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Abstract: The well-known solid-state reaction method is used for the synthesis of Tb doped
LuGd2Ga2Al3O12 phosphor. XRD and SEM techniques are used for the phase and structural
morphology of the synthesized phosphor. UV, X-ray and proton induced spectroscopy is used
to study the luminescence properties. LuGd2Ga2Al3O12:Tb3+ phosphor shows its highest peak in
green and blue region. The two major emission peaks correspond to 5D3→

7FJ (at 480 to 510 nm,
blue region) and 5D4→

7FJ (at 535 to 565 nm, green region). Green emission is dominant; therefore,
it may be used as an efficient green phosphor. The absorption spectra of the synthesized material
matches well with the spectra of light emitting diodes (LEDs); therefore, it may have applications in
LEDs. X-ray spectroscopic study suggests that this phosphor may have uses in medical applications,
such as X-ray imaging. The synthesized phosphor exhibits 81% efficacy in comparison to the
commercial plasma display panel material (Gd2O2S:Tb3+). The Commission Internationale de
l’Eclairage (CIE) chromaticity diagram is obtained for this phosphor. The decay time of ms range is
measured for the synthesized phosphor.
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1. Introduction

Rare-earth doped yttrium aluminum garnet (YAG) is a well-known commercially used phosphor
due to its brilliant luminescence properties [1,2]. YAG has been studied extensively for the past few
decades. LuAG is another host material that has shown promising properties due to its diverse range
of properties, such as octahedral and tetrahedral structures, the transparent nature to various types of
radiations, high optical quality, better thermal chemical and stability, low temperature for the synthesis,
and radiation hardness [3–6].

Owing to the promising photoluminescence properties of trivalent terbium ion, contributed to
green phosphors, has been investigated for last few decades. Green emission of Tb-doped borate
phosphor has been investigated [7,8]. Tb doped borates (LiBaB9015) give dominant green luminescent
peak at 542 nm [9]. Tb has shown much better luminescence when doped in YAG. LuAGs possess
broad peaks of emission and absorption and can be excited by blue LEDs, which make it suitable for
light emitting diode (LED) applications [10–12].
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LuGd2Ga2Al3O12 is one of the LuAG phases that is less studied. Therefore, this work consists of
synthesis and luminescence study of Tb doped LuGd2Ga2Al3O12 phosphor.

2. Experimental

To get the phosphors’ final goal, firstly, it is synthesized through solid state reaction method;
a well-known technique for the synthesis of phosphors [13,14]. Lutetium oxide (Lu2O3, 99.998%),
gallium oxide (Ga2O3, 99.99%) gadolinium oxide (Gd2O3, 99.99%), and aluminum oxide (Al3O12)
(Sigma-Aldrich, Daegu, South Korea) are weighed according to the balanced chemical equation to get
a specified amount of host material LuGd2Ga2Al3O12. Different concentrations of activator, Terbium
oxide (Tb2O3, 99.99%), are doped with the host. Duration of ball milling, temperature, heating rate,
and cooling rates are optimized for sintering the synthesized material. After measuring mass of
powders it is ball milled for 7 h in order to mix it well. For sintering purpose, the mixed powders are
kept in the electric furnace. The temperature of the furnace is kept constant at 700 ◦C for 20 h followed
by slow heating and cooling rate of 100 ◦C/h in the air environment. Finally, fine grinned samples of
Tb3+ doped LuGd2Ga2Al3O12 phosphors are obtained.

3. Characterizations

Scanning electron microscopy (SEM) (AIS 2000C, Seron, South Korea) is used to find the shape
and size of the grains and the overall morphology of the phosphors. X-ray diffraction (XRD)
(Philips XPERT-MED, Amsterdam, Netherlands) is used to find the material’s crystallinity. To find
luminescent properties of the synthesized material UV and X-ray induced spectroscopy (Beckman
DU640 UV/Vis spectrophotometer, Kraemer Boulevard Brea, CA, USA) is used. The chromaticity
diagram is obtained for the purpose of studying the white light emission. Proton beam line (45 MeV
energy, 2 nA current) passes through 0.2 mm thick aluminum window, which is capping the beam
pipe with 5 cm of air, loses energy up to 39 MeV [15].

Using the same spectrometer (QE65000, Ocean optics) the variation of the color with the
Tb concentration is obtained using the Commission Internationale de l’Eclairage (CIE) 1931
chromaticity diagram.

