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Abstract: N-(Anthracen-9-ylmethyl)-N-methyl-2-(phenylsulfonyl)ethanamine 3 has been synthesized
via the aza-Michael addition approach by reaction of the corresponding amine with the vinyl sulfone
derivative under microwave conditions. The structure of the aza-Michael product 3 is elucidated
by X-ray crystallography. The study of molecular packing by employing the Hirshfeld analysis
indicates that the percentages of O . . . H, C . . . H and H . . . H contacts are 16.8%, 34.1% and 48.6%,
respectively, where the O...H hydrogen bonds have the characteristics of short and strong contacts
while the C...H contacts are considered weak. Density functional theory (DFT) investigations show
that the aza-Michael product 3 is polar with a net dipole moment of 5.2315 debye.

Keywords: anthracene; aza-Michael addition; microwave; Hirshfeld analysis; DFT

1. Introduction

Anthracenes, in particular crystalline materials, have attracted attention due to their wide
energy gaps, high fluorescence quantum yields, high thermal stability and consequently their
promising applications as organic semiconductors for organic field-effect transistors (OFETs) and
organic light-emitting diodes (OLEDs) [1–7].

The atom-efficient transformation toward the synthesis of bulk molecules from smaller starting
materials is desirable in organic synthesis [8–10]. The formation of carbon–nitrogen bonds is one of
the most important synthetic approaches in modern organic chemistry. Specifically, the aza-Michael
addition that was discovered in 1874 is considered one of the most efficient protocols for C–N formation
where the amine acts as a Michael donor and the olefin acts as a Michael acceptor to provide an
aza-Michael adduct [11,12]. Most classical aza-Michael reactions are usually activated by a strong base
or acid, but ultrasound or microwave assisted reactions have been reported as efficient and cleaner
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methods for aza-Michael addition [13,14]. Furthermore, the aza-Michael addition was proved to proceed
using the Lewis acid catalyzed reaction [15,16] and ionic liquids [17]. The reaction also proceeded as
either an intermolecular or intramolecular addition [18] and under eco-friendly conditions [19].

α,β-unsaturated sulfonyl derivatives were used as labelling reagents due to their highly electrophilic
nature [20–22]. Vinyl sulfones are an alternative class of thiol alkylating reagents to maleimides which
have been used in a variety of bioconjugation reactions [23]. In particular, phenyl vinyl sulfone has
been employed in different transformations, for example exploited as dienophile in [4+2] Diels-Alder
cycloaddition reactions [24–27]. Indeed, vinyl sulfones have been explored as Michael acceptors with
a range of nucleophiles to afford an aza-Michael adduct [28,29]. Among the aza-Michael addition
protocols, the vinyl sulfones were utilized as a Michael acceptor for the synthesis of interesting scaffolds
in the presence of catalysts such as a palladium complex or a copper salt. The latter is easy to handle,
safe and cheap [30].

Along these lines, here we report the synthesis of an aza-Michael product, namely; N-(anthracen-
9-ylmethyl)-N-methyl-2-(phenylsulfonyl)ethanamine3viareactionof1-(anthracen-9-yl)-N-methylmethanamine
1 as a Michael donor with phenyl vinyl sulfone as the Michael acceptor. The X-ray crystallography, Hirshfeld
analysis and DFT studies were investigated to explore the structure and electronic aspects of this aza-Michael
product 3.

2. Materials and Methods

2.1. General Notes

The starting material 1-(anthracen-9-yl)-N-methylmethanamine 1 was purchased from Aldrich
Chemical Co. (now Merk). The reaction was monitored by thin-layer chromatography (TLC) on
pre-coated silica gel plates from Merck (Germany) using solvent system 4: 1 DCM: PE and the spots
were visualized with a 254 nm UV lamp. JEOL 400 MHz NMR spectrometer (JEOL, Japan) was utilized
to obtain 1H-NMR spectra of the aza-Michael product 3.

