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Abstract: We examine the effect of rough surfaces on crystal nucleation by means of kinetic Monte
Carlo simulations. Our work makes use of three-dimensional kMC models, explicit representation of
transport in solution and rough surfaces modeled as randomly varying height fluctuations (rough-
ness) with exponentially decaying correlation length (topology). We use Forward-Flux Sampling to
determine the nucleation rate for crystallization for surfaces of different roughness and topology and
show that the effect on crystallization is a complex interplay between the two. For surfaces with low
roughness, small clusters form on the surface but as clusters become larger they are increasingly likely
to be found in the bulk solution while rougher surfaces eventually favor heterogeneous nucleation
on the surface. In both cases, the rough surface raises the local supersaturation in the solution thus
leading to another mechanism of enhanced nucleation rate.

Keywords: crystallization; heterogeneous nucleation; rough surface

1. Introduction

Crystallization is of broad importance in many areas of science and plays a key role
in numerous industrial processes such as the production of pharmaceuticals. However,
many molecules of interest are difficult to crystallize, particularly macromolecules such
as proteins and monoclonal antibodies. This has long motivated the search for means to
enhance crystallization via the use of seeds [1] and substrates, or surfaces, References [2,3]
that can induce heterogeneous nucleation of the crystalline phase. Important theoretical
insight was gained from the seminal study of Page and Sear [4] showing that porous
substrates—with pores many times the size of a molecule—enhance crystallization more
than flat substrates (see also [5]). This work was extended to rough substrates in which
the critical nucleus is much larger than the length scale of the substrate inhomogeneity [6].
Experimental work has also demonstrated the value of rough substrates as nucleants [7,8]
while the importance of adsorption of biomolecules such as proteins on rough sub-
strates is important in applications such as bioceramics [9] and in controlling the stability
and safety of proteins in pharmaceutical formulations [10]. Despite such motivation,
existing theoretical studies have severe limitations that make their translation to real sys-
tems unclear. Our goal here is to revisit the problem of rough substrates using similar,
but more realistic, techniques.

In the simulation studies mentioned above, standard two-dimensional Ising models
were used in which space is divided into a square lattice and each lattice site possesses a
label or “spin” that can take on two values: e.g., “liquid” or “solid”. Two adjacent cells
with same label contribute an energy −J < 0 to the system energy while two with opposite
labels contribute +J > 0 to the energy. Supersaturation is introduced by a contribution of
−h < 0 for each cell labeled with the nucleating phase (say, the solid phase) thus making
it preferred. Walls are cells containing no spins and not contributing to the energy of any
adjacent cells. Initially, all of the cells are in the mother phase (e.g., “liquid”) and the
system is evolved by selecting on cell at random and changing its label according to the
standard Metropolis algorithm [11]. Rare event techniques, such as Forward Flux Sampling
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(FFS) [12,13], were used to simulate nucleation and it was found that nucleation occurred
much faster in the presence of pores or rough substrates.

These types of Ising models lack several key ingredients of the physics of real sys-
tems. Most importantly, many of the applications such as protein crystallization involve
nucleation from a low-concentration (or weak) solution. This means that the formation
of a dense solid nucleus requires the molecules in solution over a large volume to come
together and this mass transport is, therefore, a limiting factor in the dynamics and thus
plays a central role in the process [14,15]. Since the standard Ising model has nothing like
the conservation of mass, this important physical element is completely absent. Once this
is added to the model in the form of molecules that move around, dimensionality also
becomes important so that one must be cautious in extrapolating 2D simulations to the real
3D world.

Here, we try to improve upon these points in the obvious way: we use three-
dimensional models with mass conservation and a realistic diffusional dynamics in the so-
lution. As in the previous studies, we use FFS to allow us to track nucleation. Furthermore,
unlike the work of [3,6] we use standard models of rough surfaces that realistically model
both the height probability distribution of the surface and its autocorrelation. We find that
molecular adsorption of rough substrates to be enhanced compared to flat substrates which
can be interpreted as arising due to the greater surface area of a rough surface as well as the
fact that molecules can interact with more than one surface site at a time. However larger
surface area alone does not explain the enhanced molecule/substrate interaction. Our re-
sults show that increasing surface roughness leads to localization of the molecules on the
substrate. We also find that surface correlation length plays an important role in determin-
ing system properties like free energy (enthalpic effect) and in the adsorption/desorption
transition. Of most relevance here, we observe a transition in the nature of crystal growth
for critical values of the roughness and correlation length. In summary, our results show
that substrate roughness enhances crystallization rates but that the process is more complex
than simply heterogeneous nucleation on the substrate. We find that the dominant effect is
the enhancement of the local concentration of solute near the substrate and that it is via
this indirect mechanism that crystal nucleation rates are enhanced.