4. Results and Discussion

4.1. X-ray Diffraction Analysis

XRD peaks are shown in Figure 1, which gives comparison of peaks of LuGd2Ga2Al3O12:Tb3+

phosphor with Al5Gd3O12 (PDF No. 98-002-3849). The peaks of our sample well match with the peaks
of the reference material (Al5Gd3O12). It proved that the phase achieved is the required phase for the
synthesized phosphor. It also verifies that the synthesized phosphors are octahedral in structure. It is
proved that extra peaks of the reactants are not present in the synthesized phosphors. It proves the
single-phase phosphor material as a product. Furthermore, the Bragg’s law is used for the calculation
of finding lattice constants of the synthesized phosphors [16].
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4.2. Scanning Electron Microscopy

The grain shape of LuGd2Ga2Al3O12:Tb3+ (5 mol%) and LuGd2Ga2Al3O12:Tb3+ (1 mol%) powder
are shown in Figure 2. These micrographs show similar nature of grains in terms of morphology and
shape. The crystallinity and the grain size in the micrometer range of the phosphor are fundamental
structural properties to get high luminescence [17]. Figure 2a,b shows that LuGd2Ga2Al3O12:Tb3+

(5 mol%) having small grains with irregular sharp edges, while LuGd2Ga2Al3O12:Tb3+ (1 mol%)
having agglomerated large grains, as shown in Figure 2. Since large grains have less chances of
reflection, when the sample is exposed to light; therefore, it has better luminescence than the
LuGd2Ga2Al3O12:Tb3+ (5 mol%) [18]. LuGd2Ga2Al3O12:Tb3+ phosphors have grain size within the
micrometer range, which results in a better luminescence. Phosphors, having grain size of a micrometer,
are usually used for X-ray imaging in the medical field. It is research proven that the luminescent
properties of LuAG phosphors are affected by size and crystalline nature of phosphors [19,20].
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4.3. UV Induced Luminescence of LuGd2Ga2Al3O12:Tb3+

Excitation and emission transitions with energy levels of Tb3+ ion are recorded and given in
Figure 3. UV-induced excitation and emission spectra are shown in Figure 4. Excitation band of
LuGd2Ga2Al3O12:Tb3+ is observed at 290 nm 7F6→

5D3 transition. Emission band is observed at 378 nm
5D4→

7FJ transition. Where J ranges from 0 to 6.
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Figure 4 shows three major excitation peaks at 290 nm, 320 nm, and 378 nm. The major emission
peak is observed at 550 nm. The emission spectrum of Tb3+ doped LuGd2Ga2Al3O12 phosphor by
UV light, monitored (at the emission wavelength of 625 nm) is not limited to 550 nm, but it consists
of other emission peaks at 380 nm, 420 nm, 480 nm, 580 nm, and 620 nm. Figure 4 also shows the
green and blue emission spectrum of LuGd2Ga2Al3O12:Tb3+ phosphor. The two major emission
peaks correspond to 5D3→

7FJ (at 480–510 nm, blue region), 5D4→
7FJ (at 535–565 nm, green region).

Green emission is dominant due to the presence of Tb3+ dopant. A similar emission is published for
Tb doped phosphors [21,22]. Figure 5 shows that blue emission (5D3→7FJ) intensity is decreased and
green emission (5D4→7FJ) intensity is increased with increasing concentration of Tb3+. The intensity
ratio (IG/IB) may play the same role as red/orange (IR/IO) intensity ratio of Eu3+ or yellow/blue (IY/IB)
intensity ratio of Dy3+. It also describe the symmetry of the local environment around the optically
active dopant and covalent/ ionic bonding between Tb3+ and O2−. Similar to Eu3+ or Dy3+, the Tb3+

ions may be used as a spectroscopic probe as well [23,24].
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4.4. X-ray Induced Luminescence Spectroscopy

Emission spectra of LuGd2Ga2Al3O12:Tb3+ are also observed through X-ray induced spectroscopy
with various concentrations of Tb3+ as shown in the Figure 6.
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X-ray spectroscopy shows emission in the range of 300–650 nm. X ray spectroscopy shows
highest emission peak at 550 nm, which is the result of UV Spectroscopy. The X-ray induced emission
spectrum well matches with that of UV induced emission spectrum and with the published data of
X-ray luminescence [25]. Figure 6 shows 1 mol% concentration of Tb3+ in LuGd2Ga2Al3O12 as the
optimized concentration of Tb3+. This optimized value of 1 mol% Tb3+ is shown in Figure 7.
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X-ray spectroscopic study suggests that this phosphor may be used in a medical application,
such as X-ray imaging.