2.2. Synthesis of N-(anthracen-9-ylmethyl)-N-methyl-2-(phenylsulfonyl)ethanamine 3

To an oven-dried 10 mL microwave vessel containing a stir bar, a solution of 1-(anthracen-
9-yl)-N-methylmethanamine 1 (50 mg, mmol) and phenyl vinyl sulfone 2 (50 mg, mmol) in xylene
(3 mL) was added. After sealing this vessel with a plastic microwave septum, the mixture was irradiated
utilizing microwave under the following conditions: 250 W, 250 psi, at 150 ◦C for 20 h. The reaction
was monitored by TLC and after the reaction was completed, the mixture was cooled down and the
excess solvent was removed using a rotary evaporator to afford the aza-Michael compound 3 as a clean
product. For further purification, a mixture was chromatographed on silica gel using 4: 1 DCM: PE.
1H-NMR (CDCl3, JEOL 400 MHz): δ = 2.21, (s, 3H), 2.90 (t, J = 7.2, 2H), 3.25 (t, J = 7.2, 2H), 4.38 (s, 2H),
7.31 (t, J = 8, 2H), 7.41–7.51 (m, 5H), 7.66 (d, J = 8, 2H), 7.95 (d, J = 8, 2H), 8.28–8.36 (m, 3H).

2.3. X-ray Crystallography Analysis

A suitable single crystal for the aza-Michael product 3 was obtained by a slow evaporation
technique for the solution of the compound in xylene at rt. The Bruker APEX-II D8 Venture diffractometer
was employed for data collection. Data reduction and cell refinement were carried out by Bruker
SAINT. SHELXT [31,32] was used to solve structure. CCDC 1825185 contained all crystallographic
data of the aza-Michael product 3 where the full-matrix least-squares techniques with anisotropic
thermal data for nonhydrogen atoms on F2 were employed for the final refinement of the structure.

2.4. Hirshfeld Surface Analysis

The intermolecular interactions in the crystal structure of the aza-Michael product 3 were explored
by topology analyses using the Crystal Explorer 17.5 program [33,34].
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2.5. Computational Methods

Gaussian 09 software package was used for all DFT study [35]. B3LYP/6-31G(d,p) protocol was
employed for the molecular geometry optimization of the aza-Michael product 3. In addition, natural
charges were calculated using the Gaussian 09 built in NBO 3.1 [36] program at the optimized geometry
of the aza-Michael product 3.

3. Results and Discussion

3.1. Synthesis

As a part of our ongoing interest in the strategies of atom economy synthesis starting from simple,
cheap and commercially available materials, we report the synthesis of aza-Michael product 3 from
the reaction of 1-(anthracen-9-yl)-N-methylmethanamine 1 with α,β-unsaturated olefin; phenyl vinyl
sulfone 2, Scheme 1. The reaction was successfully carried out under microwave conditions. The 1H
NMR spectrum showed the main characteristic protons of the synthesized compound. A singlet peak
at δ 2.21 ppm was assigned for the methyl group while the two triplet peaks at δ 2.90, and 3.25 ppm
with J = 7.2Hz were assigned for the two CH2 protons. Additionally, a singlet peak at δ 4.38 was
assigned for the methine group. Finally, the signals observed in the range of δ 7.31–8.36 ppm were
characteristics for the aromatic protons.

Crystals 2020, 10, x FOR PEER REVIEW 3 of 11 

 

2.4. Hirshfeld Surface Analysis 

The intermolecular interactions in the crystal structure of the aza-Michael product 3 were 
explored by topology analyses using the Crystal Explorer 17.5 program [33,34]. 

2.5. Computational Methods 

Gaussian 09 software package was used for all DFT study [35]. B3LYP/6-31G(d,p) protocol was 
employed for the molecular geometry optimization of the aza-Michael product 3. In addition, natural 
charges were calculated using the Gaussian 09 built in NBO 3.1 [36] program at the optimized 
geometry of the aza-Michael product 3. 

3. Results and Discussion 

3.1. Synthesis 

As a part of our ongoing interest in the strategies of atom economy synthesis starting from 
simple, cheap and commercially available materials, we report the synthesis of aza-Michael product 
3 from the reaction of 1-(anthracen-9-yl)-N-methylmethanamine 1 with α,β-unsaturated olefin; 
phenyl vinyl sulfone 2, Scheme 1. The reaction was successfully carried out under microwave 
conditions. The 1H NMR spectrum showed the main characteristic protons of the synthesized 
compound. A singlet peak at δ 2.21 ppm was assigned for the methyl group while the two triplet 
peaks at δ 2.90, and 3.25 ppm with J = 7.2Hz were assigned for the two CH2 protons. Additionally, a 

singlet peak at δ 4.38 was assigned for the methine group. Finally, the signals observed in the range 
of δ 7.31–8.36 ppm were characteristics for the aromatic protons.  

