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Abstract: Cocrystallisation can enhance the solubility and bioavailability of active pharmaceutical
ingredients (APIs); this method may be applied to improve the availability of materials that were
previously considered unsuitable. Terahertz (THz) spectroscopy provides clear, substance-specific
fingerprint spectra; the transparency of the THz wave allows us to probe inside a sample to identify
medicinal materials. In this study, THz and infrared (IR) spectroscopy were used to characterise
cocrystallisation in solid-phase reactions between ibuprofen and nicotinamide. Multivariate curve
resolution with alternating least squares (MCR-ALS) was applied to both time-dependent THz and IR
spectra to identify the intermolecular interactions between these cocrystallising species. The analytical
results revealed cocrystal formation through a two-step reaction, in which the steps were dominated
by thermal energy and water vapour, respectively. We infer that the presence of water molecules
significantly lowered the activation energy of cocrystal formation.
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1. Introduction

Cocrystallisation can be used to enhance the solubility and bioavailability of active pharmaceutical
ingredients (APIs), classified according to the Biopharmaceutical Classification System (BCS) as Class
II materials. Cocrystallisation can also improve key manufacturing parameters, such as flowability,
tablet formation and storage stability [1,2].

Cocrystals are a molecular complex of APIs with a highly water-soluble cocrystal former (coformer).
Complex formation is based on weak non-ionic intermolecular interactions, such as hydrogen bonding
and van der Waals forces, such that no structural changes occur in the APIs. Hence, the European
Medicines Agency (EMA) and Food and Drug Administration (FDA) have released guidelines that
consider cocrystals identical to APIs as long as they do not exhibit different pharmacokinetics [3,4].
This led to the introduction of cocrystal-based medicines in 2014. Moreover, four candidate cocrystalline
materials are currently in clinical trials [5]. For at least 30% of currently marketed drugs, the replacement
of APIs with cocrystals is expected to significantly improve patients’ quality of life. Candidate
compounds previously deemed unsuitable may be acceptable when incorporated into a cocrystal.

Cocrystals can be prepared using methods based on slurry, anti-solvents, hot-melt extrusion and
supercritical fluid [6–16]. A method for preparing disordered cocrystals involving co-grinding of
the constituents and storage of the mixture under controlled temperature and humidity conditions
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has also been reported [17–21]. This method satisfies the requirements of green chemistry and yields
high-quality cocrystals, but it requires many steps and is not suitable for industrialisation. Therefore,
cocrystal formation without mechanical activation is desirable for industrial production.

The structure and characterisation of ibuprofen/nicotinamide (IBF/NA) cocrystals, as well as their
in vivo effects, have been reported [22–24]. We previously reported the mechanism underlying the
formation of IBF/NA cocrystals prepared using the hot melt method. The mechanism underlying the
formation of IBF/NA cocrystals prepared using the slurry method has also been discussed [25,26].
Together, these findings have allowed the strict control of cocrystallisation and the close monitoring
of the process; however, several phenomena related to cocrystallisation remain unknown, due to the
presence of a liquid phase during the preparation process.

Ultraviolet (UV)–visible [27], infrared (IR) [28–30], near-IR [30,31] and Raman [30,31] spectroscopy
are commonly used to analyse medicinal materials. Terahertz (THz) spectroscopy can also be
used to examine low-frequency molecular vibrations that correspond to particular intermolecular
interactions [32,33]. THz spectroscopy is nondestructive and provides a clear, substance-specific
spectral fingerprint. Due to the transparency of many medicinal materials in the THz regime,
THz spectroscopy allows researchers to probe the interior of a sample. These features are consistent
with the concept of process analytical technology (PAT), which was introduced by the FDA in 2004,
making THz spectroscopy a promising new type of PAT [34–39]. However, as THz spectroscopy is a
relatively new technology, its effects on the physical properties of samples and the optical assignment
of vibrational modes remain poorly understood. Further fundamental research on the interactions
between THz radiation and samples is required for the full application of THz spectroscopy to
pharmaceutical manufacturing.

