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Abstract: A tetramethyl ammonium hydroxide (TMAH)-treated normally-off Gallum nitride (GaN)
metal-insulator-semiconductor field-effect transistor (MISFET) was fabricated and characterized
using low-frequency noise (LFN) measurements in order to find the conduction mechanism and
analyze the trapping behavior into the gate insulator as well as the GaN buffer layer. At the on-state,
the noise spectra in the fabricated GaN device were 1/fγ properties with γ ≈ 1, which is explained
by correlated mobility fluctuations (CMF). On the other hand, the device exhibited Lorentzian or
generation-recombination (g-r) noises at the off-state due to deep-level trapping/de-trapping into the
GaN buffer layer. The trap time constants (τi) calculated from the g-r noises became longer when the
drain voltage increased up to 5 V, which was attributed to deep-level traps rather than shallow traps.
The severe drain lag was also investigated from pulsed I-V measurement, which is supported by the
noise behavior observed at the off-state.

Keywords: GaN; MISFET; normally-off; 1/f noise; g-r noise; correlated mobility fluctuations;
pulse measurement

1. Introduction

Gallium nitride (GaN) has been well developed as material for power electronics applications due
to its wide band gap (3.4 eV) and two dimensional electron gas (2DEG) with large electron density
of ~1013 cm−2 at the AlGaN/GaN heterostructure. AlGaN/GaN-based heterostructure field-effect
transistors (HFETs) exhibit a normally-on operation due to the strong accumulation of high 2DEG
density in the channel. To successfully achieve a normally-off mode, which plays an important role in
applying power switching devices, a recessed-gate GaN metal-insulator-semiconductor (MIS) structure
is required by adapting the removal of the AlGaN layer under the gate region [1–5]. The recessed-gate
GaN MISFET with a normally-off operation has several advantages: (i) easy control of the threshold
voltage (Vth) by varying the recess etch depth, (ii) obtaining a normally-off operation by accomplishing
a simple dry etching technique and (iii) achieving low gate leakage by depositing the gate dielectric [1,2].
However, etching damages and protrusions happening during the recess etching process affect the
deteriorated device performance. It is necessary to apply tetramethyl ammonium hydroxide (TMAH)
wet solution in the damaged GaN surface under the recessed-gate region in order to prevent plasma
damage and smooth the surface of etched GaN channel layer [2]. Many researchers [2,3,6–9] have
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reported enhancements of noise and device performance for the GaN-based devices by applying a
TMAH treatment.

Noise source in a normally-off GaN MISFET stems from electron trapping/de-trapping into the
interface of Al2O3/GaN and/or the buffer traps in the GaN buffer layer [10–12]. Low frequency noise
(LFN) can analyze interface traps and also find buffer traps in GaN devices [10–14]. Fabricated
GaN-based devices showed typical 1/f noise characteristics at the on-state (strong accumulation
and subthreshold region), but Lorentzian or generation-recombination (g-r) noise at the off-state
(deep-subthreshold region) [10,11]. Flicker noise, or 1/f noise, can be explained by two well-known
models, one being the carrier number fluctuations (CNF) due to electron trapping/de-trapping from
the channel into the gate insulator [15], and the being Hooge mobility fluctuations (HMF) due to
fluctuations of electron mobility caused by phonon scattering [16]. On the other hand, g-r noise is
originated by electron trapping/de-trapping into deep-level traps in the GaN buffer layer [10–12].
However, no detailed noise behaviors in a normally-off GaN MISFET have been investigated. We here
report the 1/f noise characteristics at the on- and off-states to find the noise mechanism and investigate
the traps in a normally-off GaN MISFET. Then, pulsed I-V measurements were conducted to observe
current collapse behavior as well as to match with the noise results.

