly, superconductivity is confined to the regime of coexistence, thus highlighting the
importance of the pseudo ferroelectric soft phonon mode. These results are supported by an
experimental conductivity study which provides evidence that the filamentary character of the
conductivity is in coexistence with polar nano-domains.

2. Theoretical Background

The dynamical properties of STO have been studied comprehensively experimentally since its
discovery [2–4,6,9,10]. Intense theoretical work has been devoted to the understanding based on
phenomenological modelling as well as ab initio theories. The presence of strong anharmonicity has
been especially emphasized when concentrating on the essential temperature-dependent properties of
this compound. A rather profound breakthrough was obtained by Migoni et al. [44], who introduced a
nonlinear polarizability model to successfully quantitatively reproduce the characteristic dynamical
properties of ferroelectric perovskites, including STO, within a self-consistent phonon approximation
(SPA). This model has been cast into a more transparent pseudo-one-dimensional version and applied
to a broad range of ferroelectrics [45–48]. The essential ingredient of the model as introduced by
Migoni et al [44] is based on the nonlinear polarizability of the oxygen O2− ion, which depends strongly
on its crystalline environment. In [44], this was accounted for by using two independent core-shell
force constants with respect to the A and B neighbors in ABO3. The lowest term of the nonlinear
core-shell interaction at the oxygen-ion site is of fourth order, because of inversion symmetry in the
paraelectric phase. However, the temperature dependence of the soft mode and other low frequency
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modes, as well as the Raman spectra, depends on the coupling constant directed to the transition
metal ion only. This corresponds to the modulation of the oxygen-ion polarizability in the direction of
the neighboring Ti ion in STO and indicates that the phonon-induced change of the transition-metal
—oxygen bond, i.e., the hybridization of oxygen p and transition metal d electrons, plays an essential
role for the dynamical properties of ferroelectrics (“dynamical covalency”). The importance of the
p-d hybridization has been demonstrated for various perovskites and successfully interpreted on
the basis of a nonlinear polarizability model. The onsite potential in the core–shell interaction is of
double-well character with g2 being the attractive harmonic coupling constant and g4 the fourth order
repulsive anharmonic coupling constant, and can be written as V(w1n ) = g2w2

1n + g4w4
1n using the

definition w1n = v1n − u1n where u1n is the ionic displacement and v1n the electronic shell related one,
respectively, at lattice site 1n. The relative displacement coordinate w1n characterizes the polarization
and has the limits of a fully delocalized shell for complete ionization, and a rigidly bound shell for
where p-d hybridization effects are irrelevant. In metallic samples, new or in-gap states appear at or
close to the Fermi energy, which diminish these effects and correspondingly destroy the proximity to a
polar instability.

A review on the model is given in [45,46]. For doped semiconducting STO, the observed soft
transverse optic zone center mode has been shown to harden with increasing carrier concentration [49],
and a linear relation between carrier concentration and g2, as well as g4, was established [50].

In the following, this relation is used to extract g2, as well as g4, for arbitrary carrier concentrations.
This method allows us to obtain the related double-well potential and to calculate optic mode softening
within the SPA, the coupling of optic and acoustic modes, the spatial extensions of polar nano-domains,
and the effective electron-phonon coupling constant as a function of carrier concentration n.

In Figure 1, g2 and g4 are shown as functions of n. Clearly, the nonlinear interaction constant g4

is small and almost independent of n, whereas g2 rapidly increases with increasing n and changes
sign for nc = 2.232 × 1020 cm−3, the carrier concentration for which the superconducting transition
temperature Tc vanishes.
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Figure 1. Carrier concentration dependence of the harmonic g2 and the fourth order anharmonic g4 
coupling constants. Note that g2 changes sign at nc from attractive to repulsive. 

At nc, the double-well potential changes to a single-well one (Figure 2), where the depicted 
carrier concentrations refer to the ones discussed in [51,52] in order to provide the connection to 
experimental data.  

