Bulk Cyclotron Resonance in the Topological Insulator Bi2Te3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fu, L.; Kane, C.L.; Mele, E.J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.E.; Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 2007, 75, 121306. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y.S.; Cava, R.J.; Hasan, M.Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, D.; Xia, Y.; Wray, L.; Qian, D.; Pal, A.; Dil, J.H.; Osterwalder, J.; Meier, F.; Bihlmayer, G.; Kane, C.L.; et al. Observation of unconventional quantum spin textures in topological insulators. Science 2009, 323, 919–922. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y.S.; Cava, R.J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Chen, Y.L.; Analytis, J.G.; Chu, J.-H.; Liu, Z.K.; Mo, S.-K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Kulbachinskii, V.A.; Miura, N.; Arimoto, H.; Ikaida, T.; Lostak, P.; Horak, H.; Drasar, C. Cyclotron resonance in high magnetic fields in Bi2Se3, Bi2Te3 and Sb2Te3 based crystals. J. Phys. Soc. Jpn. 1999, 68, 3328–3333. [Google Scholar] [CrossRef]
- Wolos, A.; Szyszko, S.; Drabinska, A.; Kaminska, M.; Strzelecka, S.G.; Hruban, A.; Materna, A.; Piersa, M. Landau-level spectroscopy of relativistic fermions with low Fermi velocity in the Bi2Te3 three-dimensional topological insulator. Phys. Rev. Lett. 2012, 109, 247604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, L.-C.; Yu, W.; Cadden-Zimansky, P.; Miotkowski, I.; Chen, Y.P.; Smirnov, D.; Jiang, Z. Magnetoinfrared spectroscopic study of thin Bi2Te3 single crystals. Phys. Rev. B 2016, 93, 085140. [Google Scholar] [CrossRef] [Green Version]
- Dordevic, S.V.; Lei, H.; Petrovic, C.; Ludwig, J.; Li, Z.Q.; Smirnov, D. Observation of cyclotron antiresonance in the topological insulator Bi2Te3. Phys. Rev. B 2018, 98, 115138. [Google Scholar] [CrossRef] [Green Version]
- Kuntsevich, A.Y.; Gabdullin, A.A.; Prudkogliad, V.A.; Selivanov, Y.G.; Chizhevskii, E.G.; Pudalov, V.M. Low-temperature Hall effect in bismuth chalcogenides thin films. Phys. Rev. B 2016, 94, 235401. [Google Scholar] [CrossRef] [Green Version]
- Volosheniuk, S.O.; Selivanov, Y.G.; Bryzgalov, M.A.; Martovitskii, V.P.; Kuntsevich, A.Y. Effect of Sr doping on structure, morphology, and transport properties of Bi2Se3 epitaxial thin films. J. Appl. Phys. 2019, 125, 095103. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, A.A.; Boldyrev, K.N.; Selivanov, Y.G.; Martovitskii, V.P.; Chekalin, S.V.; Ryabov, E.A. Coherent phonons in a Bi2Se3 film generated by an intense single-cycle THz pulse. Phys. Rev. B 2018, 97, 214304. [Google Scholar] [CrossRef] [Green Version]
- Wiegers, S.A.J.; Christianen, P.C.M.; Engelkamp, H.; den Ouden, A.; Perenboom, J.A.A.J.; Zeitler, U.; Maan, J.C. The high field magnet laboratory at Radboud University Nijmegen. J. Low Temp. Phys. 2010, 159, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Tarelkin, S.A.; Bormashov, V.S.; Pavlov, S.G.; Kamenskyi, D.L.; Kuznetsov, M.S.; Terentiev, S.A.; Prikhodko, D.D.; Galkin, A.S.; Hübers, H.-W.; Blank, V.D. Evidence of linear Zeeman effect for infrared intracenter transitions in boron doped diamond in high magnetic fields. Diam. Relat. Mater. 2017, 75, 52–57. [Google Scholar] [CrossRef]
- Palik, E.D.; Furdyna, J.K. Infrared and microwave magnetoplasma effects in semiconductors. Rep. Prog. Phys. 1970, 33, 1193–1322. [Google Scholar] [CrossRef]
- Zhukova, E.S.; Aksenov, N.P.; Gorshunov, B.P.; Selivanov, Y.G.; Zasavitskiy, I.I.; Wu, D.; Dressel, M. Far infrared spectroscopy of Pb1−xEuxTe epitaxial layers. Phys. Rev. B 2010, 82, 205202. [Google Scholar] [CrossRef]
- Wehling, T.O.; Black-Schaffer, A.M.; Balatsky, A.V. Dirac materials. Adv. Phys. 2014, 63, 1–76. [Google Scholar]
- Qu, D.-X.; Hor, Y.S.; Xiong, J.; Cava, R.J.; Ong, N.P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 2010, 329, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Stordeur, M.; Stolzer, M.; Sobotta, H.; Riede, V. Investigation of the valence band structure of thermoelectric (Bi1-x,Sbx)2Te3 single crystals. Phys. Status Solidi B 1988, 150, 165–176. [Google Scholar] [CrossRef]
- Fang, T.; Li, X.; Hu, C.; Zhang, Q.; Yang, J.; Zhang, W.; Zhao, X.; Singh, D.J.; Zhu, T. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions. Adv. Funct. Mater. 2019, 29, 1900677. [Google Scholar] [CrossRef]
- Cheng, W.; Ren, S.-F. Phonons of single quintuple Bi2Te3 and Bi2Se3 films and bulk materials. Phys. Rev. B 2011, 83, 094301. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamenskyi, D.L.; Pronin, A.V.; Benia, H.M.; Martovitskii, V.P.; Pervakov, K.S.; Selivanov, Y.G. Bulk Cyclotron Resonance in the Topological Insulator Bi2Te3. Crystals 2020, 10, 722. https://doi.org/10.3390/cryst10090722
Kamenskyi DL, Pronin AV, Benia HM, Martovitskii VP, Pervakov KS, Selivanov YG. Bulk Cyclotron Resonance in the Topological Insulator Bi2Te3. Crystals. 2020; 10(9):722. https://doi.org/10.3390/cryst10090722
Chicago/Turabian StyleKamenskyi, Dmytro L., Artem V. Pronin, Hadj M. Benia, Victor P. Martovitskii, Kirill S. Pervakov, and Yurii G. Selivanov. 2020. "Bulk Cyclotron Resonance in the Topological Insulator Bi2Te3" Crystals 10, no. 9: 722. https://doi.org/10.3390/cryst10090722
APA StyleKamenskyi, D. L., Pronin, A. V., Benia, H. M., Martovitskii, V. P., Pervakov, K. S., & Selivanov, Y. G. (2020). Bulk Cyclotron Resonance in the Topological Insulator Bi2Te3. Crystals, 10(9), 722. https://doi.org/10.3390/cryst10090722