HN N
S

Ph
O

O

S O

Ph

O

1

2

3

xylene, MW,
250 W and 250 psi

150 C for 20 h
 

Scheme 1. Synthesis of aza-Michael product 3. 

3.2. Crystal Data 

The crystallographic data and refinement information of aza-Michael product 3, C24H23NO2S, are 
presented in Table 1. Selected bond angles and bond lengths are listed in Table 2 while the observed 
X-ray structure is given in Figure 1. The compound crystallized in the Monoclinic crystal system and 
P21 space group with one molecule in the asymmetric formula and Z = 2. All bond angles as well as 
bond lengths are in normal ranges [34]. 

Table 1. Experimental details of aza-Michael product 3. 

Crystal Data 
Chemical formula C24H23NO2S 

MWt 389.49 
Crystal system, space group Monoclinic, P21 
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3.2. Crystal Data

The crystallographic data and refinement information of aza-Michael product 3, C24H23NO2S,

are presented in Table 1. Selected bond angles and bond lengths are listed in Table 2 while the observed
X-ray structure is given in Figure 1. The compound crystallized in the Monoclinic crystal system and
P21 space group with one molecule in the asymmetric formula and Z = 2. All bond angles as well as
bond lengths are in normal ranges [34].

Table 1. Experimental details of aza-Michael product 3.

Crystal Data

Chemical formula C24H23NO2S

MWt 389.49

Crystal system, space group Monoclinic, P21

Temperature (K) 293
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Table 1. Cont.

Crystal Data

a, b, c (Å) 5.6755 (6), 14.7098 (16), 12.0407 (13)

β (◦) 94.139 (4)

V (Å3) 1002.60 (19)

Z 2

Radiation type Mo Kα

µ (mm −1) 0.18

Crystal size (mm) 0.44 × 0.21 × 0.15

Data Collection

Diffractometer Bruker APEX-II D8 venture diffractometer

Absorption correction Multi-scan SADABS Bruker 2014

Tmin, Tmax 0.867, 0.901

Number of measured, independent and observed
[I > 2σ(I)] reflections 15116, 4588, 2912

Rint 0.100

Refinement

R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.152, 0.94

Number of reflections 4588

Number of parameters 253

Number of restraints 1

H-atom treatment H-atom parameters constrained

∆ρmax, ∆ρmin (e Å−3) 0.21, −0.33

Table 2. Selected geometric parameters (Å, ◦).

S1—O1 1.441 (4) N1—C15 1.478 (6)

S1—O2 1.432 (4) N1—C16 1.459 (6)

S1—C18 1.765 (5) N1—C17 1.450 (6)

S1—C19 1.762 (6)

O1—S1—O2 118.5 (2) C15—N1—C17 110.2 (3)

O1—S1—C18 107.5 (2) C16—N1—C17 110.5 (3)

O1—S1—C19 108.2 (2) N1—C15—C14 111.1 (4)

O2—S1—C18 109.4 (2) N1—C17—C18 111.1 (4)

O2—S1—C19 107.7 (2) S1—C18—C17 113.4 (3)

C18—S1—C19 104.8 (2) S1—C19—C20 121.1 (4)

C15—N1—C16 110.7 (4) S1—C19—C24 118.3 (4)

In Figure 2, the molecule of 3 is linked with neighboring molecular units via two non-classical
intermolecular C-H...O interactions as well as two C-H...π contacts (Table 3). The three dimensional
molecular packing structure of 3 showing the molecules are connected by the C-H...O and C-H...π
interactions are given in Figure 3.
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Table 3. Intermolecular contacts (Å, ◦) observed in the crystal structure of molecule 3.

D—H···A D—H H···A D···A D—H···A

C18—H18A···O2i 0.97 2.41 3.347 (6) 161.0

C21-H21A . . . O1ii 0.931 2.639 3.379(8) 136.9

C15-H15A . . . C7i 0.971 2.867 3.621(7) 135.2

C21-H21A . . . C11i 0.931 2.84 3.639(9) 144.7

(i) x − 1, y, z; (ii) 2−x,−1/2+y, −z
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3.3. Analysis of Molecular Packing