In this study, we used THz and IR spectroscopy to characterise cocrystallisation in solid-phase
reactions between IBF and NA. Multivariate curve resolution with alternating least squares (MCR-ALS)
was applied to time-dependent THz and IR spectra to identify the intermolecular interactions between
these cocrystallising species.

2. Materials and Methods

2.1. Materials

Racemic IBF (Lot I2HJD-DM) was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan) and NA (Lot CAN6328) was purchased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan). The molecular structures of IBF and NA are shown in Figure 1A,B. An equimolecular
physical mixture (PM) of IBF and NA was prepared by mixing the two compounds using a mortar and
pestle. Tablets (200 mg, 8 mm diameter) were pressed from the mixture using a single punch tableting
machine (TabAll; Okada Seiko, Tokyo, Japan) with flat-face punches.
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Figure 1. Chemical structures of (A) ibuprofen (IBF) and (B) nicotinamide (NA). (C) Packing structure
of an IBF/NA cocrystal (SODDIZ).

2.2. Methods

2.2.1. Storage of Tablets

Three tablets were kept in a 25 mL glass container. The relative humidity (RH) inside the container
was held at 0%, 30% or 75%, and the container was stored in an oven at 60 ◦C. The oven was constantly
purged with dry air (dew point < −60 ◦C, 0.08% RH) at 1 L/min. The 30% and 75% RH conditions
were achieved by including 9 mL of saturated aqueous solutions of magnesium chloride and sodium
chloride, respectively, in the container holding the tablets. The storage time was set according to the
reaction (Table 1). The stored tablets were removed and ground to a powder immediately prior to
spectroscopic measurements.

Table 1. Sampling time (h) by relative humidity (RH).

Sample Number 0% RH 30% RH 75% RH

1 0 0 0
2 24 6 6
3 48 12 12
4 96 24 18
5 168 36 30
6 216 48 42
7 264 60 54
8 336 84 66
9 384 156 90

10 432 204 114
11 504 252 186
12 552 324 234

In addition, three tablets were stored at 45, 50, 55 and 60 ◦C for 72 h to determine the contributions
of thermal energy to the solid-state cocrystallisation reaction. To maintain a constant water vapour
atmosphere of 51.12± 3.5 g/m3 (absolute humidity) at these temperatures, saturated aqueous solutions of
potassium bromide, potassium iodide, sodium bromide or magnesium nitrate, respectively, were added
to the tablet container.

2.2.2. Fourier-Transform Infrared Spectroscopy (FT-IR) Measurements

IR spectra were acquired with an FT-IR spectrometer (FT/IR-6300; JASCO, Tokyo, Japan) using KBr
plates. Each sample was sandwiched between KBr plates and scanned 32 times from 400 to 4000 cm−1

at a resolution of 4 cm−1.
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2.2.3. Terahertz Spectroscopy Measurements

Polyethylene (PE)-diluted pellets were prepared for THz transmission measurements. To dilute
the sample and obtain a uniform particle size, 20 mg of powdered sample was mixed with 380 mg of
PE powder (particle size <20 µm) in an agate mortar and pestle. The mixed powder was compressed
at 1000 psi to obtain 333 mg pellets 20 mm in diameter and 1 mm in thickness. The pellets featured a
wedge-shaped cross section with an angle of 2◦ to prevent etalon artifacts in the THz data. THz spectra
were acquired on a double-beam gallium-phosphide (GaP) THz spectrometer equipped with a GaP
THz signal generator and two deuterated triglycine sulphate (DTGS) [40]. Each sample was scanned
in 15 GHz (0.5 cm−1) steps from 0.45 to 6.04 THz (15.0–201 cm−1). The measurement chamber was
filled with dry air and measurements were performed at room temperature.

2.2.4. Multivariate Analysis

To determine the PM-to-cocrystal reaction rate at each sampling point, reference cocrystals
(R-cocrystals) were prepared by grinding PM with 10 agate balls (12 mm diameter) in a planetary
ball mill for 240 min. The resulting cocrystal powder was analysed by FT-IR and THz spectroscopy,
and each spectrum was incorporated into a comprehensive data set. All of the FT-IR and THz spectra
thus obtained were analysed via MCR-ALS using Unscrambler X (CAMO Software, Oslo, Norway).