In the next section, we present our simulation model: the model for the solution,
which is essentially a standard Ising-type kinetic Monte Carlo model with diffusional
dynamics, the modeling of surface roughness and the determination of nucleation rates.
In the following section, we present results and analysis focusing on the nucleation rate for
substrates with different roughnesses. In particular, we try to unravel the dual effects of
roughness in terms of the amplitude of height variations and of the correlation of height
variations over the substrate. Finally, we close with a discussion of the implication of our
results for controlling crystallization in real systems.

2. Computational Methods
2.1. Simulation Model

In our model, the simulation cell is partitioned into a lattice of N = Nx × Ny × Nz
cubic cells with sides of length a, the typical size of a molecule. The lower part of the lattice
is occupied by the substrate: a random surface described mathematically as h = h(x, y),
where h is the surface height with respect to bottom (z = 0) of the lattice, and (x, y)
is the position vector on the surface. Above the substrate, the lattice sites are either
empty or occupied by a single molecule. The total energy is determined by counting the
number of nearest-neighbor bonds with each molecule-molecule bond contributing energy
−ε and each molecule-wall bond contributing energy −εW where, in our simulations,
both ε, εW > 0.

Let the total number of mobile molecules (i.e., those with one or more unoccupied
nearest neighbor site) in the simulation a given time t be Nt. Then, a kMC move consists
of randomly choosing a number, call it n, between 0 and Nt + Nx × Ny and attempting to
execute one of two possible actions. If n < Nt then an attempt is made to move molecule n
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to one of the neighboring lattice sites: a site is chosen at random and the move is accepted
with probability min(1, e−∆E/kBT) where ∆E is the change in energy of the system if the
move is accepted. In the x- and y-directions we apply periodic boundary conditions while
in the z-direction molecules can exit the simulation cell. These nearest-neighbor hops
simulate molecules diffusing in the solution. If the number chose is n > N(t) then an
attempt is made to add a molecule to the cell n− Nt in the top layer of the system—the
probability that a molecule appears is determined by an input parameter. In either case,
the time is advanced by a variable time step, ∆tt = ν0/Nt where the “attempt frequency” ν0
is a (fixed input) parameter having units of inverse time. The physical value of the attempt
frequency can be determined by considering the tracer diffusion of a single molecule in
solution. For a single molecule, the kMC algorithm generates a discrete random walk
with diffusion constant D = a2ν0 so that in principle, real systems can be mapped to the
model by taking the lattice spacing a to be the typical size of a molecule and then choosing
the attempt frequency ν0 so as to give the observed single-molecule diffusion constant.
However, for simulations, one takes a to be the length scale and ν0 the time scale and so
the physical values are not needed.

Since molecules can leave the simulation cell by hopping out at the top and are peri-
odically inserted, an equilibrium is reached. Inside the simulation cell, mass is conserved
by the diffusive dynamics, whereas the upper boundary represents an interaction with a
reservoir. This simulates an open system and is necessary to simulate nucleation of a dense
phase from a weak solution: otherwise, the material in a closed simulation cell would be
depleted in forming the cluster.

2.2. Model of Rough Surface

Many roughness effects are closely related to the interplay between the length scales
characterizing the roughness and the adsorbing molecule [16]. In the case of macro-
molecules, for example, due to their complex structure, entropic as well as energetic effects
play a role in determining their binding to a surface [17]. Length scale matching is particu-
larly important for interactions involving hydrophobic parts of the surface of the protein
since roughness can change surface hydrophobicity. Since in our model, a molecule occu-
pies a single lattice site, the lattice spacing a is taken to be the typical size of a molecule and
we note that molecules making up the substrate and those of the crystallizing material are
therefore of the same size.

In general, a surface is fully specified by giving its height h(r) = h(x, y) for each pair
of coordinates x, y or, for our discrete model, one could also write h(x, y) = h(ka, la) ≡ hkl
for some integers k, l. A rough surface corresponds to one for which the heights hkl
are random variables with some specified statistics. The variability of surface height is
characterized by the probability p(h)dh that the height at any given cell is between h and
h + dh, i.e., the height distribution function for which we use a standard Gaussian model
with variance σ,

p(h) =
1√

2πaσ
e−

h2

2a2σ2 . (1)

This does not, however, fully characterize the surface since there can be height cor-
relations so that two cells that are close together have a higher (or lower) probability of
having similar heights than two which are far apart, which is described by the height
correlation function G(r1, r2) = 〈h(r1)h(r2)〉. In principle, the average in this expression
should be understood as an ensemble average: an average over many different realizations
of the surface. In the following, we restrict attention to homogeneous, isotropic rough
surfaces for which the height correlation function depends only on the distance between
positions r1 and r2, e.g., G(r1, r2) = G(|r1 − r2|) = G(r12). In this case, a measure of the
typical length scale of such correlations, i.e., of the lateral correlation length, is given by∫ ∞

0 G(r)r dr/
∫ ∞

0 G(r) dr. In our work, we have used the standard exponential model,

G(r) = a2σ2 exp(−r/(aξ)), (2)
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where it can be confirmed that the parameter ξ corresponds to the correlation length
(divided by the lattice spacing) defined above. Our goal is to generate surfaces—realizations
of the stochastic process—for which, in the infinite-surface size limit, the heights reproduce
the chosen height distribution and correlation function. To do this, we use the Fourier
transform method described in Ref [18], details of which are given in the Appendix A.