Figure 1. Carrier concentration dependence of the harmonic g2 and the fourth order anharmonic g4

coupling constants. Note that g2 changes sign at nc from attractive to repulsive.

At nc, the double-well potential changes to a single-well one (Figure 2), where the depicted
carrier concentrations refer to the ones discussed in [51,52] in order to provide the connection to
experimental data.
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Figure 2. Local potential V in the core-shell related relative displacement coordinate w for various
carrier concentration n (cm−3) (the color code is given in the inset). The bright dashed green line
corresponds to nc.

Besides the fact that the potential changes from double-well to single well, it becomes also
increasingly narrow with increasing n. This finding implies – counterintuitively – that the electrons
within the TiO6 unit are more strongly localized (see above), and dynamical p-d hybridization effects
lose importance. Since this happens with increasing carrier concentrations, other pathways for the
conductivity of doped STO must be present. In various recent work, extended studies of STO and
other perovskites have shown that dislocations and defects form types of filaments (within the polar
matrix), which are responsible for conductivity [40–43].

The carrier concentration-dependent values of g2 and g4 allow one to calculate the temperature
dependence of the lowest transverse optic and acoustic modes within the SPA. The squared optic
mode frequency ω2

TO(q = 0) is inversely proportional to the permittivity, whereas the acoustic mode
experiences anharmonic mode-mode coupling at finite momentum, as shown by anomalies in its
dispersion [53–55]. This squared “soft” mode frequencies of doped STO are shown as a function of
temperature in Figure 3.
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Figure 3. The squared ferroelectric soft mode as a function of temperature for various carrier
concentrations n (cm−3), as given in the inset.
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As is clear from Figure 3, the modes can be grouped into two categories, namely ferroelectric
type up to nc, and non-ferroelectric, like for n > nc, where only a minor softening with decreasing
temperature is observed, which is consistent with the change in the potential from double to single well.

Since precursor dynamics have been predicted and experimentally confirmed in undoped
STO [53–55], doped systems have also investigated for these features, which are signatures of polar
or elastic nano-domain formation. This is better carried out by inspection of the dispersion of the
lowest optic and acoustic modes. Typical dispersions are shown for three carrier concentrations, low,
intermediate, and large, in Figure 4a–c.
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Figure 4. Dispersion of the lowest transverse optic and acoustic modes for n = 2.4 × 1017 cm−3

(a), 0.78 × 1020 cm−3 (b), and 11.2 × 1020 cm−3 (c). The q-dependent frequency difference for
n = 2.4 × 1017 cm−3 (d), 0.78 × 1020 cm−3 (e), and 11.2 × 1020 cm−3 (f). All curves are shown for
different temperatures as given in the insets.
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In the cases with small and intermediate carrier concentrations, the increasing mode-mode
coupling with decreasing temperature is apparent through anomalies at a small momentum in the
acoustic mode dispersion, which was also observed experimentally [45,46]. This has completely
vanished for n = 11.2 × 1020 cm−3, where the acoustic mode temperature dependence is almost absent,
especially in the small q range. The momentum values where the coupling is largest are clearly
obtained by calculating the difference of the optic and acoustic modes where the minimum indicates
the spatial range of maximum mode-mode coupling. Again, the three above examples are shown in
Figure 4d–f, and all other cases lie in between or beyond those. With increasing carrier density, the
difference spectrum moves to a higher energy and the minimum momentum value qmin shifts to higher
q-values. This implies that the spatial extent of these nano-domains decreases with increasing n and its
volume fraction shrinks. The related spatial spread of the polar region with radius rc as a function of
temperature is shown for all investigated carrier concentrations in Figure 5. For carrier concentrations
smaller than nc, rc diverges with decreasing temperature and is only slightly dependent on the carrier
concentration at high temperatures to saturate at a spatial spread of approximately 5 lattice constants.
This means that at all temperatures, the system is inhomogeneous and consists of polar nano-domains
as a matrix that coexists with conducting filaments. For n > nc, small nano-domains remain, but their
spatial extent and volume fraction are small and almost independent of temperature. In this case, the
sample inhomogeneity has almost completely vanished and the conductivity should be metallic-like,
as observed experimentally. It is important to mention that effective Hamiltonian approaches are
unable to capture these “local” spatially-confined features, since they rely on the lattice periodicity.
This is, however, absent in the present approach and the appropriate modelling is not given.
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Figure 5. Spatial extent of polar nano-regions as a function of temperature and various carrier
concentrations n as indicated in the inset to the figure.

