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Abstract: We synthesized and studied the polymeric compound {[Cu2(µ4-EDTA)(Him)2] 2H2O}n

(1). The single-crystal structure is reported along with an in depth characterization of its thermal
stability (TGA), spectral properties (FT-IR, Vis-UV and RSE), and magnetic behavior. The crystal
consists of infinite 2D-networks built by centrosymmetric dinuclear motifs, constructed by means of
a bridging anti,syn-carboxylate group from each asymmetric unit. Each layer guides Him ligands
toward their external faces. They are connected by intermolecular (Him)N-H···O(carboxylate) bonds
and antiparallel π–π stacking between symmetry related pairs of Him ligands, and then pillared in a
3D-network with parallel channels, where disordered water molecules are guested. About half of
the labile water is lost from these channels over a wide temperature range (r.t. to 210 ◦C) before the
other one, most strongly retained by the cooperating action of (water)O1-H(1A)···O(carboxylate) and
(water) O1-H(1B)···π(Him) interactions. The latter is lost when organic ligands start to burn. ESR
spectra and magnetic measurements indicated that symmetry related Cu(II) centers connected by the
bridging carboxylate groups behave magnetically not equivalently, enabling an exchange interaction
larger than their individual Zeeman energies.

Keywords: crystal structure; copper(II); EDTA; imidazole; polymer; H-bonding; π–π stacking; water
O-H/π interaction

1. Introduction

Ethylenediaminetetraacetic acid (H4EDTA) and its different anionic forms generate
an enormous diversity of metal chelate complexes. The ability of EDTA to form up to
five stable five-membered chelate rings around a metal center is only one among all these
possibilities, frequently enriched in structurally well documented compounds where µ-
EDTA bridging forms increases its denticity. Now we are interested in using the tetravalent
EDTA anion as a bridging µ-chelator for two metallic centers (M), thus generating M2(µ-
EDTA) motifs which can form dinuclear complex molecules, as well as polymeric networks
of different dimensionalities. In these compounds, at least a tridentate role for each half-
EDTA should be expected, where each M center should be chelated by a N,N-methylene-
aminodiacetate(2-) group, -CH2-N(CH2CO2

-)2 (here after a mida group). A search in the
Cambridge Structural Database (CSD, version 5.41, update August 2020) for “any metal”
(M) in M2(µ-EDTA) motifs affords 58 different structures (number of examples for each M
indicated in parenthesis): Mo (36), W (6), Cu(5), U (3), Tc (2), Sn (2), Re (1), Zr (1), Al (1), or
Ba (1). Since some literature is certainly old and/or is not in English, a reference code in
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CSD database is provided for such compounds in the text. The highest µn-EDTA denticity
in these kind of compounds has been reported for the Ba(II) derivative, [Ba2(µ12-EDTA)]
(TAHFUF in CSD) [1].

As far as concerns M2(µ-EDTA) compounds (M being now a first-row transition metal
ion) the crystal structures of salts [FeII(H2O)6][Mo2(µ-EDTA)(µ-O)2]·5H2O (UCETAX) [2]
and [Ni(H2O)6][Mo2(µ-EDTA)(µ-S)2]·2H2O (LOVKUE) [3] have been reported along with
those of five Cu(II) compounds with “Cu(µ-EDTA)Cu” motifs [4–7]. These copper(II) com-
pounds comprise, among others (see below) two 2D-polymers also having Na(I) ions, Keg-
ging poly-oxo-wolframate anions, as well as bounded to Na(I)-aqua ligands and crystalliza-
tion water molecules [4]. The other three are {[Cu2(µ4-EDTA)(H2O)2]·2H2O}n (CUEDTA01,
here after the so-called the binary dinuclear chelate) [5], [Cu2(µ4-EDTA)(py)2(H2O)2]·2H2O
(py = pyridine, NAMJOB) [6], and {[Cu2(µ4-EDTA)(3hpy)2]}n (3hpy = 3-hydroxypyridine,
PEZRES ) [7]. See additional comments on the three compounds in Sections 3.1 and 3.2

As a part of a program on ternary copper(II) complexes with amino-polycarboxylate
chelators and five (imidazole) or six-membered (pyrimidine’s) N-heterocyclic ligands
related to structural formulas of purine nucleic basis, here we report the synthesis, crystal
structure, (thermal, spectral and magnetic) physical properties, and density functional
theory (DFT) calculations of {[Cu2(µ4-EDTA)(Him)2]·2H2O}n (1).

2. Materials and Methods
2.1. Reagents

Malachite Cu2CO3(OH)2 (Aldrich), H4EDTA acid (TCI) and imidazole (Alfa Aesar)
were used as received.