Following Wenzel [19,20], we introduce a more physical measure of the roughness of
the surface rw = A/A0, known as the Wenzel roughness or Wenzel factor, rw, which is the
ratio of the surface area A of the rough surface ot its projected area A0. For the exponential
model, it is shown in the Appendix A that this is given by the sum

rw ' 1 + 2
σ2

ξ
− 4

σ4

ξ2 + 8
σ6

ξ3 + · · · (3)

and in the high roughness limit, one gets

rw = 1 +
4√
π

σ
√

1− e−1/ξ . (4)

2.3. Rate Calculations

In this study, we compute heterogeneous nucleation rates using the Forward Flux
Sampling algorithm (FFS). We identify a cluster as being a set of molecules connected by
nearest-neighbor bonds and we use the size of the largest cluster at any given moment, λ,
as the order parameter for the system. In the initial, metastable, state consisting of a weak
solution of crystal-forming molecules, only small clusters are commonly observed. We,
therefore. characterize it as having λ ≤ λS where λS is a somewhat arbitrary threshold.
The post-critical, crystalline state is characterized by having a sufficiently large cluster
(i.e., one much larger than the critical cluster) and so can be defined as λX ≥ λC for some
(crystal) threshold λC.

The nucleation rate coefficient kSC, considered as the frequency of forming one stable
large cluster from the random solution, is given by the cumulative flux of trajectories that
begin with λ < λS and end up in λ > λC and is estimated as the product of Φ0, the initial
flux of trajectories that cross λS and of the probability that a system that has λ = λS
evolves into one with λ = λC without ever returning to the initial state. To determine this
probability, a system in the solution state is allowed to evolve and each time, it crosses
from λ < λS to λ = λS, the configuration is stored and the simulation continues. In this
way, a database of crossings is collected and, at the same time, the number of crossings
per unit time—i.e., the flux—is determined. Next, an intermediate threshold λ1 > λS is
defined and the probability of the transition λS → λ1 is determined by randomly choosing a
configuration from the database of configurations with λ = λS and evolving it until it either
reaches λ1, in which case it is stored in a new database, or falls back into the metastable state,
in which case it is discarded. The fraction reaching λ1 gives the probability of the transition.
This is then repeated for a series of such milestones, λS < λ1 < λ2 < · · · < λN = λC
and the various transition probabilities are determined. The product of all of them then
gives the overall transition probability and, when multiplied by the flux out of the initial
state, gives the transition rate and this divided by the volume gives the nucleation rate.
In our simulations, we took λS = 5, λC = 100 and milestones at each integer in between.
From each milestone λk, new trajectories are launched until there are 400 that reach the
next milestone.

3. Results and Discussion

We performed kinetic Monte Carlo simulations of the lattice model on a system with
size Nx = Ny = Nz = 50 in lattice units a. In all the simulations the temperature is fixed
at kBT = 0.4ε and the bulk density fixed by the reservoir is ρ = 0.0016 in lattice units.
The bulk density was chosen sufficiently low that the nucleation was not instantaneous—
making impossible to meaningfully study the effect of substrates—but sufficiently high that
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the critical cluster was not large compared to system dimensions. (Typical critical clusters
consisted of between 60 and 100 molecules, so with diameters between 5 and 6 lattice sites.)
We generated exponentially correlated random rough surfaces with given variance σ2 and
correlation length ξ, typical examples of which are shown in Figure 1.

Figure 1. Random rough surfaces with σ2 = 0.50, ξ = 5 (top left), σ2 = 0.50, ξ = 20 (top right),
σ2 = 2.50, ξ = 5 (bottom left), σ2 = 2.50, ξ = 20 (bottom right).

3.1. For Hard Walls, Roughness Is not Important

The first question addressed was whether purely entropic—i.e., geometric—effects,
induced by the substrate topography may influence the nucleation rate through an effect
of confinement.

Figure 2 shows the rate of formation of clusters when the solution is in contact with
purely repulsive substrates (εW = 0) or substrates slightly attractive (εW = 0.1) with
varying topographies. As can be seen, the rate of formation of clusters is unaffected by
changes in the variance of the height indicating that entropic effects alone, in the absence
of significant attractive interactions, do not significantly affect the nucleation rate.