All curves follow an exponential law where r0 is a polaronic radius and of the order of several
lattice constants for n < nc and decreases substantially for a larger n. Similarly, A is almost constant
for small carrier concentrations and decreases rapidly for larger ones. The crossover temperature TK

shows similar trends, but increases enormously for n > nc. All parameters are summarized in Table 1.
The question remains whether the above dynamical properties can be related to the metal/insulator

(M/I) transition and superconductivity. This is certainly not possible directly, however, upon multiplying
the double-well potential depth with the density of states at EF and plotting this as a function of n, an
approximate relation is obtained, as displayed in Figure 6. As soon as the potential changes shape at
nc, the coupling is repulsive and is therefore not shown in the figure.
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Table 1. Carrier concentration n, harmonic versus anharmonic coupling constant −g2/g4, polaronic
radius r0, exponential prefactor A, and crossover temperature TK.

Carrier Concentration
n [cm−3]

−g2/g4 [10−18 cm2] r0 [lattice constants] A [lattice constants] TK [K]

2.4 × 1017 32.14 4.64 23.85 52.6

1.2 × 1019 30.46 4.63 23.34 52.6

3.5 × 1019 27.29 4.46 18.23 59.0

0.78 × 1020 21.08 4.26 13.57 66.7

1.18 × 1020 10.63 3.91 8.90 77.0

5.32 × 1020 −52.13 2.80 2.29 185.0

11.2 × 1020 −118.16 2.18 1.06 286.0
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Figure 6. Effective coupling constant as a function of carrier concentration n. Calculated results
correspond to full circles, line is a parabolic fit.

Clearly, a dome-like dependence of the “effective” coupling constant on n is obtained, which
mimics the dependence of Tc on n, as observed experimentally [21]. It is, however, within the
above presented results, not possible to link superconductivity directly to Figure 6. Hence, an
Eliashberg-type calculation is in progress, and we are convinced that the data will indeed be relevant
to superconductivity in STO. If so, it must be concluded that superconductivity occurs in a region
with strong inhomogeneity where filamentary conductivity coexists with a polar matrix. It is worth
mentioning that similar conclusions have already been reached for cuprate superconductors [56].

3. Experimental Results

The analysis of the electrical properties of doped STO is based on the volume concentration of
carriers. Self-doped STO samples exhibit different electronic, chemical, and structural properties as
compared to the matrix, which is not very affected by doping [57]. However, in core dislocations, the
removal of oxygen is preferentially taking place along extended defects [40,58,59]. Consequently, a
local reduction is observed, which cannot be measured by average macroscopic property detecting
tools like, e.g., mobility and Hall measurements. This statement is supported by local conductivity
atomic force microscopy (LC-AFM) data [39,40], which provides evidence that very low concentrations
of oxygen deficiency assemble along the dislocations. In order to fulfill the Mott criterion for the M/I
transition in reduced STO, these conclusions are necessary and sufficient. From a LC-AFM analysis of
in-situ and ex-situ cleaved surfaces of reduced STO and the in-plane cleaved crystals, the resistivity
data (Table 2) have been compared with the four point method taken at the maximum reduction
process [60]. The measured resistance using the four-points method calculated resistivity values of
Table 2 are in close agreement with data from Spinelli [36] and Schooley [18] for reduced STO either
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being metallic or superconducting. Since the reduction methods of [18,36] are not commonly used
and differ from the ones of [40,58,59], we cannot prove that either the M/I or the superconducting
transitions are confined to core dislocations or filaments. In order to provide more stringent evidence
for our arguments, which do not support a statistical distribution of “defects”, a simple but impressive
experiment has been carried out, which highlights the important role of dislocations and filament
formation in the electric transport of reduced SrTiO3.