Hirshfeld surfaces mapped over dnorm, shape index (SI) and curvedness for aza-Michael product
3 are shown in Figure 4. Summary of the most important contacts and their percentages are shown in
Figure 5. The Hirshfeld dnorm maps of aza-Michael product 3 showed that the molecular units are
mainly packed by many O...H polar short contacts which are significantly more important than the
weak H...H and C...H interactions. The percentages of the O . . . H, C . . . H and H . . . H contacts are
16.8%, 34.1% and 48.6%, respectively. It is clear that the strong O . . . H contacts appeared as intense red
regions in dnorm and sharp spikes in the fingerprint plot (Figure 6a) while the weak C . . . H contacts
appeared as fad red regions in dnorm and broad peaks in the fingerprint plot (Figure 6b). The shortest
O...H contact distances are O2...H18A (2.308 Å) and O1...H21A (2.530 Å) which are significantly shorter
than the van der Waals radii sum of the two elements (2.61 Å). In contrast, the weak C11 . . . H21A
(2.716 Å) and C7 . . . H15A (2.789 Å) contacts which belong to the C-H . . . π interactions have slightly
shorter intermolecular distances compared to the van der Waals radii sum of the two elements (2.79 Å).
The shape index and curvedness maps revealed the absence of significant ring π-π stacking interactions.
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3.4. Geometric Parameters

The crystal structure of 3 was set to relax in the gas phase and the optimized structure is presented
in Figure 7. The computed bond angles and distances are listed in (Table S1, Supplementary Data).
It has been observed that there is very good agreement between the calculated bond distances and the
experimental values with a high correlation coefficient (R2) of 0.918 (Figure 8).
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Table 3 is summarized in Table 4. The oxygen (O), nitrogen (N) and carbon (C) atoms have negative
charge densities, where the O (−0.9534 to −0.9554 e) and N (−0.5047 e) atoms have the most negative
charge density. In contrast, the Sulphur (S) atom has the most positive charge of 2.2117 e. The electron
density mapped over molecular electrostatic potential (MEP) strongly indicated the varied charge
distributions which are responsible for the polarity of the compound. The computed dipole moment is
5.2315 debye and the vector showing the net direction of the dipole is depicted in Figure 9. In addition,
the MEP map revealed that the oxygen atoms are the most favored atomic sites for hydrogen bonding
interactions as the hydrogen bond acceptor.

Table 4. The calculated natural charges at atomic sites of aza-Michael product 3 a.

Atom Charge Atom Charge Atom Charge Atom Charge

C1 −0.2892 C27 −0.0540 H14 0.2860 H40 0.2323
C2 −0.7026 C28 −0.0398 H15 0.2711 H41 0.2353
S3 2.2117 C29 −0.0128 H16 0.2480 H42 0.2376
O4 −0.9534 C30 −0.2064 H17 0.2460 H43 0.2412
O5 −0.9554 C31 −0.2370 H18 0.2481 H44 0.2401
C6 −0.3292 C32 −0.2321 H19 0.2662 H45 0.2477
C7 −0.2206 C33 −0.2143 C20 −0.2314 H46 0.2115
C8 −0.2321 C34 −0.2781 C21 −0.2401 H47 0.2477
C9 −0.2175 N35 −0.5047 C22 −0.2019 H48 0.2572

C10 −0.2321 C36 −0.4830 C23 −0.0545 H49 0.2284
C11 −0.2196 H37 0.2395 C24 −0.0444 H50 0.1959
H12 0.2681 H38 0.2415 C25 −0.2198 H51 0.2329
H13 0.2077 H39 0.2381 C26 −0.1735 – –

a Atom numbering (refer to Figure 7).

On other hand, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals
of the studied system are shown in Figure 9. The HOMO (−5.247 eV) and LUMO (−1.734 eV) orbitals
are mainly distributed over the π-system of the anthracene moiety. The HOMO of the compound is
extended over the nitrogen heteroatom indicating a HOMO→LUMO transition of mixed n-π* and π-π*
excitations. The energy of this electronic transition is 3.513 eV.
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4. Conclusions

We conclude that aza-Michael product 3, namely N-(anthracen-9-ylmethyl)-N-methyl-2-(phenylsulfonyl)
ethanamine as a Michael donor 1 successfully reacted with phenyl vinyl sulfone as a Michael acceptor
2 in xylene under microwave conditions to afford aza-Michael product 3. This aza-Michael product
3 was structurally elucidated using an X-ray technique. Analysis of molecular packing has been
performed using Hirshfeld calculations and results indicate that polar O . . . H hydrogen bonds are
more important than weak C-H...π interactions in the molecular packing. The charge distribution and
the polarity of the aza-Michael product 3 were predicted using DFT calculations.
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