In contrast, when the substrate is attractive (εW = 0.3), the nucleation rate becomes
quite sensitive to the surface topography. The combined effect of enthalpy and surface
roughness is clearly seen in Figure 3 showing the critical sizes of the clusters and Figure 4
which shows the rate of cluster formation for different values of the height variance with
correlation lengths ξ = 5 (upper graphic), and ξ = 20 (lower graphic). For the different
surface topographies investigated, at fixed correlation length, the critical size decreases
from about 87 to just above 60 and the nucleation rate increases by a factor 107 as the
variance increases from σ2 = 0.5 to σ2 = 4.5. Moreover, at fixed variance the nucleation
rate increases by a factor of a thousand as the correlation length decreases from ξ = 20 to
ξ = 5. The critical size decreases almost monotonically for the smaller correlation length
but at larger correlation length it is unaffected until the roughness exceeds σ2 = 4. Our goal
in the following is to understand the mechanisms behind these variations.
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Figure 2. Rate of formation of clusters (vertical axis, in units of ν−1
0 = a2/D) of different sizes (horizontal axis) for substrates

with zero or slightly attractive interactions (εw = 0 and εw = 0.1) having variance σ2 = 2.5 and 5.0. The curves are
indistinguishable.

Figure 3. Number of molecules in the critical cluster as a function of roughness, σ, for correlation lengths ξ = 5 and 20 as
determined from the simulations.
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Figure 4. Rate of formation of clusters (vertical axis, in units of ν−1
0 = a2/D) as a function of their

size. (top) Surface with correlation length ξ = 5 and variance σ2 = 0.5 to 4.5. (bottom) Surface with
correlation length ξ = 20 and variance σ2 = 0.5 to 4.5. In the two graphs, cumulative probability
increases with σ2.

3.2. Roughness of Attractive Walls Increases Absorption

The usual explanation for the variation of nucleation rate with roughness is that a
rough substrate has a larger surface area than a flat substrate so that more molecules can
adsorb onto it leading to heterogeneous nucleation. To understand the effect of roughness
on molecular adhesion one can follow the thermodynamic analysis and assume that the
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amount of molecules in contact with the substrate is proportional to the energy of adhesion
wad which for a flat solid surface is defined by [21,22]

wad = (γcv + γsc )− γsv, (5)

where γsv, γsc, and γcv, are the interfacial tension for substrate–vapor, substrate–crystal,
and crystal–vapor interfaces. By combining (5) with Young’s equation γsv−γsc = γcv cos θ0
one obtains the Young–Dupre equation

wad = γcv (1− cos θ0 ) , (6)

where θ0 is the equilibrium contact angle of the crystal on the substrate. For a rough surface
the adhesion energy and the contact angle become spatial-dependent [23]

wad(r) = γcv (1− cos θ(r) ), (7)

where θ(r) is the contact angle modified by the local slope at the surface, θ(r) = θ0 +
arctan(|∇h|). In the discrete model, there is a perfect contact between molecules and the
surface since the lattice spacing is identical to the molecular size. In this case the average
energy of adhesion is proportional to number of plaquettes of the solid surface in contact
with molecules, wad = εW〈Ad〉, and using Equation (A25) from the Appendix A, gives the
high-roughness estimate

wad = εW

(
1 +

4√
π

σ

√
1− e−

1
ξ

)
. (8)

This shows that for fixed correlation length, adhesion energy increases with increasing
variance, σ. Conversely, for fixed variance, adhesion energy decreases with increasing
correlation length. All of this is consistent with the intuition that crystal that forms in small
valleys on the substrate will have more contact with the substrate and so lower energy than
the same volume of crystal on a flat substrate: in other words, roughness over molecular
length scales lowers the crystal–substrate surface tension. Assuming that the amount of
absorbed molecules at the substrate is proportional to the adhesion energy, the effect of
roughness on adhesion is demonstrated by measuring the molecular surface density ρs
as a function of σ and ξ. The surface density ρs is defined as the number of molecules
whose distance from the plane z = 0 is lower so that hmax = max({h(r) : r = (x, y)}) is
normalized by the surface area of the plane, Nx × Ny.

Figure 5 shows that ρs is indeed proportional to σ, and that by increasing the correla-
tion length one reduces the surface density. Furthermore, the observed local increase in
concentration is well-correlated with the nucleation rate as shown in Figure 6.

Figure 5. Surface density, ρs as a function of σ for substrates with correlation length ξ = 1 (circles),
ξ = 5 (squares), and ξ = 20 (triangles).



Crystals 2021, 11, 4 9 of 20

Figure 6. Nucleation rate (in units of ν−1
0 = a2/D) as function of the surface density ρs. Each symbol

corresponds to the normalized amount of molecules absorbed on surfaces characterized by different
roughness and correlation length.

3.3. Correlation Plays an Important Role

While these results ascertain that rougher substrates adsorb more molecules and that
this is correlated with a higher nucleation rate, Figure 5 suggests that σ2 is not the only
factor. Clearly, substrates with the same roughness but different correlation lengths absorb
different numbers of molecules so that the topography also plays an important role.

