On the Reconstruction Peculiarities of Sol–Gel Derived Mg2−xMx/Al1 (M = Ca, Sr, Ba) Layered Double Hydroxides
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, F.; Duan, X. Applications of layered double hydroxides. In Layered Double Hydroxides (Structure and Bonding); Mingos, D.M.P., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2006; pp. 193–223. [Google Scholar]
- Sokol, D.; Klemkaite-Ramanauske, K.; Khinsky, A.; Baltakys, K.; Beganskiene, A.; Baltusnikas, A.; Pinkas, J.; Kareiva, A. Reconstruction effects on surface properties of Co/Mg/Al layered double hydroxide. Mater. Sci. (Medžiagotyra) 2017, 23, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018, 1539, 172–186. [Google Scholar] [CrossRef]
- Vieira, D.E.L.; Sokol, D.; Smalenskaite, A.; Kareiva, A.; Ferreira, M.G.S.; Vieira, J.M.; Brett, C.M.A.; Salak, A.N. Cast iron corrosion protection with chemically modified Mg-Al layered double hydroxides synthesized using a novel approach. Surf. Coat. Technol. 2019, 375, 158–163. [Google Scholar] [CrossRef]
- Smalenskaite, A.; Pavasaryte, L.; Yang, T.C.K.; Kareiva, A. Undoped and Eu3+ doped magnesium-aluminium layered double hydroxides: Peculiarities of intercalation of organic anions and investigation of luminescence properties. Materials 2019, 12, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.L.; Ma, J.; Yuan, Y.X. Enhanced adsorption of chromium by stabilized Ca/Al-Fe layered double hydroxide decorated with ferric nanoparticles. Sci. Adv. Mater. 2020, 12, 441–448. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Qin, J.Y.; Zhang, W.C.; Pan, Y.T.; Wang, D.Y.; Yang, R.J. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem. Eng. J. 2020, 381, 122777. [Google Scholar] [CrossRef]
- Sato, T.; Fujita, H.; Endo, T.; Shimada, M.; Tsunashima, A. Synthesis of hydrotalcite-like compounds and their physic-chemical properties. Reactiv. Solids 1988, 5, 219–228. [Google Scholar] [CrossRef]
- Klemkaite, K.; Prosycevas, I.; Taraskevicius, R.; Khinsky, A.; Kareiva, A. Synthesis and characterization of layered double hydroxides with different cations (Mg, Co, Ni, Al), decomposition and reformation of mixed metal oxides to layered structures. Centr. Eur. J. Chem. 2011, 9, 275–282. [Google Scholar] [CrossRef]
- Salak, A.N.; Tedim, J.; Kuznetsova, A.I.; Ribeiro, J.L.; Vieira, L.G.; Zheludkevich, M.L.; Ferreira, M.G.S. Comparative X-ray diffraction and infrared spectroscopy study of Zn-Al layered double hydroxides: Vanadate vs. nitrate. Chem. Phys. 2012, 397, 102–108. [Google Scholar] [CrossRef]
- Meyn, M.; Beneke, K.; Lagaly, G. Anion exchange reactions of layered double hydroxides. Inorg. Chem. 1990, 29, 5201–5206. [Google Scholar] [CrossRef]
- Newman, S.P.; Jones, W. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J. Chem. 1998, 22, 105–115. [Google Scholar] [CrossRef]
- Olfs, H.W.; Torres-Dorante, L.O.; Eckelt, R.; Kosslick, H. Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties. Appl. Clay Sci. 2009, 43, 459–464. [Google Scholar] [CrossRef]