A reduced STO single crystal is cut into two identical parts where one has the original epi-polished
surface whereas the other is scratched by using e.g., a diamond pyramid (Figure 7).

This procedure has increased the number of dislocations by one to two orders of magnitude from
109–10/cm2 to 1011–12/cm2 of the scratched sample [59]. Upon reducing both samples simultaneously
under the same thermodynamic conditions, the resistivity of both has been monitored as a function of
temperature (Figure 7b, bottom). As is obvious from the Figure 7b (bottom), the electrical transport
properties of both samples are very different from each other in spite of the use of identical reduction
processes. Even though both samples show metallic behavior, the resistivity of the polished one
is shifted to higher values as compared to the scratched one, where not just a scaling factor enters.
Apparently, the increase in the dislocation density of the scratched sample (c) by two orders of
magnitude as compared to the epi-polished one (b) has decreased the resistivity by a factor of five,
which intuitively was to be expected. While this observation seems to be counterintuitive to the
initial argument, a decisive fact has been omitted, namely, the dislocation density on the edges (upper
inset to Figure 7b, top) of both specimen are alike. By taking this fact into account, a simple count
of dislocations stemming from both the faces and the edges of both samples contributing to the
resistivity cannot be larger than approximately five as deduced from detailed resistivity measurements
including the edges [38]. The role dislocations played for electrical transport can indirectly be proven
through measurements of the temperature gradient (using an infrared camera) along the sample
during poling. In the vicinity of regions with a high concentration of these extended defects, the local
temperature is increased by 10 to 40 K, caused by the preferential current flow and the related Joule
loss [59]. Thus, this experiment supports the basic assumption of filamentary conductivity in doped
STO, which is intimately related to the two-component approach suggested to be realized in this
system, an intact dielectric matrix and a hierarchic 3D network of metallic/superconducting filaments.
An important ingredient is the interface between both, which mediates their interplay and most likely
acts as an inter-band interaction term analogous to two-band superconductivity. A schematic view
of the above scenario is shown in Figure 8, where doping is shown to be constrained to the core of
filaments, whereas the polar properties are limited to the remaining regions, rendering the system
intrinsically inhomogeneous.

As outlined above, even with increasing carrier density, mode softening persists on a dynamic
time scale of ps and length scale of nm. This process can be confirmed experimentally on the
nano-scale by using, e.g., time-resolved infrared spectroscopy or scanning near-field optical microscopy
(SNOM). Alternatively, piezoelectric force microscopy (PFM) offers the possibility of locally detecting a
piezoelectric response which is an indirect probe of mode softening through the creation of induced
dipole moments. This has been shown in [60,61], where in the vicinity of the core of edge dislocations
in a STO bicrystal, a polarization of the order of 20 µC/cm2 has been detected. Analogously, the steps
of terrace piezoelectric activity can be expected [60,62]. This is demonstrated in Figure 9, where along
a sharp step of a plastically deformed STO crystal, corresponding to a broad band of dislocations,
piezoelectric responses are observed.



Crystals 2020, 10, 437 9 of 15

Table 2. Resistivity and global and local concentration of oxygen defects induced in a SrTiO3 single crystal at different reduction temperatures.