MCR can deconvolve mixed spectra to show the relative contributions of each constituent using
the following Equation:

X = CST + E, (1)
X11 · · · X1k

...
. . .

...
Xn1 · · · Xnk

 =


C11 · · · C1m
...

. . .
...

Cn1 · · · Cnm




S11 · · · S1k
...

. . .
...

Sm1 · · · Snk

+ E (2)

where X represents the experimental data, C is the concentration profile of a given component, ST is
the component spectrum, E is the residual, n is the number of spectra for different storage times,
k represents spectral intensity as a function of wavenumber and frequency, and m is the deconvoluted
contribution. The ALS algorithm is frequently used to solve the above matrix. Details of the MCR-ALS
algorithm have been reported elsewhere [41–44].

Prior to multivariate analysis, FT-IR spectra were subjected to area normalisation and multiple
signal correction (MSC). THz spectra were smoothed using a moving average and then subjected to
area normalisation and MSC. Calculations based on the FT-IR spectra were performed within the
spectral ranges of 1832–2229 and 3275–3360 cm−1. THz spectra were collected between 0.8 and 6.0 THz
(26.6–200 cm−1).

3. Results and Discussion

3.1. FT-IR and THz Spectra

To focus on the intermolecular interaction (hydrogen bond), we examined the FT-IR spectrum
at around 1980 and 3316 cm−1. The THz spectrum is a fingerprint spectrum that depends on the
crystal lattice; therefore, we focused on the region 0.8–6.1 THz, which was less susceptible to noise.
The FT-IR spectrum of the IBF/NA cocrystal reportedly contains a broad absorption peak at around
1980 cm−1, characteristic of intermolecular O-H···N hydrogen bonding, and an absorption peak at
3316 cm−1 characteristic of intermolecular N-H···O hydrogen bonding [23]. In this study, we confirmed
new characteristic peaks associated with cocrystal formation in these regions using the pre-processed
FT-IR spectra (Figure 2A).



Crystals 2020, 10, 760 5 of 12
Crystals 2020, 10, x FOR PEER REVIEW 5 of 13 

 

  

(A) (B) 

Figure 2. Pre-processed (A) Fourier-transform infrared spectroscopy (FT-IR) and (B) terahertz (THz) 

spectra at 75% relative humidity (RH). Black and red lines indicate the physical mixture (PM) 

spectrum and the spectrum of the last sampling point, respectively. 

3.2. FT-IR Spectra and MCR-ALS Analysis 

The FT-IR data were separated into two components by MCR-ALS as a function of time (Figure 

3). The cumulative residuals in the 1832–2229 and 3275–3360 cm–1 regions were 1.33 × 10–9 and 3.64 × 

10–9, respectively. Component 1 was assigned to PM due to the presence of peaks at 1910, 1935, 1959 

and 2076 cm−1. Component 2 was assigned to the cocrystal based on peaks at 1949, 1979, 2000 and 

2108 cm−1. The reaction rate of the intermolecular O-H···N hydrogen bond (Figure 4) and 

intermolecular N-H···O hydrogen bond (Figure 5) formations were obtained by MCR-ALS. The 

reaction rate of the intermolecular O-H···N hydrogen bonds was strongly dependent on humidity, 

with the time required to reach 100% completion being shorter under more humid conditions. The 

reaction rate of N-H···O hydrogen bond formation also depended on humidity. While the reaction 

proceeded to 100% completion at 75% RH, at 30% RH the reaction rate began to stagnate above 65% 

completion, reaching only 95% after 324 h. The reaction rate at 0% RH began to stagnate at 63%, 

reaching only 82% completion after 552 h. 