- Smalenskaite, A.; Vieira, D.E.L.; Salak, A.N.; Ferreira, M.G.S.; Katelnikovas, A.; Kareiva, A. A comparative study of co-precipitation and sol-gel synthetic approaches to fabricate cerium-substituted Mg/Al layered double hydroxides with luminescence properties. Appl. Clay Sci. 2017, 143, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Sokol, D.; Salak, A.N.; Ferreira, M.G.S.; Beganskiene, A.; Kareiva, A. Bi-substituted Mg3Al-CO3 layered double hydroxides. J. Sol-Gel Sci. Technol. 2018, 85, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Smalenskaite, A.; Salak, A.N.; Kareiva, A. Induced neodymium luminescence in sol-gel derived layered double hydroxides. Mendeleev Commun. 2018, 28, 493–494. [Google Scholar] [CrossRef]
- Smalenskaite, A.; Kaba, M.M.; Grigoraviciute-Puroniene, I.; Mikoliunaite, L.; Zarkov, A.; Ramanauskas, R.; Morkan, I.A.; Kareiva, A. Sol-gel synthesis and characterization of coatings of Mg-Al layered double hydroxides (LDHs). Materials 2019, 12, 3738. [Google Scholar] [CrossRef] [Green Version]
- Valeikiene, L.; Paitian, R.; Grigoraviciute-Puroniene, I.; Ishikawa, K.; Kareiva, A. Transition metal substitution effects in sol-gel derived Mg3-xMx/Al1 (M = Mn, Co, Ni, Cu, Zn) layered double hydroxides. Mater. Chem. Phys. 2019, 237, 121863. [Google Scholar] [CrossRef]
- Kovanda, F.; Grygar, T.; Dornicak, V. Thermal behaviour of Ni-Mn layered double hydroxide and characterization of formed oxides. Solid State Sci. 2003, 5, 1019–1026. [Google Scholar] [CrossRef]
- Liu, X.W.; Wu, Y.L.; Xu, Y.; Ge, F. Preparation of Mg/Al bimetallic oxides as sorbents: Microwave calcination, characterization, and adsorption of Cr(VI). J. Solid State Chem. 2016, 79, 122–132. [Google Scholar] [CrossRef]
- Vicente, P.; Perez-Bernal, M.E.; Ruano-Casero, R.J.; Ananias, D.; Almeida Paz, F.A.; Rocha, J.; Rives, V. Luminescence properties of lanthanide-containing layered double hydroxides. Microp. Mesop. Mater. 2016, 226, 209–220. [Google Scholar] [CrossRef]
- Kryshtab, T.; Calderon, H.A.; Kryvko, A. Microstructure characterization of metal mixed oxides. MRS Adv. 2017, 2, 4025–4030. [Google Scholar] [CrossRef]
- Bugris, V.; Adok-Sipiczki, M.; Anitics, T.; Kuzmann, E.; Homonnay, Z.; Kukovecz, A.; Konya, Z.; Sipos, P.; Palinko, I. Thermal decomposition and reconstruction of CaFe-layered double hydroxide studied by X-ray diffractometry and Fe-57 Mossbauer spectroscopy. J. Molec. Struct. 2015, 1090, 19–24. [Google Scholar] [CrossRef]
- Millange, F.; Walton, R.I.; O’Hare, D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds. J. Mater. Chem. 2000, 10, 1713–1720. [Google Scholar] [CrossRef]
- Li, L.; Qi, G.X.; Fukushima, M.; Wang, B.; Xu, H.; Wang, Y. Insight into the preparation of Fe3O4 nanoparticle pillared layered double hydroxides composite via thermal decomposition and reconstruction. Appl. Clay Sci. 2017, 140, 88–95. [Google Scholar] [CrossRef]
- Bernardo, M.P.; Ribeiro, C. Zn-Al-based layered double hydroxides (LDH) active structures for dental restorative materials. J. Mater. Res. Technol. 2019, 8, 1250–1257. [Google Scholar] [CrossRef]