2. Materials and Methods

The AlGaN/GaN heterostructure was grown on a sapphire (0001) substrate by metal organic
chemical vapor deposition (MOCVD) by the following steps: (1) 2 µm-thick highly-resistive undoped
GaN buffer layer, (2) 50 nm-thick undoped GaN channel layer and (3) 16 nm-thick AlGaN barrier
layer. In order to fabricate the recessed-gate GaN MISFET, the gate recess region was defined by
photolithography and followed by inductively coupled plasma reactive ion etching (ICP-RIE). The gate
region was then fully recessed by etching of a 16 nm-thick AlGaN barrier layer and the additional
overetching of a 20 nm-thick GaN channel layer. Then, wet etching in TMAH solution (5% solution
at 90 ◦C for 60 min) was applied to remove etching damages and protrusions [2]. To make the
device isolation, the mesa region was defined and then a 17 nm-thick atomic layer deposited (ALD)
Al2O3 as a gate insulator was deposited. After ohmic contact hole opening, ohmic metal with a
Si/Ti/Al/Ni/Au structure (1/25/160/40/100 nm) was deposited by an electron-beam evaporator and
sequentially annealed by rapid thermal annealing at 800 ◦C for 30 sec in N2 gas. Finally, the Ni/Al/Ni
gate and pad metals were deposited. The schematic epitaxial and device structure with gate length
(Lg) of 2 µm and width (Wg) of 50 µm are illustrated in Figure 1a. Cross-sectional transmission
electron microscopy (TEM) (Thermo Fisher Scientific, Waltham, MA, USA) and energy-dispersive
X-ray spectroscopy (EDX) (Thermo Fisher Scientific, Waltham, MA, USA) elemental mapping images
clearly reveal that the fabricated device has the recessed GaN channel under the gate region, deposited
with the ALD Al2O3 gate insulator and gate metal, as shown in Figure 1b,c.
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Figure 1. (a) Schematic illustration of a normally-off GaN metal-insulator-semiconductor field-effect 
transistor (MISFET) including epitaxial and device information. (b) Cross-sectional transmission 
electron microscopy (TEM) and (c) energy-dispersive X-ray spectroscopy (EDX) images of the 
recessed-gate GaN MIS structure. Elemental mapping of Al (green), GaN (red), N (purple), and O 
(blue) in the device structure obtained using the EDX machine. 

3. Results and Discussion 

Figure 2 shows the transfer and output curves of the fabricated GaN MISFET. The device 
successfully demonstrates a normally-off operation with a large threshold voltage (Vth) of around 3.5 
V, which is preferred for power devices, as in the linear region (Vd = 0.1 V) of Figure 2a. The fully 
recessed gate region with etching depth of 36 nm is attributed to the enhanced Vth and the degraded 
on-current. The GaN buffer layer with relatively low resistance also deteriorates the off-state leakage 
current of the device, which leads to the reduced ION/IOFF ratio. The ION/IOFF ratio can be further 
improved by controlling the gate recess and/or increasing buffer resistance by doping deep-level 
impurities [17–19]. The gate voltage can sweep up to 10 V without degradation of the drain current, 
thanks to the high quality of the Al2O3 gate insulator. The output curves in Figure 2b present good 
cut-off and pinch-off properties with a small knee voltage of ~3 V. 
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Figure 2. (a) Linear (filled black) and logarithmic (empty blue) scale of Id versus Vg at Vd = 0.1 V and 
(b) Id-Vd curves sweeping Vd = 0 ~ 10 V in the fabricated GaN MISFET. 
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Figure 1. (a) Schematic illustration of a normally-off GaN metal-insulator-semiconductor field-effect
transistor (MISFET) including epitaxial and device information. (b) Cross-sectional transmission electron
microscopy (TEM) and (c) energy-dispersive X-ray spectroscopy (EDX) images of the recessed-gate
GaN MIS structure. Elemental mapping of Al (green), GaN (red), N (purple), and O (blue) in the device
structure obtained using the EDX machine.

3. Results and Discussion

Figure 2 shows the transfer and output curves of the fabricated GaN MISFET. The device
successfully demonstrates a normally-off operation with a large threshold voltage (Vth) of around 3.5 V,
which is preferred for power devices, as in the linear region (Vd = 0.1 V) of Figure 2a. The fully recessed
gate region with etching depth of 36 nm is attributed to the enhanced Vth and the degraded on-current.
The GaN buffer layer with relatively low resistance also deteriorates the off-state leakage current of
the device, which leads to the reduced ION/IOFF ratio. The ION/IOFF ratio can be further improved by
controlling the gate recess and/or increasing buffer resistance by doping deep-level impurities [17–19].
The gate voltage can sweep up to 10 V without degradation of the drain current, thanks to the high
quality of the Al2O3 gate insulator. The output curves in Figure 2b present good cut-off and pinch-off

properties with a small knee voltage of ~3 V.
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Figure 2. (a) Linear (filled black) and logarithmic (empty blue) scale of Id versus Vg at Vd = 0.1 V and
(b) Id-Vd curves sweeping Vd = 0 ~ 10 V in the fabricated GaN MISFET.
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LFN measurements were performed using a NOSISYS7 fully automatic noise analyzer (Synergie
Concept) [20]. The drain current noise power spectral densities (SId) are plotted in the frequency ranges
from 4 Hz to 104 Hz at Vd = 0.1 V and two representative gate biases: (i) Vg = 2 V (deep-subthreshold
region) and (ii) Vg = 10 V (strong accumulation region) are shown in Figure 3a. At the on-state,
LFNs clearly exhibit a 1/fγ shape with γ ≈ 1 from the subthreshold region (Vg = 2.6 V) to the strong
accumulation region (Vg = 10 V). Similar 1/f noise curves were obtained for the LFN measured at Vg

bias conditions of 2.6 V ≤ Vg ≤ 10 V (not presented in Figure 3a). The measured SId values increased at
increased Vg, which was attributed to the increased drain current.