 

75%RH

Wavenumber (cm-1)
180021002400270030003300

Wavenumber (cm-1)

Terahertz (THz)

50100150200

123456

Component 1 
                 (PM)

Component 2
                 (cocrystal)

Wavenumber (cm-1)
1800190020002100220033003350

Figure 2. Pre-processed (A) Fourier-transform infrared spectroscopy (FT-IR) and (B) terahertz (THz)
spectra at 75% relative humidity (RH). Black and red lines indicate the physical mixture (PM) spectrum
and the spectrum of the last sampling point, respectively.

We observed drastic changes in the transition from PM to cocrystal in the THz spectrum,
including the disappearance of a peak at 1.09 THz, the formation of a new peak at 4.42 THz, and peak
shifts from 3.64 to 3.79 THz and 5.56 to 5.26 THz (Figure 2B). This result indicated a relationship
between RH and FT-IR; thus, THz spectrum changes suggested a relationship between RH and
spectroscopic spectra.

3.2. FT-IR Spectra and MCR-ALS Analysis

The FT-IR data were separated into two components by MCR-ALS as a function of time (Figure 3).
The cumulative residuals in the 1832–2229 and 3275–3360 cm–1 regions were 1.33 × 10–9 and 3.64
× 10–9, respectively. Component 1 was assigned to PM due to the presence of peaks at 1910, 1935,
1959 and 2076 cm−1. Component 2 was assigned to the cocrystal based on peaks at 1949, 1979,
2000 and 2108 cm−1. The reaction rate of the intermolecular O-H···N hydrogen bond (Figure 4) and
intermolecular N-H···O hydrogen bond (Figure 5) formations were obtained by MCR-ALS. The reaction
rate of the intermolecular O-H···N hydrogen bonds was strongly dependent on humidity, with the
time required to reach 100% completion being shorter under more humid conditions. The reaction rate
of N-H···O hydrogen bond formation also depended on humidity. While the reaction proceeded to
100% completion at 75% RH, at 30% RH the reaction rate began to stagnate above 65% completion,
reaching only 95% after 324 h. The reaction rate at 0% RH began to stagnate at 63%, reaching only 82%
completion after 552 h.

In the IBF/NA cocrystal, (R)-IBF and (S)-IBF were arranged with an NA dimer between them,
as shown in Figure 1C. The cocrystallisation process involves three molecular interactions. An O-H···N
hydrogen bond is formed between the hydroxyl group of IBF and the pyridine ring of the first NA
molecule. Then, an N-H···O hydrogen bond is formed between the amide of the second NA molecule
and the carbonyl group of IBF. In the third interaction, N-H···O hydrogen bonds are formed by the
NA dimer. The crystal growth rate of the (RS)-IBF/NA cocrystal is reportedly higher than that of the
(S)-IBF/NA cocrystal. This suggests that the interaction between (S)-IBF and NA requires greater energy
than that between (R)-IBF and NA [22]. During the formation of O-H···N hydrogen bonds, the coupling
of (R)-IBF or (S)-IBF to NA proceeded to completion under all humidity conditions. However, it is
likely that water vapour catalyses the transformation of (S)-IBF to NA, because this reaction took longer
to complete at 0% RH.
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multivariate curve resolution with alternating least squares (MCR-ALS) analysis. The spectra were
deconvoluted into two components.
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30% and 75% RH, respectively.
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Figure 5. Reaction rate in the 3275–3360 cm–1 region of the FT-IR spectrum. Red and blue lines represent
the PM (component 1) and cocrystal (component 2), respectively. (A–C) are results obtained under 0%,
30% and 75% RH, respectively.

Eight N-H···O hydrogen bonds originating from NA dimers, and four N-H···O hydrogen bonds
between NA and IBF, were present in one unit cell. The formation of NA dimers is the first step in
cocrystal formation. In the next step, a hydrogen bond is formed between NA and IBF. The formation of
N-H···O hydrogen bonds seems to stop at around 66% completion, because the formation of hydrogen
bonds between NA and IBF did not proceed under low humidity conditions. The absence of water
vapour increased the stagnation time of the reaction, suggesting that the approach of IBF to NA requires
a water molecule.