- Elhalil, A.; Elmoubarki, R.; Machrouhi, A.; Sadiq, M.; Abdennouri, M.; Qourzal, S.; Barka, N. Photocatalytic degradation of caffeine by ZnO-ZnAl2O4 nanoparticles derived from LDH structure. J. Environ. Chem. Eng. 2017, 5, 3719–3726. [Google Scholar] [CrossRef]
- Valente, J.S.; Lima, E.; Toledo-Antonio, J.A.; Cortes-Jacome, M.A.; Lartundo-Rojas, L.; Montiel, R.; Prince, J. Comprehending the thermal decomposition and reconstruction process of sol-gel MgAl layered double hydroxides. J. Phys. Chem. C 2010, 114, 2089–2099. [Google Scholar] [CrossRef]
- Venugopal, B.R.; Shivakumara, C.; Rajamathi, M. A composite of layered double hydroxides obtained through random costacking of layers from Mg-Al and Co-Al LDHs by delamination-restacking: Thermal decomposition and reconstruction behavior. Solid State Sci. 2007, 9, 287–294. [Google Scholar] [CrossRef]
- Chagas, L.H.; de Carvalho, G.S.G.; Carmo, W.R.D.; Gil, R.A.S.S.; Chiaro, S.S.X.; Leitao, A.A.; Diniz, R.; de Sena, L.A.; Achete, C.A. MgCoAl and NiCoAl LDHs synthesized by the hydrothermal urea hydrolysis method: Structural characterization and thermal decomposition. Mater. Res. Bull. 2015, 64, 207–215. [Google Scholar] [CrossRef]
- Kim, B.K.; Gwak, G.H.; Okada, T.; Oh, J.M. Effect of particle size and local disorder on specific surface area of layered double hydroxides upon calcination-reconstruction. J. Solid State Chem. 2018, 263, 60–64. [Google Scholar] [CrossRef]
- Seftel, E.M.; Ciocarlan, R.G.; Michielsen, B.; Meynen, V.; Mullens, S.; Cool, P. Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides. Appl. Clay Sci. 2018, 165, 234–246. [Google Scholar] [CrossRef]
- Lee, S.H.; Tanaka, M.; Takahashi, Y.; Kim, K.W. Enhanced adsorption of arsenate and antimonate by calcined Mg/Al layered double hydroxide: Investigation of comparative adsorption Check for mechanism by surface characterization. Chemosphere 2018, 211, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Levitskaia, T.G.; Park, S.; Kim, J.; Varga, T.; Um, W. Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions. Chem. Eng. J. 2020, 380, 122408. [Google Scholar] [CrossRef]
- Santos, R.M.M.; Tronto, J.; Briois, V.; Santilli, C.V. Thermal decomposition and recovery properties of ZnAl-CO3 layered double hydroxide for anionic dye adsorption: Insight into the aggregative nucleation and growth mechanism of the LDH memory effect. J. Mater. Chem. A 2017, 5, 9998–10009. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.X.; Zhang, X.Y.; Cai, X.G.; Li, Z.H.; Li, G.T. Facile synthesis of 3D Mg-Al layered double oxide microspheres with ultra high adsorption capacity towards methyl orange. Mater. Lett. 2019, 257, 126695. [Google Scholar] [CrossRef]