Reduction
Temperature (◦C)

Single Crystal
Resistance

Assigned by
Four-Points
Method (Ω)

Calculated
Volume

Resistivity (Ω cm)

Resistivity (Ωcm) at
Room Temperature

for Vacuum Reduced
SrTiO3,

after Spinelli
et al. [36]

Hall Concentration
of Carriers N at

Room Temperature
(N/cm3),

after Spinelli
et al. [36]

Calculated Volume
Concentration of Oxygen

Vacancies N due to
Oxygen Effusion per
Unit Volume (N/cm3)

[38]

Effective Oxygen
Vacancies

Non-Stoichiometry x
in SrTiO3−x

Derivate From
[38]

Average Concentration
of Oxygen Vacancies N

in the Core of the
Dislocations Network

(N/cm3)
Determined from
Effusion Data and
Extension of the

Hierarchic Tree of
Dislocations

[38]

600 1320 49 18.2 5.64 × 1016 2.2 × 1013 4.4 × 10−10 3.3 × 1019

620 2.2 × 102 1.04 × 1016

650 89.1–2.2 × 103 3.8 × 1015–1.98 × 1016

700 118 4.43 3.87–1.13 × 103 3.76 × 1015–2.13 × 1017 3.4 × 1013 1.1 × 10−10 8.4 × 1019

800 47
150 [61]

1.76
4.69

2.6 × 1013

3 × 1014 [37] 1.75 × 10−9 1.3 × 1020

2 × 1020 [37]

900 27
25

1.01
0.78 9.1 × 1013 3.34 × 10−9 2.6 × 1020

1000 14.8 0.56 8.0 × 1013 5.03 × 10−9 3.8 × 1020

1100 0.15–0.47 2.23 × 1018
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Figure 7. (Top) Schematic view of the preparation of SrTiO3 (STO) sample with different dislocation
densities in the surface layer. After cleaving the sample, (a) the distribution of dislocations and their
concentration is identical to the reference crystal (~109–10/cm2) in contrast to (c) where the surface area
has been scratched and thereby has generated a value of 1011–12 dislocation/cm2. The upper inset
(d) provides evidence that the edge of the reference crystal contains a substantially larger dislocation
density as compared to (b). The local conductivity atomic force microscopy (LC-AFM) mapping (e) of
the part of the crystal close to the edge of the reduced crystal shows an extremely high concentration
increase of the conducting dislocations. The ratio of the conductivity of dislocations (represented by
the dark brown color) to the matrix conductivity (represented by white color) is of about 3–4 orders
of magnitude. (Bottom) Temperature dependence of the resistivity of samples b and c. Sample b is
represented by the red line, and c by the blue one.

Using highly sensitive LC-AFM mapping of the near-step area, a series of dislocations (filaments),
with considerably lower resistance than the rest of the stoichiometric crystal, exists (Figure 9b). This
suggests that in the core of the dislocations, the local stoichiometry is different from that of the bulk.

When a crystal with semiconducting dislocation cores, dislocation bundles, steps or with a
low/high angle boundary is additionally reduced, the dislocations are transformed into metallic
filaments. These affect not only the electrical properties (e.g., the insulator-metal transition), but also
produce enormous changes in the dielectric and piezoelectric properties. In the areas of high (metallic)
conductivity, the piezoelectricity vanishes (Figure 10). This finding clearly questions the validity of the
concept of metallic-ferroelectricity [63], or more precisely metallic-piezoelectricity. On the contrary,
and considering the above results, the concept of essential heterogeneity in thermally reduced SrTiO3

crystals, namely a dielectric (ferroelectric) matrix and 3D network of metallic filaments, provides a
reasonable and realistic picture of perovskite oxides.