4.5. Optimization of Tb3+ Concentrations

Figure 7 shows different concentrations of Tb3+ (mol%) with relevant maximum emission
intensities. The optimized concentrations with maximum intensity for emission peak is given,
i.e., 1 mole% of Tb. Since the intensity of green color is more dominant, therefore, this phosphor might
be used as green phosphor.

4.6. Proton Induced Luminescence Spectroscopy

The synthesized LuGd2Ga2Al3O12:Tb3+ phosphor is excited by three major excitation sources.
X-ray and proton induced emission spectra are shown in Figure 8 whereas UV-induced emission
spectrum is shown in Figure 5. All three emission spectra are very similar and matches well with
the literature [26,27]. This comparison shows that the emission properties do not depend on the
excitation source.
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4.7. Luminescence Efficiency

In order to investigate the luminescence efficacy of the synthesized phosphor, the emission
spectra of LuGd2Ga2Al3O12:Tb3+ and commercially available plasma display panel (PDP) material
(PDP:Gd2O2S:Tb3+) are compared in Figure 9. The light yields are obtained by integrating the area
under the emission curves. All of the parameters, such as slit width, integrated time, beam intensity,
and excitation wavelength are kept constant for comparison. This comparison reveals that the light yield
of the synthesized phosphor is 81% of that of commercially available PDP phosphor. This encouraging
result of luminescence efficacy suggests the potential application of this phosphor in the fields of PDPs
and LEDs.
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4.8. Decay Time Analysis

The decay time is obtained for LuGd2Ga2Al3O12 phosphors with different concentrations of Tb3+,
shown in Figure 10. The decay measurement is done at emission wavelength (550 nm) and excitation
wavelength (290 nm). All of the decay curves are fifit with single exponential decay equation.

I = Io exp(−t/τ) (1)

In this equation, “A” stands for integrated area, I and Io represent intensities at times t and 0,
respectively, and τ represents the decay time. The decay time becomes shorter with the increase of
Tb3+ concentration. The decay time analysis is very handy in order to understand the energy transfer
mechanism and luminescence quenching of Tb3+ ions. The investigation of these decay curves clarify
that decay time gets shorter if Tb3+ concentration is decreased from 3 mol% to 1 mol% as mentioned in
other articles [23,28]. In other words, we can say that beyond 3 mol% the concentration quenching
starts, which in turn delays the emission process. The decay time measured for LuGd2Ga2Al3O12:Tb3+

(1 mol%) is to be between 2.80 ms and 2.90 ms.
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4.9. Chromaticity

The Commission Internationale de l’Eclairage (CIE) 1931 chromaticity diagram of
LuGd2Ga2Al3O12:Tb3+ is shown in Figure 11. Chromaticity is measured at three coordinates (x1 = 0.18,
y1 = 0.38), (x2 = 0.2, y2 = 0.39), and (x3 = 0.22, y3 = 0.42) for LuGd2Ga2Al3O12 with 0.1 mol%, 1 mol%,
and 5 mol% of Tb3+ concentrations, respectively. These values indicate that with the increase of Tb
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concentration from 0.1 mol% to 5 mol% of Tb3+ the bluish emission changes to greenish. This result
matches well with the published materials [29].
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5. Conclusions

The synthesized phosphor is investigated for its UV, X-ray, and proton induced luminescence.
All three kinds of emission spectra are very similar, proving that excitation source has no effect on the
emission spectrum. This phosphor shows major emission peaks in green color region and a peak in
blue region as well. The green emission enhances at the cost of blue emission with the increase of Tb
concentration. Absorption spectra of our material matches well with LEDs spectra; therefore, it may be
used for LED applications. Grain size is in the micrometer range, having good luminescence, and may
be utilized for X-ray imaging applications. The longer decay time of this phosphor is in milliseconds
range, which is suitable for lighting applications. Chromaticity diagram confirms green emission,
which is supported by UV and X-ray and proton-induced spectroscopy. X-ray luminescence suggests
its applications in X-ray imaging.
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