Crystals 2020, 10, x FOR PEER REVIEW 5 of 8 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) Noise spectral density (SId) versus frequency at Vg = 2 V and 10 V. (b) Normalized SId 

(black square) versus Id matching with the correlated mobility fluctuations (CMF) noise model and 

(c) variation of the gate voltage noise spectral density (SVg)1/2 as a function of (Id/gm) in the fabricated 

GaN metal-insulator-semiconductor field-effect transistor (MISFET), measured at Vd = 0.1 V and f = 

10 Hz. The dashed line in (b) indicates the fitting line. 

At the off-state (deep subthreshold region), the spectral deformation is clearly acquired, which 

is totally different from the noise characteristics at the on-state (Figure 3a). The noise spectra at the 

off-state are observed as 1/f noise at low frequency, but suddenly decrease with 1/f2 at higher 

frequency. Generally, the noise spectra consist of two noise sources: one is 1/f noise and the other is 

g-r noise, as in Equation (4) [24], 

𝑆𝐼 =
𝐾𝑓

𝑓
+ ∑

𝐴𝑖

1+(
𝑓

𝑓𝑜𝑖
)

2
𝑁
𝑖=0  𝑤𝑖𝑡ℎ 𝜏𝑖 =

1

2𝜋𝑓𝑜𝑖
  

(4) 

where Kf is the coefficient of the 1/f noise component, Ai is the plateau value of the g-r component, foi 

is the cut-off frequency and τi is the trap time constant. To clearly attain the cutoff frequency, the 

product SI × f is displayed according to the increased Vd from 0.1 V to 5 V in Figure 4a. The obtained 

g-r noise levels are increased at enhanced Vd, which is caused by the increased off-state leakage 

current. The fabricated GaN MISFET shows a foi of 700 Hz, which corresponds to a τi of 23 msec. 

Similar results were also obtained from the GaN JLFET with a partially covered-gate structure (τi = 

10
1

10
2

10
3

10
4

10
-27

10
-26

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20

10
-19

10
-18

10
-17

Vg = 10 V

Vg = 2 V

 

 

S
Id

 [
A

2
/H

z]

Frequency [Hz]

Vd = 0.1 V

10
-7

10
-6

10
-5

10
-4

10
-10

10
-9

10
-8

10
-7

 Data

Freq. = 10 Hz

Vd = 0.1 V

 

S
Id

/I
d

2
 [

H
z-

1
]

Id [A]

 CMF 

     

 

 

 (S
Vfb

 = 7 10
-10

 V
-2

/Hz,  = 0.65 V
-1

)

0 2 4 6
0.0

6.0x10
-5

1.2x10
-4

1.8x10
-4

 

 

(S
V

g
)1

/2
 [

V
/H

z1
/2

]

Id/gm [V]

SVfb = 7.3 × 10
-10

 V
-2

/Hz

Ω = 0.75 V
-1

Figure 3. (a) Noise spectral density (SId) versus frequency at Vg = 2 V and 10 V. (b) Normalized SId

(black square) versus Id matching with the correlated mobility fluctuations (CMF) noise model and (c)
variation of the gate voltage noise spectral density (SVg)1/2 as a function of (Id/gm) in the fabricated GaN
metal-insulator-semiconductor field-effect transistor (MISFET), measured at Vd = 0.1 V and f = 10 Hz.
The dashed line in (b) indicates the fitting line.
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The normalized SId (SId/Id
2) values are displayed as a function of Id at f = 10 Hz and Vd = 0.1 V,

as shown in Figure 3b. If LFN follows the correlated mobility fluctuations (CMF) model, which is
explained by the CNF noise model plus additional mobility fluctuations, SId/Id

2 can be explained as
follows [21,22],

SId

I2
d

=

(
gm

Id

)2

SV f b(1 + Ω
Id
gm

)
2

(1)

with SV f b =
q2kTλNt

WLC2
ox f

(2)

where SVfb is the flat-band voltage spectral density, Ω = αsc × µeff × Cox, is the correlated mobility
fluctuation term, which includes that αsc is the Coulomb scattering coefficient, µeff is the effective carrier
mobility, Cox is the gate dielectric capacitance per unit area, q is the electron charge, kT is the thermal
energy, λ is the tunnel attenuation distance, Nt is the gate dielectric trap density, WL is the channel area
and f is frequency. Considering values of SVfb = 7 × 10−10 V−2/Hz and Ω = 0.65 V−1, SId/Id

2 is perfectly
matched with (gm/Id)2 at the drain current level. It is obvious that the dominant LFN mechanism in the
fabricated GaN MISFET is the CMF noise model. According to the Equation (2) with λ = 0.11 nm [12],
the trap density of Nt is acquired as 2.1 × 1019 cm−3

·eV−1, which is a value one or two orders lower
than those of the GaN iunctionless FET (JLFET) [12] and the GaN nanowire gate-all-around (GAA)
FET [23]. The reason for the decreased Nt in the fabricated GaN MISFET is that the improved quality
of the GaN channel layer compared to the n-type doped GaN in GaN JLFET and the smart-cut GaN in
GaN GAA FET [12,23].