- Belskaya, O.B.; Leont’eva, N.N.; Gulyaeva, T.I.; Cherepanova, S.V.; Talzi, V.P.; Drozdov, V.A.; Likholobov, V.A. Influence of a doubly charged cation nature on the formation and properties of mixed oxides MAlOx (M = Mg2+, Zn2+, Ni2+) obtained from the layered hydroxide precursors. Russ. Chem. Bull. 2013, 62, 2349–2361. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.-G.; Fang, F.; Chu, N.; Ma, H.; Yang, X. Structure and luminescence behaviour of as-synthesized, calcined, and restored MgAlEu-LDH with high crystallinity. Dalton Trans. 2012, 41, 12175–12184. [Google Scholar] [CrossRef]
- Ishikawa, K.; Garskaite, E.; Kareiva, A. Sol-gel synthesis of calcium phosphate-based biomaterials -A review of environmentally benign, simple and effective synthesis routes. J. Sol-Gel Sci. Technol. 2020, 94, 551–572. [Google Scholar] [CrossRef]
Compound | d(003), Å | d(006), Å | d(110), Å | c, Å | a, Å |
---|---|---|---|---|---|
Mg2Al1 | 7.601(5) | 3.810(3) | 1.511(3) | 22.818(3) | 3.040(2) |
Mg1.95Ca0.05/Al1 | 7.690(4) | 3.813(4) | 1.512(2) | 23.027(4) | 3.041(3) |
Mg1.95Sr0.05/Al1 | 7.697(3) | 3.826(3) | 1.517(3) | 23.034(5) | 3.039(4) |
Mg1.95Ba0.05/Al1 | 7.695(6) | 3.828(4) | 1.521(1) | 23.176(5) | 3.041(4) |
Precursor Compound | Temperature | BET Surface Area m2/g |
---|---|---|
Mg2Al1 precursor gels | 800 °C | 87.470 |
Mg2Al1 | 800 °C | 65.450 |
Mg2Al1 precursor gels | 950 °C | 27.749 |
Mg2Al1 | 950 °C | 40.528 |
Mg1.95Ca0.05/Al1 precursor gels | 800 °C | 46.461 |
Mg1.95Ca0.05/Al1 | 800 °C | 129.16 |
Mg1.95Ca0.05/Al1 precursor gels | 950 °C | 34.791 |
Mg1.95Ca0.05/Al1 | 950 °C | 46.078 |
Mg1.95Sr0.05/Al1 precursor gels | 800 °C | 53.847 |
Mg1.95Sr0.05/Al1 | 800 °C | 104.543 |
Mg1.95Sr0.05/Al1 precursor gels | 950 °C | 36.292 |
Mg1.95Sr0.05/Al1 | 950 °C | 51.961 |
Mg1.95Ba0.05/Al1 precursor gels | 800 °C | 63.217 |
Mg1.95Ba0.05/Al1 | 800 °C | 122.486 |
Mg1.95Ba0.05/Al1 precursor gels | 950 °C | 32.498 |
Mg1.95Ba0.05/Al1 | 950 °C | 40.576 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valeikiene, L.; Roshchina, M.; Grigoraviciute-Puroniene, I.; Prozorovich, V.; Zarkov, A.; Ivanets, A.; Kareiva, A. On the Reconstruction Peculiarities of Sol–Gel Derived Mg2−xMx/Al1 (M = Ca, Sr, Ba) Layered Double Hydroxides. Crystals 2020, 10, 470. https://doi.org/10.3390/cryst10060470
Valeikiene L, Roshchina M, Grigoraviciute-Puroniene I, Prozorovich V, Zarkov A, Ivanets A, Kareiva A. On the Reconstruction Peculiarities of Sol–Gel Derived Mg2−xMx/Al1 (M = Ca, Sr, Ba) Layered Double Hydroxides. Crystals. 2020; 10(6):470. https://doi.org/10.3390/cryst10060470
Chicago/Turabian StyleValeikiene, Ligita, Marina Roshchina, Inga Grigoraviciute-Puroniene, Vladimir Prozorovich, Aleksej Zarkov, Andrei Ivanets, and Aivaras Kareiva. 2020. "On the Reconstruction Peculiarities of Sol–Gel Derived Mg2−xMx/Al1 (M = Ca, Sr, Ba) Layered Double Hydroxides" Crystals 10, no. 6: 470. https://doi.org/10.3390/cryst10060470
APA StyleValeikiene, L., Roshchina, M., Grigoraviciute-Puroniene, I., Prozorovich, V., Zarkov, A., Ivanets, A., & Kareiva, A. (2020). On the Reconstruction Peculiarities of Sol–Gel Derived Mg2−xMx/Al1 (M = Ca, Sr, Ba) Layered Double Hydroxides. Crystals, 10(6), 470. https://doi.org/10.3390/cryst10060470