A clue as to the role of surface correlations comes from an examination of post-critical
clusters, see Figure 7. Contrary to what one might expect, clusters are not all in contact
with the substrate and, in fact, some grow far away from it. To quantify this, we measured
the contact surface Asc, between the substrate and the largest cluster, corresponding to
λ = 100, as a function of σ2 and ξ.

The probability distribution of Asc, obtained from a thousand substrate–cluster con-
figurations, is displayed Figure 8. One observes that for σ2 = 2.5 the most probable
configuration is that the cluster has no contact with the substrate while at higher variances,
the probability of no-contact decreases until at σ2 = 5, all clusters grow on the solid
substrate. To understand this better, Figure 9 shows the evolution of the contact area for
different values of σ2, as a function of the size of the growing crystal: in other words,
how the contact area changes as a function of cluster size.

The behavior of P(Asc) as a function of cluster size demonstrates that when the
roughness is small, crystals start to grow on the substrate that favors heterogeneous
nucleation, but they detach from the substrate when reaching a critical size λc, while for
rougher substrates, they always remain attached to the substrate. A similar behavior is
observed in seeded heterogeneous crystallization [24]. In [24], the sequence of crystallite
structures is followed during crystallization in a colloidal system in contact with a spherical
glass bead. Depending on the bead diameter, the crystallite detaches from the curved
seed surface once it reaches a critical size. The origin of this behavior is attributed to a
mismatch between the crystalline structure and the curved surface that induces elastic
stress in the crystal. Because the distortion that leads to the detachment depends on the
crystallite-seed relative curvature, the critical crystal diameter is a function of the seed
diameter. In the present model, the detachment could not be attributed to the relaxation
of an elastic distortion, however, a similar conclusion can be drawn by considering the
interfacial energy of the crystal.
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Figure 7. Cont.
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Figure 7. Configurations of the system in contact with substrates with different topographies.
The largest cluster size is λ = 100. Surfaces on the left column: correlation length ξ = 5,
10, 20 (from top to bottom), and variance σ2 = 0.5. Surfaces on the right column: correlation
length ξ = 20 and variance σ2 = 0.5, 2.5, 5.0 (from top to bottom).

To begin with, it is clear that a cluster of two molecules will be more stable if it is in
contact with the substrate (which contributes some bonding energy) than in the bulk fluid.
For this reason, small clusters are more likely to be found in the valleys of the rough surface
where they can maximize their contact with the substrate (or, in other words, replace as
much vapor–crystal surface with crystal–substrate surface as possible). For larger clusters,
there are two competing effects. First, if they form in the valleys of the substrate, they
continue to replace the crystal–vapor interface with the crystal–substrate interface, which
is energetically favored. Indeed, one can estimate the crystal–vapor surface tension to be
|ε|/2a2 whereas the crystal–substrate surface tension is γCS = |(ε/2)− εW |/a2. Second,
however, is that in bulk, a cluster can minimize its surface area (by becoming spherical)
and hence lower its energy: this is not possible for clusters growing in the substrate which
are constrained by the geometry of the pores. Thus, one expects that small clusters will be
energetically favored to form on the substrate while large clusters may have lower energy
in the bulk, away from the substrate. An important question here will be the stability of the
clusters that form in the pores. Small clusters will, generally, be unstable but there may be a
critical size beyond which the clusters in the pores become stable. In this case, one expects
to find large clusters growing on the substrate. However, as the clusters grow they fill the
pores and it may be that stability is never attained until they exceed the size of a pore in
which case, they may be less stable than equal-sized clusters in the bulk.
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Figure 8. One thousand simulations were performed and at the end of each, the area of contact
Asc between the largest cluster (corresponding to λ = 100) and the substrate was determined.
These values were used to estimate the probability P(A) of observing substrate-cluster contact
area A and the results are shown here for substrates with correlation length ξ = 20 and variances
σ2 = 2.5 (a), σ2 = 3.5 (b) and σ2 = 5.0 (c). The probability to observe clusters with no contact with
the substrate (P(0) > 0) decreases with increasing variance.

This picture is confirmed by Figure 9 which shows the average area of contact with
the substrate as a function of cluster size. Note that this is an average over all clusters
including those that are not in contact with the substrate at all. As expected from our
argument, for the smallest clusters, the average contact area increases with increasing
cluster size regardless of the roughness. For the case of low variability of the surface height,
a maximum is reached at a certain cluster size and the contact area then decreases until
eventually reaching zero, indicating that detached clusters become increasingly favored.
For the rougher cases, however, the contact area increases monotonically showing that
clusters remain attached to the substrate as they grow. Figure 10 shows the average
volume of a valley on the substrate as a function of variance of the height. We find that,
as one would expect, the volume of the valleys increases with roughness and, furthermore,
that the volumes are close to the observed maxima of the contact area at lower roughness.
This suggests that bulk clusters become more stable than surface clusters once the clusters
fill the pores unless, as argued above, the pores exceed a critical volume in which case
clusters on the substrate can continue to grow indefinitely.