3.3. THz Spectra and MCR-ALS Analysis

THz spectra were deconvoluted into two components by MCR-ALS as a function of reaction time
(Figure 6). The cumulative residual value obtained in this analysis was 1.21 × 10–8. Component 1 was
assigned to PM due to the presence of peaks at 1.06, 2.92, 3.63 and 5.59 THz, which are unique to IBF or
NA. Component 2 was assigned to cocrystal due to characteristic peaks at 2.67, 3.81, 4.41 and 5.24 THz.
Under all humidity conditions, about half of the reactions proceeded until the first sampling point
after the start of storage (Figure 7). However, after 50% completion, the reaction rate increased with
increasing humidity. It is likely that enantiomeric differences affect the reaction rate of racemic IBF
with NA. Thus, the following reaction process can be proposed. (R)-IBF, which seems to interact more
strongly with NA, forms the initial (R)-IBF/NA cocrystal. A racemic reaction then occurs, in which
(S)-IBF, facilitated by the presence of a water molecule, is moved to an appropriate position in the
(RS)-IBF/NA cocrystal. These processes are consistent with the reaction timelines determined from the
FT-IR and THz measurements.
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Ervasti et al. [19] reported a complete cocrystal transition in the solid phase. The PM of theophylline
anhydride and NA was transformed to cocrystal under 50 ◦C and 75% RH conditions, with a partial
transition under the 50 ◦C and < 5% RH conditions, but it was not transformed under the 20 ◦C and
< 5% RH conditions. This result indicated that the cocrystal formation of theophylline anhydride and
NA was accelerated at high temperatures by the presence of water vapour as a catalyst. Theophylline
had a monohydrate form as a pseudo-polymorphism; its crystalline character may have played an
important role in cocrystal formation in the present study. However, no studies have reported a
hydrate form of crystalline IBF polymorphism, although the cocrystal formation of the material was
also affected by the presence of water vapour. Thus, the presence of water vapour is necessary for the
cocrystal formation, even among compounds that cannot include water molecules in the crystal lattice.
These findings indicate that water vapour is required to form a cocrystal, as a catalyst of the reaction,
even if there is no room for a water molecule in the cocrystal lattice.

3.4. Contributions of Thermal Energy

Tablets stored in an atmosphere of 51.12 ± 3.5 g/m3 of water vapour for 72 h at four different
temperatures were analysed by FT-IR and THz spectroscopy. FT-IR spectra acquired over two regions
(1832–2229 and 3275–3360 cm−1) and THz spectra were fed into the MCR-ALS algorithm. An Arrhenius
plot based on the reaction rates is shown in Figure 8. The correlation coefficient and activation energy
obtained from FT-IR spectra between 1832 and 2229 cm−1 were 0.9583 and 14.70 kJ/mol, while those
obtained from THz spectra were 0.9567 and 24.50 kJ/mol, respectively. The FT-IR spectra collected
from the 3275–3360 cm−1 range did not show a good correlation, with a coefficient of only 0.8138.
The formation of intermolecular O-H···N hydrogen bonds and the crystal lattice was found to be
thermally energy-dominated in the presence of water molecules. In a previous report, 65 ◦C was
identified as the optimal temperature for preparing IBF/NA cocrystals [25]. Thus, cocrystal formation
could be accelerated by applying additional thermal energy to the PM up to 65 ◦C.
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4. Conclusions

Cocrystals of IBF and NA were prepared using a solid-state reaction method. The cocrystal
formation process was analysed by FT-IR and THz spectroscopy, and data were fed into an MCR-ALS
algorithm. Cocrystals were formed through a two-step reaction; the first step was dependent on thermal
energy and the second was controlled by the presence of water vapour. Furthermore, our results showed
that water molecules significantly lowered the activation energy required for cocrystal formation. Since
THz spectra can provide information about the crystal lattice in pharmaceutical materials, it may be a
useful PAT. We also demonstrate that MCR-ALS is a powerful tool for breaking down complex datasets
into more manageable ensembles.
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