It is important to note that aliovalent doping of STO (with, e.g., La or Nb), causing n type
conductivity and an insulator metal transition for only 0.1–1% doping, leads to a more homogeneous
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distribution of carriers in the matrix. This implies that in STO:La or STO:Nb, the formation of polar
nano-regions with the same radii throughout the crystal volume takes place, which is contrary to the
thermally reduced STO crystal shown in Figure 8.Crystals 2020, 10, x FOR PEER REVIEW 11 of 16 
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Figure 8. Schematic representation of the distribution of polar nano clusters in reduced STO (insets
a, and the corresponding local potential b-I), close to the conductive core of the dislocation (insets a,
with the potential b-II) and inside the core (insets a, and potential b-III). In the matrix, far from the
dislocations, the concentration of carriers is rather small and thus admits its unhindered clustering
(inset b-I). For details, see Figures 2 and 5, with a relatively large spatial extent (here ≈5 lattice constants
(uc) at 300 K (inset c)). In the vicinity of conductive dislocations, their expansion is reduced to 2.5 unit
cell (uc) (insets a, c) caused by the increase in the local concentration of d-electrons up to 1017–19/cm3

(inset d, cross-section A-B, and inset b-II). In the core of the dislocation, the concentration of carriers
reaches a maximum value of 1020–21/cm3, which renders the formation of nano clusters unlikely (insets
b-III and c). In the core of the dislocation with a typical radius of 2 nm, their size is not larger than 1 uc
(insets a and c). Note: the average concentration of Ti d-electrons has been calculated from effusion
data [37,38], and the change in carrier concentration, which depends on the distance from the core, was
derived from the LC-AFM measurements as depicted in the inset d (for details see [38–40]).Crystals 2020, 10, x FOR PEER REVIEW 12 of 16 
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Figure 9. Topographic image of a step (AFM) of a plastically deformed stoichiometric SrTiO3 crystal.
(a) Near the step there is a wide band of conductive dislocations/filaments (dark points on LC-AFMmap)
(b) The position of the filaments is correlated with the position of the etch pits (see [38]). Along the step,
a high piezo response (out-of-plane) (c), and in-plane, (d) with the clear maximum of the piezoelectric
force microscopy (PFM) response, can be observed between both rows of conductive dislocations. Note:
The rest of the crystal, far from the step, shows very low piezo activity.
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Figure 10. Topographic image of the exit of a dislocation bundle in thermally reduced STO: (a) the
topography variation is about 0–4.8nm. In the area of the bundle (LC-AFM) (b) with metallic properties
the piezo response (c) is absent. This can be observed at the cross sections of LC-AFM (b) and PFM
(c) responses. The distribution of the resistance along the cross section (lower part of Figure 10)
shows an anti-correlation with the distribution of the piezo activity on the cross section of the PFM.
The resistance outside the bundle is much higher than shown on the cross section, which is related
to the finite resolution of the analog-to-digital converters (here 4 decades), so that using additional
measurements (only in this area), the resistance is higher than 1012–13 Ω.

4. Conclusions

In conclusion, the dynamical properties of STO have been calculated as a function of carrier
concentration. Up to a critical concentration nc, the lattice potential is of double-well character and strong
transverse optic mode softening takes place. This is linked to the formation of polar nano-regions, which
grow in size with decreasing temperature, implying substantial sample inhomogeneity. The “insulating”
nano-domains coexist with the filamentary conductivity, and hence possible links to superconductivity
have been suggested. As long as this coexistence persists, superconductivity survives. This suggests
that the essential origin must be associated with the polar character and the two-component properties.
Beyond nc, almost “normal” dynamics are observed with negligible mode softening and nano-domain
formation. Typical metallicity is expected there as well as homogeneous sample properties.

The theoretical results are supported by experiments which demonstrate the local metallic character
and the insulating behavior of the matrix. From additional PFM and LC-AFM data, the dielectric
character of the matrix has been confirmed, together with the strong variations in the resistance upon
crossing from the matrix to the metallic filaments. Here, especially, the comparison of stoichiometric
crystals with scratched (i.e., with a high concentration of mechanically generated dislocations), and
other epi-polished ones (with a low concentration of dislocations) has provided essential clues in
understanding the role of filaments in electrical transport phenomena (in particular for the analysis of
the type of transition I/M induced by reduction under vacuum conditions in the network of dislocation
filaments), and in modifications of local polarization in the vicinity of conductive core of dislocations
(filaments).
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