The overall impact of the substrate roughness on the nucleation rate depends on
both the surface geometry (i.e., its roughness is controlled by both the variance of the
height and the correlation length) and on the substrate chemistry (here characterized by
the binding energy of the crystal molecules to the substrate). Clearly, as the strength of
the crystal–substrate bond decreases, the crystal–substrate surface tension increases and
the geometric constraint of the pores makes it increasingly unlikely that clusters will form
in them. This is illustrated in Figure 11 which shows the nucleation rate as a function of
crystal–substrate bond strength for a fixed variance (σ2 = 2.5) and two different correlation
lengths. In both cases, the nucleation rate is unaffected by the roughness up to a critical
bond strength beyond which the substrate enhances the nucleation rate. As expected,
the enhancement is greater for the smaller correlation length since in that case, one expects
the pores to have a larger average volume.
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Figure 9. Average contact surface area between the largest cluster and a substrate as a function of the
order parameter λ for different roughnesses with ξ = 20: from lower to upper curve σ2 = 1, 2, 3, 4,
and 5.

Figure 10. Average pore (valley) volume as a function of the variance of the surface height for
correlation length ξ = 20. The values were obtained by averaging the valley volumes (defined as
the volume from a valley minimum up to h = −1) over all pores on a thousand realizations of the
surface. The dots indicate the values of σ corresponding to the curves in Figure 9. The dashed line
marks the value of σ beyond which clusters grow attached to the substrate as per Figure 9.

This scenario depends on both the length scales, and its impact on the nucleation
rate, as explained above, is heavily dependent on the binding energy. Figure 11 shows
the nucleation rate as a function of the binding energy for two values of the correlation
length. When εW < εc, where εc is a critical binding strength, the nucleation rate is almost
independent of εW , while for εW > εc, the nucleation rate increases with εW . However,
increasing interaction leads to irreversible adsorption on the substrate, therefore hence the
limit |εW | ≤ 0.3.
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Figure 11. Nucleation rate (in units of ν−1
0 = a2/D) as a function the binding energy εW with a

surface correlation length ξ = 5 (circles), and ξ = 20 (squares). The surface variances are the same,
σ2 = 2.5 .

4. Conclusions

Our work reveals fundamental insights into the role of roughness and chemistry on
nucleation and, in particular, on the complex interplay of the variance of height of the
surface and the correlation length. We identify two important physical phenomena that
contribute to the observed substrate-enhanced nucleation. The first is that any substrate
that forms bonds with the crystal molecules enhances the local concentration of the crystal
molecules near the surface and this correlates with increasing nucleation rate, regardless of
details of the substrate geometry. In this effect, the main role of roughness is that it increases
the effective surface area and so increases the substrate-generated supersaturation with
respect to the bulk fluid.

A second effect is that small clusters preferentially form in the valleys of the rough
surface. When the crystal–substrate bonding is sufficiently strong, cluster formation within
the pores is favored over that in the bulk at least until the clusters fill the pores. If the pores
are small (i.e., the roughness is low) then larger clusters form preferentially in the bulk but
if the pores exceed a critical size, then the growth of the pore-nucleated clusters continues
and is the dominant mechanism for the formation of bulk crystal.

Our work has a number of practical, engineering-related implications. While one
usually imagines controlling surface absorption by changing the substrate chemistry, our re-
sults indicate that even for fixed substrate chemistry, the surface absorption—and, hence,
nucleation rate—can be tuned by changing the topography in the form of the correlation
length. Our results indicate that less correlated surfaces have higher surface absorption.
This could enable substrate engineering in situations where chemical modification is not
possible. Furthermore, we have shown a clear mechanism for understanding substrate-
dominated crystallization versus substrate-enhanced crystallization in the bulk which
could prove useful, e.g., in engineering membranes for membrane-enhanced crystalliza-
tion. Finally, we note that these observations are only possible in realistic models that
include the bulk fluid, concentration gradients and realistic models of roughness. Stud-
ies based on simple solid-on-solid substrate models do not include any of these elements
and so can not fully reveal the complexity of the process.
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Appendix A. Model of Rough Surface

Appendix A.1. Generating the Surface

A homogeneous rough surface can be considered to be a two-dimensional random
process with heights specified by a height auto-correlation function, G(r), or, equivalently,
a spectral density, S(k) defined as