To further clearly observe the CMF noise model, the gate voltage noise power spectral density,
(SVg)1/2, is plotted using Equation (3) [24],

√
SVg =

SId

g2
m

=
√

SV f b

(
1 + Ω

Id
gm

)
(3)

Figure 3c shows a good linear relationship, which means that the CMF model fits very well with
the experimental noise data. From the curves of (SVg)1/2 measured at Vd = 0.1 V and f = 10 Hz, the SVfb
and Ω can be determined from the intercept with the Y-axis and the slope between (SVg)1/2 and (Id/gm),
respectively. The corresponding SVfb and Ω values are extracted to be 7.3 × 10−10 V−2/Hz and 0.75 V−1,
respectively, which are almost consistent with those values obtained in the curves of SI/Id

2 versus Id of
Figure 3b.

At the off-state (deep subthreshold region), the spectral deformation is clearly acquired, which is
totally different from the noise characteristics at the on-state (Figure 3a). The noise spectra at the
off-state are observed as 1/f noise at low frequency, but suddenly decrease with 1/f 2 at higher frequency.
Generally, the noise spectra consist of two noise sources: one is 1/f noise and the other is g-r noise,
as in Equation (4) [24],

SI =
K f

f
+

∑N

i=0

Ai

1 +
(

f
foi

)2 with τi =
1

2π foi
(4)

where Kf is the coefficient of the 1/f noise component, Ai is the plateau value of the g-r component, foi is
the cut-off frequency and τi is the trap time constant. To clearly attain the cutoff frequency, the product
SI × f is displayed according to the increased Vd from 0.1 V to 5 V in Figure 4a. The obtained g-r
noise levels are increased at enhanced Vd, which is caused by the increased off-state leakage current.
The fabricated GaN MISFET shows a foi of 700 Hz, which corresponds to a τi of 23 msec. Similar results
were also obtained from the GaN JLFET with a partially covered-gate structure (τi = 50 ms) [12].
The reason for this small trap time constant is that the proposed device exhibits much less trapping
effects than that of the reference device [12]. According to the increased Vd up to 5 V, the estimated foi is
attained at 500 Hz (the corresponding τi is 32 ms). This confirms that the trapping/detrapping process
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in the GaN buffer layer becomes deeper according to the increased drain voltage. This tendency is
coincident with the drain lag phenomenon, which is related to current collapse induced by bulk traps
in the GaN buffer layer at high drain voltage.
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To check the drain lag of the proposed device, pulsed I-V measurements were conducted as in
Figure 4b. The drain voltage is swept from 0 V to 10 V, varying Vg = 0 ~ 8 V with step of 1 V. The pulse
conditions with pulse width of 1 ms are set at (1) Vg,Q = Vd,Q = 0 V, (2) Vg,Q = −2 V, Vd,Q = 0 V,
and (3) Vg,Q = −2 V, Vd,Q = 10 V. To check the gate lag and drain lag, these pulsed I-V characteristics
are compared. From the difference between curves (1) and (2), the fabricated device presents almost
negligible gate lag due to the effective surface passivation of the high quality Al2O3 gate insulator.
However, the severe drain lag from the difference between curves (2) and (3) is demonstrated in
the fabricated device (Figure 4b). This is reflected by deep-trapping/de-trapping in the GaN buffer
layer, which is well matched with the g-r noise implemented from the noise results at the off-state,
as discussed earlier.

4. Conclusions

A normally-off GaN MISFET was investigated through DC, LFN, and pulsed I-V measurements.
Normally-off operation with Vth of 3.5 V was successfully obtained in the fabricated device using a
recessed-gate MIS structure. LFN clearly indicated 1/f noise behavior at the on-state, but Lorentzian
characteristics at the deep-subthreshold region (off-state). The dominant channel mechanism in the
proposed GaN MISFET is a CMF noise model, which was confirmed by both SId/Id

2 versus Id and
(SVg)1/2 versus (Id/gm) curves. The τi calculated from f oi measured at the off-state was 23 ms and
increased to 32 ms at increased Vd, which clearly explains to the deep-trapping/de-trapping process
in the GaN buffer layer. The drain lag observed from the pulsed I-V measurements was also well
matched with that of the noise performances at the off-state.
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