2.2. Crystallography

A blue needle crystal of {[Cu2(µ4-EDTA)(Him)2]·2H2O}n (1) was mounted on a glass
fiber and used for data collection. Diffraction data were obtained using a Bruker D8
VENTURE PHOTON III-14 diffractometer (Bruker AXS GmbH, Karlsruhe, Germany). The
data were processed with APEX2 [8] and corrected for absorption using SADABS [9]. The
structure was solved by direct methods using the program SHELXS-2013 [10], and refined
by full-matrix least-squares techniques against F2 using SHELXL-2013 [10]. The O1 water
atom is disordered over two positions; the occupancy factor for each one was refined,
resulting in a value of 0.440(8) for O1 and 0.560(8) for O2. Positional and anisotropic atomic
displacement parameters were refined for all non-hydrogen atoms. Hydrogen atoms
were located in difference maps and included as fixed contributions riding on attached
atoms with isotropic thermal parameters constrained to 1.2/1.5 Ueq of the carrier atoms.
Molecular graphics were generated with DIAMOND [11]. Crystal data, experimental
details, and refinement results are summarized in Table 1. Crystallographic data for
1 has been deposited in the Cambridge Crystallographic Data Center, with the CCDC
number 2047832.

2.3. Other Physical Measurements

Analytical data (CHN) was obtained in a Fisons–Carlo Erba EA 1108 elemental micro-
analyzer (Carlo Erba Reagents, Sabadell, Spain). The copper(II) content was cheeked as
CuO by the weight of the final residue in the thermo-gravimetric analysis (TGA) at 950 ◦C
within <1% of assumed experimental error. The FT-IR spectrum was recorded (KBr pellet)
on a Jasco FT-IR 6300 spectrophotometer (JASCO Deutschland GmbH, Pfungstadt, Ger-
many). The electronic (diffuse reflectance) spectrum was obtained with a Varian-Cary5E
spectrophotometer (Agilent Technologies, Inc., Santa Clara, CA, USA). TGA was carried
out (r.t.–950 ◦C) in airflow (100 mL/min) by a Shimadzu Thermobalance TGA–DTG–50H
(SHIMADZU DEUTSCHLAND GmbH, Duisburg, Germany), while a series of 36 time-
spaced FT-IR spectra were recorded with a coupled FT-IR Nicolet Magna 550 spectrometer
(Thermo Fisher Scientific Inc., Madrid, Spain) to identify the evolved gasses. X-band
EPR measurements were carried out on a Bruker ELEXSYS 500 spectrometer (Karlsruhe,
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Germany) equipped with a super-high-Q resonator ER-4123-SHQ and standard Oxford
low temperature devices. For Q-band studies, EPR spectra were recorded on a Bruker EMX
system equipped with an ER-510-QT resonator. An NMR probe calibrated the magnetic
field, and the frequency inside the cavity was determined with a Hewlett-Packard 5352B
microwave frequency counter (Agilent Technologies, Madrid, Spain). Computer simula-
tion: WINEPR-SimFonia, version 1.5, Bruker Analytische Messtechnik GmbH (Karlsruhe,
Germany). Temperature dependent magnetic measurements were performed between 2
and 300 K with an applied field of 0.1 T using a commercial MPMS3 SQUID magnetometer
(Quantum Design GmbH, Darmstadt, Germany). The experimental susceptibilities were
corrected for the diamagnetism of the constituent atoms using Pascal tables.

Table 1. Crystal data and structure refinement for {[Cu2(µ4-EDTA)(Him)2]·2H2O}n (1).

Empirical Formula C8H12CuN3O5

Empirical formula weight 293.75
Temperature 100(2) K
Wavelength 0.71073 Å

Crystal system, space group Monoclinic, C2/c
Unit cell dimensions a = 21.1313(13) Å, α = 90◦

b = 5.9280(4) Å, β = 110.474(3)◦

c = 18.1842(13) Å, γ = 70.545(2)◦

Volume 2134.0(3) Å3

Z, Calculated density 8, 1.829 Mg/m3

Absorption coefficient 2.062 mm−1

F(000) 1200
Crystal size 0.250 × 0.070 × 0.040 mm2

Theta range for data collection 3.588 to 30.5050 ◦

Limiting indices –28 ≤ h ≤ 30, –8 ≤ k ≤ 8, –25 ≤ l ≤ 25
Reflections collected / unique 32813 / 3255 [R(int) = 0.0462]

Completeness to θ = 25.242 99.7%
Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.857
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 6551/0/307
Goodness-of-fit on F2 1.055

Final R indices [I > 2σ(I)] R1 = 0.0278, wR2 = 0.0619
R indices (all data) R1 = 0.0354, wR2 = 0.0663

Largest diff. peak and hole 0.461 and − 0.590 e.Å−3

CCSD ref. number 2047832

2.4. