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Abstract: Multivariate analysis (MA) is becoming a fundamental tool for processing in an efficient
way the large amount of data collected in X-ray diffraction experiments. Multi-wedge data collections
can increase the data quality in case of tiny protein crystals; in situ or operando setups allow
investigating changes on powder samples occurring during repeated fast measurements; pump and
probe experiments at X-ray free-electron laser (XFEL) sources supply structural characterization
of fast photo-excitation processes. In all these cases, MA can facilitate the extraction of relevant
information hidden in data, disclosing the possibility of automatic data processing even in absence
of a priori structural knowledge. MA methods recently used in the field of X-ray diffraction are here
reviewed and described, giving hints about theoretical background and possible applications. The
use of MA in the framework of the modulated enhanced diffraction technique is described in detail.

Keywords: multivariate analysis; chemometrics; principal component analysis; partial least square;
X-ray powder diffraction; X-ray single crystal diffraction

1. Introduction

Multivariate analysis (MA) consists of the application of a set of mathematical tools
to problems involving more than one variable in large datasets, often combining data
from different sources to find hidden structures. MA provides decomposition in sim-
pler components and makes predictions based on models or recovers signals buried in
data noise.

Analysis of dependency of data in more dimensions (or variables) can be derived from
the former work of Gauss on linear regression (LR) and successively generalized to more
than one predictor by Yule and Pearson, who reformulated the linear relation between
explanatory and response variables in a joint context [1,2].

The need to solve problems of data decomposition into simpler components and sim-
plify the multivariate regression using few, representative explanatory variables brought
towards the advent of the principal component analysis (PCA) by Pearson and, later,
by Hotelling [3,4] in the first years of the 20th century. Since then, PCA has been considered
a great step towards data analysis exploration because the idea of data decomposition
into its principal axes (analogies with mechanics and physics were noted by the authors)
allows the data to be explained into a new multidimensional space, where directions are
orthogonal to each other (i.e., the new variables are uncorrelated) and each successive
direction is decreasing in importance and, therefore, in explained variance. This paved
the way to the concept of dimensionality reduction [5] that is crucially important in many
research areas such as chemometrics.

Chemometrics involves primarily the use of statistical tools in analytical chemistry [6]
and, for this reason, it is as aged as MA. It is also for this reason that the two disciplines
started to talk since the late 1960s, initially concerning the use of factor analysis (FA) in
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chromatography [7]. FA is a different way to see the same problem faced by PCA, as in
FA data are explained by hidden variables (latent variables or factors) by using different
conditions for factor extraction [8], while in PCA components are extracted by using
the variance maximization as unique criterion. Since then, chemometrics and MA have
contaminated each other drawing both advantages [9].

Multivariate curve resolution (MCR) [10] is a recent development consisting in the
separation of multicomponent systems and able to provide a scientifically meaningful
bilinear model of pure contributions from the information of the mixed measurements.
Another data modeling tool is the partial least square (PLS) [11], a regression method that
avoids the bad conditioning intrinsic of LR by projecting the explanatory variables onto a
new space where the variables are uncorrelated each other, but maximally correlated with
the dependent variable. PLS has been successfully applied in problems such as quantitative
structure-activity vs. quantitative structure-property of dataset of peptides [12] or in the
analysis of relation of crystallite shapes in synthesis of super-structures of CaCO3 through
a hydrogel membrane platform [13].

Moreover, classification methods have been adopted in chemometrics since the begin-
ning, mainly for pattern recognition, i.e., classification of objects in groups according to
structures dictated by variables. Discriminant analysis (DA), PLS-DA [14], support vector
machines (SM) [15] have been used for problems such as classification of food quality or
adulteration on the basis of sensitive crystallization [16], toxicity of sediment samples [17]
or in classification of biomarkers [18], gene data expression or proteomics [19] just to
mention few examples.

MA has been also used to improve the signal-to-noise ratio in measurements. Methods
such as phase sensitive detection (PSD) have been developed and implemented for techni-
cal applications as in the lock-in amplifier, which amplifies only signals in phase with an
internal reference signal. PSD has found a large applications in chemometrics connected to
excitation enhanced spectroscopy, where it has been used to highlight excitation-response
correlations in chemical systems [20]. Summarizing, although widely used in analyti-
cal chemistry, MA is less diffused in materials science and certainly under-exploited in
crystallography, where much wider applications are forecast in the next decade.

The main multivariate methods, grouped according to their main field of applica-
tion, are outlined in Figure 1. In the following, they are critically compared each other,
with particular attention on the specificity of chemometric problems and applications to
crystallography. In detail, the bad conditioning due to the high dimensionality and the
concept of overfitting is analyzed and the needs and advantages in reducing the problem of
dimensionality are discussed (Section 2.1); then, similar methods are put in comparison in
the successive subsections: PCA vs. FA vs. MCR for dimensionality reduction (Section 2.2),
with particular attention to X-ray diffraction applications. In Section 3 we describe a new
technique, called modulated enhanced diffraction (MED), which allows the extraction of
signals from single components from complex crystal systems monitored by X-ray diffrac-
tion experiment, showing the convergence of PSD (a Fourier deconvolution approach)
with standard and constrained (OCCR) PCA approaches. PCA, MCR and FA applications
to the investigation of powder samples and single-crystal samples by X-ray diffraction
are reviewed in Sections 4 and 5, respectively. In detail, Section 4 is devoted to the main
applications to kinetic (Section 4.1) and quantitative analysis (Section 4.2). Examples of
these two main applications are given to highlight the wide potentialities of MA-based
approaches. Section 5 describes the results and perspectives in single crystal diffraction, in
details in solving the phase problem (Section 5.1) merging datasets (Section 5.2) and crystal
monitoring (Section 5.3), exploiting the capability of MA methods in general and PCA in
particular to highlight dynamic phenomena.
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Figure 1. Schematic view showing main multivariate methods grouped according to their field of application.

2. Multivariate Methods
2.1. High Dimension and Overfitting

MA provides answers for prediction, data structure, parameter estimations. In facing
these problems, we can think at data collected from experiments as objects of an unknown
manifold in a hyperspace of many dimensions [21]. In the context of X-ray diffraction,
experimental data are constituted by diffraction patterns in case of single crystals or diffrac-
tion profiles in case of powder samples. Diffraction patterns, after indexing, are constituted
by a set of reflections, each identified by three integers (the Miller indices) and an intensity
value, while diffraction profiles are formed by 2ϑ values as independent variable and
intensity values as dependent variable. The data dimensionality depends on the number
of reflections or on the number of 2ϑ values included in the dataset. Thus, high-resolution
data contain more information about the crystal system under investigation, but have also
higher dimensionality.

In this powerful and suggestive representation, prediction, parameter estimation,
finding latent variables or structure in data (such as classify or clustering) are all different
aspects of the same problem: model the data, i.e., retrieve the characteristics of such
a complex hypersurface plunged within a hyperspace, by using just a sampling of it.
Sometimes, few other properties can be added to aid the construction of the model, such as
the smoothness of the manifold (the hypersurface) that represents the physical model
underlying the data. Mathematically speaking, this means that the hypersurface is locally
homeomorphic to a Euclidean space and can be useful to make derivatives, finding local
minimum in optimization and so on.

In MA, it is common to consider balanced a problem in which the number of variables
involved is significantly fewer than the number of samples. In such situations, the sampling
of the manifold is adequate and statistical methods to infer its model are robust enough
to make predictions, structuring and so on. Unfortunately, in chemometrics it is common
to face problems in which the number of dimensions is much higher than the number of
samples. Some notable examples involve diffraction/scattering profiles, but other cases
can be found in bioinformatics, in study for gene expression in DNA microarray [22,23].
Getting high resolution data is considered a good result in Crystallography. However,
this implies a larger number of variables describing a dataset: (more reflections in case of
single-crystal data or higher 2ϑ values in case of powder data). Consequently, it makes
more complicated the application of MA.

When the dimensionality increases, the volume of the space increases so fast that the
available data become sparse on the hypersurface, making it difficult to infer any trend
in data. In other words, the sparsity becomes rapidly problematic for any method that
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requires statistical significance. In principle, to keep the same amount of information
(i.e., to support the results) the number of samples should grow exponentially with the
dimension of the problem.

A drawback of having a so much high number of dimensions is the risk of overfitting.
Overfitting is an excessive adjustment of the model to data. When a model is built, it must
account for an adequate number of parameters in order to explain the data. However,
this should not be done too precisely, so to keep the right amount of generality in explaining
another set of data that would be extracted from the same experiment or population. This
feature is commonly known as model’s robustness. Adapting a model to the data too
tightly introduces spurious parameters that explain the residuals and natural oscillations
of data commonly imputed to noise. This known problem was named by Bellman the
“curse of dimensionality” [5], but it has other names (e.g., the Hughes phenomenon in
classification). A way to partially mitigate such impairment is to reduce the number of
dimensions of the problem, giving up to some characteristic of the data structure.

The dimensionality reduction can be performed by following two different strategies:
selection of variables or transformation of variables. In the literature, the methods are
known as feature selection and feature extraction [24].

Formally, if we model each variate of the problem as a random variable Xi, the
selection of variables is the process of selecting a subset of relevant variables to be used for
model construction. This selection requires some optimality criterion, i.e., it is performed
according to an agreed method of judgement. Problems to which feature selection methods
can be applied are the ones where one of the variables, Y, has the role of ‘response’, i.e.,
it has some degree of dependency from the remaining variables. The optimality criterion
is then based on the maximization of a performance figure, achieved by combining a
subset of variables and the response. In this way, each variable is judged by its level of
relevance or redundancy compared to the others, to explain Y. An example of such a
figure of performance is the information gain (IG) [25], which resorts from the concept of
entropy, developed in the information theory. IG is a measure of the gain in information
achieved by the response variable (Y) when a new variable (Xi) is introduced into the
measure. Formally:

IG(Y, Xi) = H(Y)− H(Y|Xi) (1)

being H() the entropy of the random variable. High value of IG means that the second
term H(Y|Xi) is little compared to the first one, H(Y), i.e., that when the new variable Xi
is introduced, it explains well the response Y and the corresponding entropy becomes low.
The highest values of IG are used to decide which variables are relevant for the response
prediction. If the response variable is discrete (i.e., used to classify), another successful
method is Relief [26], which is based on the idea that the ranking of features can be decided
on the basis of weights coming from the measured distance of each sample (of a given class)
from nearby samples of different classes and the distance of the same sample measured
from nearby samples of the same class. The highest weights provide the most relevant
features, able to make the best prediction of the response.

Such methods have found application in the analysis of DNA microarray data, where
the number of variables (up to tenths of thousands) is much higher than the number of
samples (few hundreds), to select the genes responsible for the expression of some relevant
characteristic, as in the presence of a genetic disease [27]. Another relevant application
can be found in proteomics [28], where the number of different proteins under study or
retrieved in a particular experimental environment is not comparable with the bigger
number of protein features, so that reduction of data through the identification of the
relevant feature becomes essential to discern the most important ones [29].

Feature extraction methods, instead, are based on the idea of transforming the vari-
ables set into another set of reduced size. Using a simple and general mathematical
formulation, we have:

[Y1, . . . , Ym]
T = f

(
[X1, . . . , Xn]

T
)

, m� n (2)
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with the output set [Y1, . . . ,Ym] a completely different set of features from the input
[X1, . . . ,Xn], but achieved from them. Common feature-extraction methods are based on
linear transformation, i.e.,

Y = AX, m� n (3)

where the variables are transformed losing their original meaning to get new characteristics
that may reveal some hidden structure in data.

Among these methods, PCA is based on the transformation in a space where variables
are all uncorrelated each other and sorted by decreasing variance. Independent Component
Analysis (ICA), instead, transforms variables in a space where they are all independent
each other and maximally not-Gaussian, apart for one, which represents the unexplained
part of the model, typically noise. Other methods, such as MCR, solve the problem by
applying more complicated conditions such as the positivity of the values in the new set of
variables or similar, so that the physical meaning of the data is still preserved. A critical
review of dimensionality reduction feature extraction methods is in Section 2.2.

PCA and MCR have an important application in solving mixing problems or in
decomposing powder diffraction profiles of mixtures in pure-phase components. In such
decomposition, the first principal components (or contributions, in MCR terminology)
usually include the pure-phase profiles or have a high correlation with these.

2.2. Dimensionality Reduction Methods

In Section 2.1, the importance of applying dimensionality reduction to simplify the
problem view and reveal underlying model within data was underlined. One of the most
common method to make dimensionality reduction is principal component analysis.

PCA is a method to decompose a data matrix finding new variables orthogonal each
other (i.e., uncorrelated), while preserving the maximum variance (see Figure 2). These
new uncorrelated variables are named principal components (PCs).
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Figure 2. A set of data (blue dots) of three variables is represented into a 3D space. Data are mostly
spread on the orange plane, with little departure from it. Principle component analysis (PCA)
identifies the plane and the directions of maximum variability of data within it.

PCA is then an orthogonal linear transformation that transforms data from the current
space of variables to a new space of the same dimension (in this sense, no reduction
of dimension is applied), but so that the greatest variance lies on the first coordinate,
the second greatest variance on the second coordinate and so on. From a mathematical
viewpoint, said X the dataset, of size N × P (N being the number of samples, P that of the
variates), PCA decomposes it so that

X = TW
′

(4)
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with T (of size N × P) the matrix of the principal components (called also scores), which are
the transformed variable values corresponding to each sample and with W (of size P × P)
the matrix of the loadings, corresponding to the weights by which each original variable
must be multiplied to get the component scores. The matrix W is composed by orthogonal
columns that are the eigenvectors of the diagonalization [30] of the sample covariance
matrix of X:

X
′
X = W

′
ΛW (5)

In Equation (5), Λ is a diagonal matrix containing the eigenvalues of the sample
covariance matrix of X, i.e., X

′
X. Since a covariance matrix is always semi-definite positive,

the eigenvalues are all real and positive or null and correspond to the explained variance
of each principal component. The main idea behind PCA is that in making such decompo-
sition, often occurs that not all the directions are equally important. Rather, the number of
directions preserving most of the explained variance (i.e., energy) of the data are few, often
the first 1–3 principal components (PC). Dimensionality reduction is then a lossy process,
in which data are reconstructed by an acceptable approximation that uses just the first few
principal components, while the remaining are neglected:

X̂ ≈ T(1:s)W
′
(1:s) (6)

With s the retained components (i.e., the first s columns of both the matrices) and s� P.
Diagonalization of the covariance matrix of data is the heart of PCA and it is achieved

by resorting to singular value decomposition (SVD), a basic methodology in linear algebra.
SVD should not be confused with PCA, the main difference being the meaning given
to the results. In SVD the input matrix is decomposed into the product a left matrix of
eigenvectors U, a diagonal matrix of eigenvalues Λ and a right matrix of eigenvectors V,
reading the decomposition from left to right:

Y = UΛV
′

(7)

SVD may provide decomposition also of rectangular matrices. PCA, instead, uses
SVD for diagonalization of the data covariance matrix X

′
X, which is square and semi-

definite positive. Therefore, left and right eigenvector matrices are the same, and the
diagonal matrix is square and with real and positive value included. The choice of the most
important eigenvalues allows the choice of the components to retain, a step that is missing
from SVD meaning.

Factor analysis is a method based on the same concept of PCA: a dataset is explained
by a linear combination of hidden factors, which are uncorrelated each other, apart for a
residual error:

X = l1F1 + . . . lnFn + ε (8)

FA is a more elaborated version of PCA in which factors are supposed (usually) to be
known in number and, although orthogonal each other (as in PCA), they can be achieved
adopting external conditions to the problem. A common way to extract factors in FA is by
using a depletion method in which the dataset X is subjected to an iterative extraction of
factors that can be analyzed time by time: X(k) = X(k−1) − lkFk. In FA, there is the clear
intent to find physical causes of the model in the linear combination. For this reason, their
number is fixed and independency of the factors with the residual ε is imposed too. It can
be considered, then, a supervised deconvolution of original dataset in which independent
and fixed number of factors must be found. PCA, instead, explores uncorrelated directions
without any intent of fixing the number of the most important ones.

FA has been applied as an alternative to PCA in reducing the number of parameters
and various structural descriptors for different molecules in chromatographic datasets [31].
Moreover, developments of the original concepts have been achieved by introducing a
certain degree of complexity such as the shifting of factors [32] (factors can have a certain
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degree of misalignment in the time direction, such as in the time profile for X-ray powder
diffraction data) or the shifting and warping (i.e., a time stretching) [33].

Exploring more complete linear decomposition methods, MCR [8] has found some
success as a family of methods that solve the mixture analysis problem, i.e., the problem
of finding the pure-phase contribution and the amount of mixing into a data matrix
including only the mixed measurements. A typical paradigm for MCR, as well as for PCA,
is represented by spectroscopic or X-ray diffraction data. In this context, each row of the
data matrix represents a different profile, where the columns are the spectral channels or
diffraction/scattering angles, and the different rows are the different spectra or profiles
recorded during the change of an external condition during time.

In MCR analysis, the dataset is described as the contribution coming from reference
components (or profiles), weighted by coefficients that vary their action through time:

Xi ≈ ciS
′
i (9)

With ci the vector of weights (the profile of change of the i-th profile through time)
and Si the pure-phase i-th reference profile. The approximation sign is since MCR leaves
some degree of uncertainty in the model. In a compact form we have:

X = CS
′
+ E (10)

MCR shares the same mathematical model of PCA, apart for the inclusion of a residual
contribution E that represents the part of the model we give up explaining. The algorithm
that solves the mixture problem in the MCR approach, however, is quite different from
the one used in PCA. While PCA is mainly based on the singular value decomposition
(i.e., basically the diagonalization of its sample covariance matrix), MCR is based on the
alternating least square (ALS) algorithm, an iterative method that tries to solve conditioned
minimum square problems of the form:

{C, S}opt = argminC,S

{
∑
i,j

(
xi,j − ciS

′
j

)2
+ λ

(
∑

i
‖ ci ‖2 +∑

j
‖ sj ‖2

)}
(11)

The previous problem is a least square problem with a regularization term properly
weighted by a Lagrange parameter λ. The regularization term, quite common in opti-
mization problems, is used to drive the solution so that it owns some characteristics. The
L2-norm of the columns of S or C, as reported in the Equation (11), is used to minimize
the energy of the residual and it is the most common way to solve ALS. However, other
regularizations exist, such as L1-norm to get more sparse solutions [34] or imposing pos-
itivity of the elements of S and C. Usually, the solution to Equation (11) is provided by
iterative methods, where initial guesses of the decomposition matrices S or C are substi-
tuted iteratively by alternating the solution of the least-square problem and the application
of the constraints. In MCR, the condition of positivity of elements in both S or C is funda-
mental to give physical meaning to matrices that represent profile intensity and mixing
amounts, respectively.

The MCR solution does not provide the direction of maximum variability as PCA.
PCA makes no assumption on data; the principal components and particularly the first one,
try to catch the main trend of variability through time (or samples). MCR imposes external
conditions (such as the positivity), it is more powerful, but also more computationally
intensive. Moreover, for quite complicated data structures, such as the ones modeling the
evolution of crystalline phases through time [35,36], it could be quite difficult to impose
constraints into the regularization term, making the iterative search unstable if not properly
set [37,38]. Another important difference between MCR and PCA is in the model selection:
in MCR the number of latent variables (i.e., the number of profiles in which decomposition
must be done) must be known and set in advance; in PCA, instead, while there are
some criterion of selection of the number of significative PC such as the Malinowski
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indicator function (MIF) [39,40] or the average eigenvalue criterion (AEC) [41,42], it can
also be inferred by simply looking at the trend of the eigenvalues, which is typical of an
unsupervised approach. The most informative principal components are the ones with
highest values.

For simple mathematical models, it will be shown in practical cases taken from X-ray
diffraction that PCA is able to optimally identify the components without external con-
straints. In other cases, when the model is more complicated, we successfully experimented
a variation of PCA called orthogonal constrained component rotation (OCCR) [43]. In
OCCR, a post-processing is applied after PCA aimed at revealing the directions of the first
few principal components that can satisfy external constraints, given by the model. The
components, this way, are no longer required to keep the orthogonality. OCCR is then
an optimization method in which the selected principal components of the model are let
free to explore their subspace until a condition imposed by the data model is optimized.
OCCR has been shown to give results that are better than traditional PCA, even when PCA
produces already satisfactory results. A practical example (see Section 3) is the decomposi-
tion of the MED dataset in pure-phase profiles, where PCA scores, proportional to profiles,
may be related each other with specific equations.

Smoothed principal component analysis or (SPCA) is a modification of common PCA
suited for complex data matrices coming from single or multi-technique approaches where
the time is a variable, in which sampling is a continuous, such as in situ experiment or
kinetic studies. The ratio behind the algorithm proposed by Silvermann [44] is that data
without noise should be smooth. For this reason, in continuous data, such as profiles
or time-resolved data, the eigenvector that describes the variance of data should be also
smooth [45]. Within these assumptions, a function called “roughness function” is inserted
within the PCA algorithm for searching the eigenvectors along the directions of maximum
variance. The aim of the procedure is reducing the noise in the data by promoting the
smoothness between the eigenvectors and discouraging more discrete and less continuous
data. SPCA had been successfully applied to crystallographic data in solution-mediated
kinetic studies of polymorphs, such as L-glutamic acid from α to β form by Dharmayat
et al. [46] or p-Aminobenzoic acid from α to β form by Turner and colleagues [47].

3. Modulated Enhanced Diffraction

The Modulated Enhanced Diffraction (MED) technique has been conceived to achieve
chemical selectivity in X-ray diffraction. Series of measurements from in situ or operando
X-ray diffraction experiments, where the sample is subjected to a varying external stimulus,
can be processed by MA to extract information about active atoms, i.e., atoms of the sample
responding to the applied stimulus. This approach has the great advantage of not requiring
preliminary structural information, so it can be applied to complex systems, such as
composite materials, quasi-amorphous samples, multi-component solid-state processes,
with the aim to characterize the (simpler) sub-structure comprising active atoms. The main
steps involved in a MED experiment are sketched in Figure 3. During data collection of
X-ray diffraction data, the crystal sample is perturbed by applying an external stimulus
that can be controlled in its shape and duration. The stimulus determines a variation
of structural parameters of the crystallized molecule and/or of the crystal lattice itself.
These changes represent the response of the crystal, which is usually unknown. Repeated
X-ray diffraction measurements allow to collect diffraction patterns at different times, thus
sampling the effect of the external perturbation. In principle, the set of collected diffraction
patterns can be used to detect the diffraction response to the stimulus. Offline data analysis
based on MA methods must be applied to implement the deconvolution step, i.e., to process
time-dependent diffraction intensities Ih measured for each reflection h to recover the time
evolution of the parameters for each atom j of the crystal structure, such as occupancy
(nj), atomic scattering factor (fj) and atomic position (rj). It is worth noting that in X-ray
diffraction the measured intensities (Ih), representing the detected variable, depend on the
square of the structure factors Fh, embedding the actual response of the system.
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which responds by changing the crystal structural parameters in unknown way. Repeated X-ray diffraction measurements
allow detecting the diffraction response, which can be properly analyzed through an offline process called deconvolution,
to determine the variations in main structural parameters.

Applications of MED are twofold: on one hand, the active atoms sub-structure can be
recovered, so disclosing information at atomic scale about the part of the system changing
with the stimulus, on the other hand the kinetic of changes occurring in the sample can be
immediately captured, even ignoring the nature of such changes.

To achieve both these goals, MA tools have been developed and successfully applied
to crystallographic case studies. These methods, which will be surveyed in the next
paragraph, implement the so-called data deconvolution, i.e., they allow extracting a single
MED profile out of the data matrix comprising the set of measurements.

Deconvolution Methods

The first deconvolution method applied to MED technique was sensitive phase de-
tection (SPD). SPD is a MA approach widely applied since decades to spectroscopic data
(modulation enhanced spectroscopy—MES), which can be applied to systems linearly
responding to periodic stimuli. SPD projects the system response from time domain
to phase domain by using a reference periodic-typically sinusoidal-signal, through the
following equation:

p(x,ϕ) =
2
N

N

∑
i=0

yi(x)sin
(

2Kπ

N
i +ϕ

)
(12)

where ϕ is the SPD phase angle, yi(x) are the n measurements collected at the time i, and k is
the order of the demodulation. The variable x can be the angular variable 2ϑ in case of X-ray
powder diffraction measurements or the reflection h in case of single-crystal diffraction
data. Equation (12) represents a demodulation in the frequency space of the system response,
collected in the time space. Demodulation at k = 1, i.e., at the lower frequency of the
reference signal, allows the extraction of kinetic features, involving both active and silent
atoms; demodulation at k = 2, i.e., at double the lower frequency of the reference signal,
allow to single out contribution from only active atoms. This was demonstrated in [35]
and comes from the unique property of X-ray diffraction that the measured intensities Ih
depends on the square of the structure factors Fh. A pictorial way to deduce this property
is given in Figure 4: silent and active atoms respond in a different way to the external
stimulus applied to the crystal. This can be parameterized by assigning different time
dependences to their structure factors, respectively FS and FA. For sake of simplicity, we
can assume that silent atoms do not respond at all to the stimulus, thus FS remain constant
during the experiment, while active atoms respond elastically, thus FA has the same time
dependence of that of the stimulus applied (supposed sinusoidal in Figure 4). In these
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hypotheses, the diffraction response can be divided in three terms, the first being constant,
the second having the same time dependence of the stimulus, the third having a doubled
frequency with respect to that of the stimulus and representing the contribution of active
atoms only. PSD performed incredibly well for the first case study considered, where the
adsorption of Xe atoms in an MFI zeolite was monitored in situ by X-ray diffraction, by
using pressure or temperature variations as external stimulus [48,49]. However, it was
immediately clear that this approach had very limited applications, since very few systems,
only in particular conditions, have a linear response -mandatory to apply PSD for the
demodulation- to periodic stimuli, and it is easier to apply non-periodic stimuli.
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Figure 4. Pictorial demonstration of the possibility to extract information of active atoms only in a MED experiment. The
crystal system is divided in silent (S) and active (A) atoms, depending on how they respond to an external stimulus applied.
The diffraction response measured on the X-ray detector can be divided in two contributions from S and A atoms. This give
rise to three terms, the first being constant in time, the second having the same time-dependence of the stimulus, the third
varying with double the frequency of the stimulus and representing the contribution of active atoms only.

A more general approach would allow coping with non-periodic stimuli and non-
linear system responses. To this aim, PCA was applied to MED data, with the underlying
idea that in simple cases, the first principal component (PC1) should capture changes due
to active and silent atoms, the second principal component (PC2) should instead capture
changes due to active atoms only. In fact, if the time-dependence of the contribution from
active atoms can be separated, i.e., FA(t) = FA ∗ g(t), then the MED demodulation shown
in Figure 4 can be written in a matrix form:

Ih =
(

1 g(t) g(t)2
)
∗

 FS
2

2FAFScos(ϕA −ϕS)
FA

2

 (13)

By comparing Equation (13) with Equation (12) it can be inferred that PCA scores
should capture the time-dependence of the stimulus, while PCA loadings should cap-
ture the dependence from the 2ϑ or h variable of the diffraction pattern. In particu-
lar, we expect two significant principal component, the first having T1 = g(t) and
W1 = 2FAFScos(ϕA −ϕS), the second having T2 = g(t)2 and W2 = FA

2. Notably, constant
terms are excluded by PCA processing, since in PCA it is assumed zero-mean of the data
matrix columns. An example of deconvolution carried out by PCA, which is more properly
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referred to as decomposition of the system response, is shown in Figure 5, considering in
situ X-ray powder diffraction data. The PC1 scores reproduce the time dependence of
the applied stimulus, whereas PC2 scores have a doubled frequency. PC1 loadings have
positive and negative peaks, depending on the values of the phase angles ϕA and ϕS, while
PC2 loadings have only positive peaks, representing the diffraction pattern from active
atoms only.
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In this framework, a rationale can be figured out, where the PC1 term is like the k = 1
PSD term and the PC2 term is like the k = 2 PSD term. This correspondence is strict for
systems responding linearly to periodic stimuli, while for more general systems PCA is
the only way to perform decomposition. This new approach was successfully applied to
different case studies [50,51] outperforming the PSD method.

Another important advancement in MED development was to introduce adapted
variants of existing MA methods. In fact, PCA decomposition cannot be accomplished
as outlined above for complex systems, where several parts (sub-structures) vary with
different time trends, each of them captured by specific components. A signature for failure
of the standard PCA approach is a high number of principal components describing non-
negligible data variability, and failure to satisfy two conditions for PC1 and PC2, descending
from the above-mentioned squared dependence of measured intensity from structure
factors. In the standard PCA case, PC2 loadings, which describe the data variability across
reflections (or 2ϑ axis in case of powder samples), are expected to be positive, given the
proportionality with squared structure factors of only active atoms. Moreover, PC1 and
PC2 scores, which describe the data variability across measurements, are expected to follow
the relation:

T2 = (T1)
2 (14)

as changes for active atoms vary with a frequency doubled with respect to that of the
stimulus.

A MA approach adapted to MED analysis has been developed, where constraints on
PC2 loadings and on PC1/PC2 scores according to Equation (14) are included in the PCA
decomposition. This gave rise to a new MA method, called orthogonal constrained compo-
nent rotation (OCCR), which aims at finding the best rotations of the principal components
determined by PCA, driven by figure of merits based on the two MED constraints. The
OCCR approach allows overcoming the main limitation of PCA, i.e., to blind searching
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components that are mutually orthogonal. It has been successfully applied to characterize
water-splitting processes catalyzed by spinel compounds [43] or to locate Xe atoms in the
MFI zeolite to an unprecedented precision [50].

A further advancement in the route of routinely applying PCA to MED was done
in [51,52], where the output of PCA was analytically derived, and expected contribution to
scores and loadings to specific changes in crystallographic parameters have been listed.
This would make easier the interpretation of the results of PCA decomposition.

4. Applications in Powder X-ray Diffraction

X-ray powder diffraction (XRPD) offers the advantage of very fast measurements,
as many crystals are in diffracting orientation under the X-ray beam at the same time.
A complete diffraction pattern at reasonable statistics can be acquired in seconds, even
with lab equipment and such high measurement rates enable the possibility to perform
in situ experiments, where repeated measurements are made on the same sample, while
varying some external variable, the most simple one being time [53]. On the other hand,
the contemporary diffraction from many crystals makes it difficult to retrieve structural
information about the average crystal structure by using phasing methods. In this context,
MA has great potential, since it allows extracting relevant information from raw data,
which could be used to carry out the crystal structure determination process on subset of
atoms, or to characterize the system under study without any prior structural knowledge.
Some specific applications of MA on powder X-ray diffraction are reviewed in the following
sections. The two main fields of applications are the extraction of dynamic data (Section 4.1)
in a temporal gradient and qualitative and quantitative analysis (Section 4.2) in presence of
concentration gradients.

4.1. Kinetic Studies by Single or Multi-Probe Experiments

The advent of MA has also revolutionized kinetic studies based on in situ powder
X-ray diffraction measurements. Several works have used MA to extract efficiently the
reaction coordinate from raw measurements [54–56]. Moreover, in a recent study of
solid-state reactions of organic compounds, the classical approach of fitting the reaction
coordinate by several kinetic models has been replaced by a new approach, which embeds
kinetic models within the PCA decomposition [57,58]. The discrimination of the best
kinetic model is enhanced by the fact that it produces both the best estimate of the reaction
coordinate and the best agreement with the theoretical model. MCR-ALS is another
decomposition method that had been employed in the last few years in several kinetic
studies on chemical reactions [59–61].

MA is even more powerful when applied to datasets acquired in multi-technique
experiments, where X-ray diffraction is complemented by one or more other techniques.
The MA approach allows, in these cases, to extract at best the information by the different
instruments, probing complementary features. In fact, the complete characterization of
an evolving system is nowadays achieved by complex in situ experiments that adopt
multi-probe measurements, where X-ray measurements are combined with spectroscopic
probes, such as Raman FT-IR or UV-vis spectroscopy. In this context, covariance maps have
been used to identify correlated features present in diffraction and spectroscopic profiles.
Examples include investigations of temperature-induced phase changes in spin crossover
materials by XRPD/Raman [36] perovskites by combining XRPD and pair distribution
function (PDF) measurements [62], characterization of hybrid composite material known as
Maya Blue performed by XRPD/UV-Vis [63] and metabolite-crystalline phase correlation in
wine leaves by XRPD coupled with mass spectrometry and nuclear magnetic resonance [64].

To highlight the potentialities of the application of PCA to unravel dynamics from
in situ X-ray diffraction studies, a recently published case study [52] is briefly described.
In this paper, the sedimentation of barium sulfate additive inside an oligomeric mixture
was studied during polymerization by repeated XRPD measurements with a scan rate of
1◦/min. The kinetic behavior of the sedimentation process was investigated by processing
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the high number (150) of XRPD patterns with PCA, without using any prior structural
knowledge. The trend in data can hardly be observed by visual inspection of the data
matrix (Figure 6a), as the peak intensity does not change with a clear trend and their
positions drift to lower 2ϑ values during the data collection. PCA processes the whole
data matrix in seconds, obtaining a PC that explains the 89% of the system’s variance
(Figure 6b). The loadings associated to this PC resemble the first derivative of an XRPD
profile (Figure 6c), suggesting that this PC captured the changes in data due to barite peak
shift toward lower 2ϑ values. In fact, PCA, looking for the maximum variance in the data,
basically extract from the data and highlight the variations of the signal through time.
PCA scores, which characterize in the time domain the variations in data highlighted by
loadings, indicate a decreasing trend (Figure 6d). In fact, the peak shift is strongly evident
at the beginning of the reaction, with an asymptotic trend at the end of the experiment.
Scores in Figure 6d can thus be interpreted as the reaction coordinate of the sedimentation
process. In ref. [52], the comparison of PCA scores with the zero-error obtained by Rietveld
refinement confirmed that the dynamic trend extracted by PCA is consistent with that
derived from the traditional approach. However, the time for data processing (few seconds
with MA, few hours with Rietveld Refinement) makes PCA a very useful complementary
tool to extract dynamic and kinetic data while executing the experiment, to check data
quality and monitor the results without a priori information.
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4.2. Qualitative and Quantitative Studies

Having prompt hints about main trends in data is beneficial in many applications and
can facilitate subsequent structural analysis. Qualitative and/or quantitative analysis on
sets from X-ray powder diffraction profiles can be achieved by both FA [65,66] and PCA,
particularly from the score values of the main components. This approach is common
in the -omics sciences in the analytical chemistry field. Euclidean distances in PC score
plots can be calculated to obtain also a semi-quantitative estimation between groups or
clusters [67,68]. In fact, the arrangement of representative points in the scores plot can be
used to guess the composition of the mixture. An example of application of this approach
is given in Figure 7. Figure 7a reports the original X-ray diffraction data collected on pure
phases (A, B, C), the binary mixtures (AB, BC, AC) 50:50 weight and ternary mixture ABC
prepared by properly mixing calcium carbonate (A), acetylsalicylic acid (B) and sodium
citrate (C). PCA analysis was carried out and the corresponding PC scores (Figure 7b) and
loadings (Figure 7c) are reported. It is evident that the PCA scores are sensible to %weight
of the samples since they form a triangle with the monophasic datasets (A, B, C) at the
vertices, the binary mixtures (AB, BC, AC) in the middle of the edges and the ternary
mixture ABC in its center. All the possible mixtures are within the triangle, in the typical
representation of a ternary mixture experimental domain. PCA recognizes the single-phase
contributions by the PC loadings, containing the XRPD pattern features, highlighted in
Figure 7c. PC1 loadings have positive peaks corresponding to phases B and C, and negative
ones to phase A. PC2 loadings show positive peaks corresponding to phase B and negative
ones to phase C, while phase A has a very moderate negative contribution, being located
close to 0 along the PC2 axis in Figure 7b.

PCA scores in Figure 7b can be exploited to perform a semi-quantitative analysis,
since the above described dependence of the topology of data points in the scores plot
is related to the composition. The procedure is easy for binary and ternary mixtures
where a 2D plot (Figure 7b) can be exploited to calculate Euclidean distances (Figure 7d)
and thus compositions (Table 1). For instance, the A phase amount within the ABC
mixture, identified by the F score in Figure 7d, is given by the ratio AJ/AC. Given any
score in the triangle, the corresponding phase amounts can be calculated accordingly.
The comparison between compositions (Table 1) from PC scores (not requiring a priori
information) and multilinear regression, exploiting the knowledge of profiles of the pure
phases, is impressive and very promising for wide applications in quality control where
solid mixtures are involved. Quantification errors can occur if data are not perfectly
positioned in the triangle, such as the AC mixture in Figure 7b that is slightly out of the
polygon. In such case, the sum of the estimated phase amounts can exceed or in general be
different from 1 as a result of the unrealistic negative quantification of the third phase B.
Deviations from unity of the sum of estimated phase amounts can be used as indicator of
systematic errors, due for example to the presence of amorphous content in the samples,
phases with different X-ray absorption properties or missing phases in the model [69].
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X-ray powder diffraction data by ternary mixtures. Data points A, B, and C correspond to powder diffraction profiles from
monophasic mixtures, data points AB, AC and BC to binary mixtures and ABC to a mixture containing an equal amount of
the three crystal phases.

Table 1. Results of the quantification of the phases in polycrystalline mixtures represented in Figure 6
by PCA scores and multilinear regression.

Sample
Geometric Estimation from PC Scores Regression

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

0 1.00 0.00 0.00 1.000 0.000 0.000
1 0.00 1.00 0.00 0.000 1.000 0.000
2 0.00 0.00 1.00 0.000 0.000 1.000
3 0.53 0.49 0.00 0.538 0.462 0.000
4 0.58 0.00 0.53 0.507 0.000 0.493
5 0.00 0.51 0.49 0.000 0.522 0.478
6 0.45 0.28 0.27 0.425 0.301 0.274

The approach can be extended to more than 3 phases. With four phases, the analysis
can still be carried out graphically, even if a 3D plot is necessary, with increased difficulties
in its representation and analysis. The graphical approach is of course impossible to
represent without simplification or projections with 5 or more phases. In these cases,
a non-graphic and general matrix-based approach can be used, as proposed by Cornell [70].
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Quantitative analysis from raw data (Figure 6a) can be carried out exploiting a different
approach, i.e., using least-squares calculations. Each individual experimental pattern is
fitted by using a linear regression model:

y(x) =
N

∑
i=1

aiyi(x) + b(x) (15)

where i = 1, . . . , n runs for all the crystal phases present in the sample, yi(x) is the
experimental profiles of the i-th pure crystal phases and b(x) is the background estimated
from the experimental pattern.

The weight fraction can be derived from the coefficients ai estimated from the fitting
procedures. This approach is followed by the RootProf program, where it can be also
used in combination with a preliminary PCA step aiming at filtering the experimental
patterns to highlight their common properties [69]. Results obtained by the PCA + least
squares approach have been compared with those obtained by supervised analysis based
on PLS for a case study of quaternary carbamazepine-saccharin mixtures monitored by
X-ray diffraction and infrared spectroscopy [71].

As a final note concerning recent developments in this field, the deep-learning tech-
nique based on Convolutional Neural Network (CNN) models has been applied for phase
identification in multiphase inorganic compounds [72]. The network has been trained
using synthetic XRPD patterns, and the approach has been validated on real experimental
XRPD data, showing an accuracy of nearly 100% for phase identification and 86% for
phase-fraction quantification. The drawback of this approach is the large computational
effort necessary for preliminary operations. In fact, a training set of more than 1.5 × 106

synthetic XRPD profiles was necessary, even for a limited chemical space of 170 inorganic
compounds belonging to the Sr-Li-Al-O quaternary compositional pool used in ref [72].

5. Applications in Single-Crystal X-ray Diffraction

Single-crystal diffraction data are much more informative than X-ray powder diffrac-
tion data as highlighted by Conterosito et al. [52], as they contain information about the
intensity of each diffraction direction (reflection), which is usually enough to obtain the
average crystal structure by phasing methods. By contrast, the measurement is longer than
for powder X-ray diffraction, since the crystal must be rotated during the measurement
to obtain diffraction conditions from all reflections. For this reason, radiation damage
issues can be very important for single-crystal X-ray diffraction, and in fact this prevents
carrying out in situ studies on radiation-sensitive molecules, as often observed in organic
and bio-macromolecular systems. MA can still be useful for single crystal diffraction data,
since it helps in solving specific aspects that will be highlighted in the following paragraphs.
Regarding MED applications, it is worth mentioning that single-crystal X-ray diffraction
has an intrinsic advantage over powder X-ray diffraction, related to the effect of lattice
distortions during measurements: in a powder diffraction pattern a change of crystal cell
parameters manifest itself in a shift in peak positions, which is usually combined with
changes in peak shape and height due to variations of the average crystal structure. The
combined effect of lattice distortions and structural changes makes difficult to interpret
MA results. In a single-crystal pattern, the intensity of individual reflections is not affected
by crystal lattice distortions, and crystal cell parameters are determined by indexing indi-
vidual patterns measured at different times, so that they are not convoluted with structural
variations.

5.1. Multivariate Approaches to Solve the Phase Problem

As noticed by Pannu et al. [73], multivariate distributions emerged in crystallography
with the milestone work by Hauptman and Karle [74], dealing with the phase problem
solution. The phase problem is “multivariate” by definition because the phases of the
reflections, needed to solve a crystal structure, are in general complex numbers depending
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on the coordinate of all atoms. In other words, the atomic positions are the random
variables related to the multivariate normal distribution of structure factors. After these
considerations, statistical methods like joint probability distribution functions were of
paramount importance in crystallography in general [75] developing direct methods,
used for decades, until today, for crystal structure solution [76]. Despite these premises,
the methods more diffused in analytical chemistry such as PCA were rarely exploited to
solve the phase problems. The more closely related approach is that of maximum likelihood,
exploited to carry out the structure solution and heavy-atom refinement. In the framework
of the isomorphous replacement approach [77] the native and derivative structure factors
are all highly correlated: to eliminate this correlation, covariance is minimized [73,78,79].
PCA in a stricter sense was used to monitor protein dynamics in theoretical molecular
dynamics [80] and in experimental in situ SAXS studies [81] and recently in in situ single
crystal diffraction data [51]. Even if much less applications of PCA to in situ X-ray single
crystal with respect to powder diffraction data can be found, a huge potential of application
also in in situ single crystal diffraction is envisaged in the next decades.

5.2. Merging of Single-Crystal Datasets

A common problem in protein crystallography is to combine X-ray diffraction datasets
taken from different crystals grown in the same conditions. This operation is required since
only partial datasets can be taken from single crystals before they get damaged by X-ray
irradiation. Thus, a complete dataset (sampling the whole crystal lattice in the reciprocal
space) can be recovered by merging partial datasets from different crystals. However,
this can be only accomplished if merged crystals have similar properties, i.e., comparable
crystal cell dimensions and average crystal structures. To select such crystals, clustering
protocols have been implemented to identify isomorphous clusters that may be scaled and
merged to form a more complete multi-crystal dataset [82,83]. MA applications in this field
have a great potential, since protein crystallography experiments at X-ray free-electron laser
(XFEL) sources are even more demanding in terms of dataset merging. Here thousands to
millions of partial datasets from very tiny crystals are acquired in few seconds, which needs
to be efficiently merged before further processing may get structural information [84].

5.3. Crystal Monitoring

Crystal recognition is a key step in high-throughput Protein Crystallography initia-
tives, where high-throughput crystallization screening is implemented, which demand for
the systematic analysis of crystallization results. 42 diffraction datasets related to protein
crystals grown under diffusion mass-transport controlled regime have been analyzed by
PCA to determine possible trends in quality indicators [85]. In reference [86] neural net-
works were used to assess crystal quality directly from diffraction images, i.e., without
using quality indicators. More recently, CNN has been used to efficiently and automati-
cally classify crystallization outputs by processing optical images [87]. The training has
been accomplished by using nearly half a million of experiments across a large range of
conditions stored in the framework of the machine recognition of crystallization outcomes
(MARCO) initiative from different proteins and crystallization conditions. The resulting
machine-learning scheme was able to recapitulate the labels of more than 94% of a test
set, which represents a benchmark for actual attainable accuracy for uncured datasets.
The MA performances could be enhanced by complementing optical microscopy with
UV measurements or second-order nonlinear optical imaging of chiral crystals (SONICC),
or by using time course information, as each crystallization experiment records a series
of images taken over times [88]. Moreover, the possibility of classifying crystallization
images in terms of crystals, precipitate and clear drop can be used to identify pathways
for optimization [89]. The application of this approach to large libraries of historical data
may therefore reveal patterns that guide future crystallization strategies, including novel
chemical screens and mutagenesis programs.
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6. Conclusions and Perspectives

Multivariate methods in general and PCA approach in particular are widely used
in analytical chemistry, but less diffused in materials science and rarely used in X-ray
diffraction, even if their possible applications have been envisaged already in the 50s
of the last century [74], in relation to the phase problem solution. More systematic MA
applications in Crystallography started appearing in the literature since about 2000 on and
in the last two decades some groups started working with a more systematic approach
to explore potentialities and limitations of multivariate methods applications in crystal-
lography, focusing the efforts mainly in powder diffraction data analysis. Among the
various approaches, multilinear regression and PCA are the main methods showing huge
potentialities in this context.

Two main fields of application are envisaged: e.g., fast on-site kinetic analysis and
qualitative/semi-quantitative analysis from in situ X-ray powder diffraction data. In details,
MA has the ability to extract the dynamics in time series (i.e., in measurements monitor-
ing the time evolution of a crystal system) or qualitative and quantitative information in
concentration gradients (i.e., in samples showing different composition). Typically, the pre-
sented methods have the advantages, with respect to traditional methods, of needing no or
much less a priori information about the crystal structure and being so efficient and fast to
be applied on site during experiment execution. The main drawbacks of MA approaches
lie on the fact that they exploit data-driven methods and do not claim to provide physical
meaning to the obtained results. Outputs from PCA, MCR or FA, if not properly driven or
interpreted may lead to wrong or unreasonable results.

Applications in single crystal diffraction started appearing in the last years and huge
potentialities are foreseen, especially in serial crystallography experiments where the data
amount is very large and unfeasible for the traditional approaches. Crystal monitoring
and dataset merging are the more promising approaches in single crystal diffraction,
where huge potentialities are envisaged. Kinetic analysis in singles crystal diffraction is
also envisaged as a possible breakthrough field of applications, since the evolution of
source and detectors suggest for the next decade a huge growth, as seen for in situ powder
diffraction in the last decades of the 20th century. MA methods can for sure play a key role,
because the huge amount of data make the traditional approaches unfeasible.

This review is centered on PCA, MCR, FA and PSD since they are the approaches
employed in X-ray diffraction data analysis in the last decade. However, also other MA
approaches have many potentialities in the field and wait to be tested on X-ray diffraction
data. Statistical methods have revolutionized the field in the past, producing disrupting
advances in the crystal structure determination of small molecules and biological macro-
molecules. We expect to be close to a similar turning point regarding applications of
artificial intelligence to solve complex problems related to basic crystallography, such as
merging thousands of datasets from different crystals or finding phase values to diffrac-
tion amplitudes starting from random values. Neural networks have a great potential to
tackle these problems and accomplish the non-linear deconvolution of multivariate data,
provided a proper training is given.

The spread of use of MA methods is intimately connected with availability of software
with friendly graphic interfaces available to scientific community. Programs like Root-
Prof [90] or MCR-ALS 2.0 toolbox [91] have contributed to this goal, making MA available
to scientists carrying out X-ray diffraction studies.

The possibility of exploiting automated processes—highly demanding in terms of
computational resources, but very fast and with minimal user intervention—is highly
attractive both for industrial applications, where X-ray diffraction is used for quality
control and monitoring of production processes, and in fundamental research applications,
where extremely fast data analysis tools are required to cope with very bright X-ray sources
and detectors with fast readouts.
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