S(k) =
1
π

Re
∫ ∞

0
G(r) exp(−i k r). (A1)

This is the starting point of the Fourier transform method [18] used for the gen-
eration of random rough surfaces. Consider first a discrete one dimensional surface hn,
n = 0, 1, ..., N − 1 whose Fourier transform gives h̃k, k = 0, 1, ..., N − 1. Specifically,
define the surface as

hn =
N−1

∑
k=0

√
S̃k ei(φk+ 2πnk/N), (A2)

where the phases φk are uniformly distributed between 0 and 2π and with the require-
ment that φN−k = −φk. Then, it follows from Parceval’s theorem that ∑N−1

n=0 hnhn+r =

N ∑N−1
k=0 S̃k = Sr so that one can reverse this and begin by specifying Sr = G(r), then deter-

mining its Fourier transform, S̃k and then constructing hn which has the desired correlation
function. Furthermore, since the heights are identically distributed, independent variables
the central limit theorem assures that, in the limit of large N, the surface-averaged height
h ≡ ∑N−1

n=0 will be a Gaussian process with mean zero and variance S0 = G(0).
Similarly, for the case of a two-dimensions, a random rough surface hnm, with pre-

scribed spectral coefficients Skl can be constructed from h̃kl =
√

Skl exp(iφkl), where as
before φkl are random phases. Then

hnm =
N−1

∑
k=0

N−1

∑
l=0

√
Skl ei(φkl+ 2πnk/N+ 2πmk/N) (A3)

defines a Gaussian random surface with surface height distribution

p(h) =
1√
2πσ

e−
h2

2σ2 . (A4)

This means that for any hnm, the probability that the height is between h and h + dh
is p(h) dh. At any position on the surface 〈h(r)〉 = 0, where 〈·〉 means an average over
an ensemble of random surfaces, and therefore the variance σ2 = 〈h2〉 characterizes the
roughness in the direction normal to the surface. In the following we will assume the
surfaces are ergodic random fields, meaning that all statistics can be obtained from a single
large random surface.

For a homogeneous, isotropic surface, as assumed in this work, we expect to start

with a model for Ssurf(k) = S(
√

k2
x + k2

y). However, in order to generate the surface using
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the expression above, we need the spectral densities S(kx). These are related by an Abel
transform [25,26]

S(kx) = 2
∫ ∞

kx

k Ssurf(k)

(k2 − k2
x)

1
2

dk , (A5)

and the reconstruction of a circularly symmetric two-dimensional function from its projec-
tion is known as Abel inversion of the projection which is

Ssurf(k) =
1
π

∫ ∞

k
(k2

1 − k2)
1
2

(
1
k1

d2S(k1)

dk2
1
− 1

k2
1

dS(k1)

dk1

)
dk1. (A6)

The morphology of an isotropic random can often be characterized by a single param-
eter, the lateral correlation length ξ =

∫ ∞
0 G(r)r dr/

∫ ∞
0 G(r) dr. Using this, our Gaussian

surfaces (see Equations (1) and (2)), are generated with a surface spectral density given by

Ssurf(k) =
σ2ξ2

2π (1 + k2ξ2)
3
2

. (A7)

Since numerical random surface are of finite extend the discrete spectral density Skl
in (A3) is a function of the system size N. However, for large system size, Sk,l ' Ssurf(|k|).
This is shown Figure A1 where Sk,l=0 is displayed for N = 4096 together with Ssurf(k).

Figure A1. Comparison of the power spectrum obtained from a finite system with N = 4096 points
and the continuous, analytic, spectrum as a function of dimensionless wave vector.

Appendix A.2. Characterizing Roughness

Following Wenzel [19,20], we introduce rw = A/A0, known as the Wenzel roughness
or Wenzel factor, which is the ratio between the surface area A of the rough surface and the
projected area A0. The rough surface area is

A =
∫

S

√
1 + |∇h(x, y)|2dx dy, (A8)
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where |∇h| is the local surface slope. For weak roughness, |∇h(x, y)| � 1,√
1 + |∇h(x, y)|2' 1 + 1

2 |∇h(x, y)|2 − 1
8 |∇h(x, y)|4 + · · · which yields

A = A0 +
1
2

∫
S
|∇h(x, y)|2dx dy − 1

8

∫
S
|∇h(x, y)|4dx dy + · · · . (A9)

In our model, the solid substrate consists of a stack of cubes whose upper surface is a
collection plaquettes. The area of this discrete surface is given by

Ad = A0 + a2
N−1

∑
i,j=0

(|hi,j − hi+1,j|+ |hi,j − hi,j+1|), (A10)

where a2 is the area of a plaquette and the height h is dimensionless. We shall qualify this
expression as the strong roughness limit. Most of the roughness effects can be related to
the average of the surface area (A9),

〈A〉 = A0 +
∫

S

[
1
2

〈
(∇xh)2 + (∇yh)2

〉
− 1

8

〈
(∇xh)2 + (∇yh)2)2

〉
+ · · ·

]
(A11)

which is an expansion in (2n, 2m)-order moments 〈(∇xh)2n(∇yh)2m〉. If the surface height
obeys the Gaussian distribution (A4), then the joint distribution of two heights h1 and h2 is

p(h1, h2) =
1

2π
√

detM
e−

1
2 ∑ij Mij hi hj , (A12)

where matrix M is the inverse of the matrix 〈hi hj〉[27]. From p(h1, h2) the following joint
distribution of h and ~∇h can be derived, [27,28]

p(h, ~∇h) =
p(h)
π ρ2 e

− (∇xh)2+(∇yh)2

ρ2 , (A13)

and, more specifically,

p(∇xh,∇yh) =
1

π ρ2 e
− (∇xh)2+(∇yh)2

ρ2 , (A14)

where ρ = 〈(∇h)2〉 1
2 is the rms of the local slope. Using (A14) one obtains the following

ensemble average,

〈(∇xh)2n(∇yh)2m〉 = 1
4π

Γ(n +
1
2
) Γ(m +

1
2
)ρ2m+2n (1 + (−1)2m + (−1)2n + (−1)2n+2m), (A15)

which, when inserted into (A11), gives

〈A〉 = A0 (1 +
1
2

ρ2 − 1
4

ρ4 +
3
8

ρ6 − 15
16

ρ8 + · · · ). (A16)

Therefore the rms local slope alone determines the surface area averaged over rough-
ness configurations. In order to obtain ρ2 one introduces ∆h(r) = h(r0 + r)− h(r0) which,
in terms of the the Fourier transform of the surface height h̃(k), is

∆h(r) =
∫

h̃(k) eik·r0 (eik·r − 1)dk. (A17)

Then,

〈[∆h(r)]2〉 = A0

∫ ∫
ei(k+k′)·r0 〈h̃(k)h̃(k′)〉(eik·r − 1)(eik′ ·r − 1)dk dk′, (A18)
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where A0 comes from a sum over the position r0. Since, using translational invariance,

〈h̃(k)h̃(k′)〉 = 1
A0

Ssurf(|k|) δ(k + k′), (A19)

giving

〈[∆h(r)]2〉 =
∫ ∫

Ssurf(k)(2− eik.r − e−ik.r)dk (A20)

=
∫ ∞

0
dk
∫ 2π

0
dθ k Ssurf(k)(2− eik r cos θ − e−ik r cos θ)

= 2 σ2 − 4 π
∫ ∞

0
dkSsurf(k)k J0(k r)

= 2 (σ2 − G(r))

where we used the relation 2π
∫ ∞

0 Ssur f kdk = σ2 and J0(x) = J0(−x). Finally, introduc-
ing the lattice spacing a in the definition of the space derivative, ρ2 = limr→a

2
a2 〈[∆h(a)]2〉

gives, using expression (2) for G(r),

ρ2 = lim
r→a

4
a2 σ2 (1− e−

a
ξ ). (A21)

For a� ξ this expression yields

ρ2 ' 4
a

σ2

ξ
. (A22)

We generated 103 random rough surfaces of area A0 = (256)2 to obtained “exact”
average quantities for comparison with analytical expressions. The results are displayed
as functions of σ for two values of the correlation length (ξ = 5 and ξ = 20). Figure A2a
displays the results for ρ2 as given by (A22). From relation (A22) one obtains the following
expansion for the average Wenzel factor as a function of σ,

rw ' 1 +
b
2

σ2

ξ
− b2

4
σ4

ξ2 +
3 b3

8
σ6

ξ3 + · · · (A23)

with b = 4/a. In Figure A2b the approximated excess surface area rexc = rw − 1 is
displayed as a function of σ. Only the first three terms of the expansion (A23) are included
in the analytical expression. In order to compare using the same “continuous” treatment of
the surface, the figure compares this result to simulations of the surface from which the
area was computed via linear interpolation from the center of one cell to the centers of the
neighboring cells.

In the high roughness limit and treating the surface as being made up of square
plaquettes as it actually is in the simulations, one takes the average of (A10) over the
distribution (A14) which gives

〈Ad〉 = A0 (1 +
2√
π

ρ). (A24)

Inserting (A21) with a = 1 in this expression yields the high roughness average
Wenzel factor

rw = 1 +
4√
π

σ

√
1− e−

1
ξ . (A25)

Figure A2c shows a comparison of this analytic expression to the area as determined
from simulating the surface and computing the area based on the cubic structure of the
actual simulations.
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Figure A2. (a) The rms local slope, ρ, as predicted by Equation (A22) as functions of variance, σ,
for the cases of ξ = 5 (black curves and symbols) and ξ = 20 (red). (b) A comparison between the
analytic approximations of Equation (A23) (first three terms, solid lines) and the “exact” values of the
excess relative surface area, rexc ≡ rw − 1 as functions of σ with the same labeling. The “exact” values
were obtained by averaging over a thousand realizations of the surface and the area was computed
in a “continuous” approximation as explained in the main text. (c) The same thing but treating the
surface as being made up of discrete plaquettes for both the analytic approximation, Equation (A25),
and in computing the area of the simulated surface.
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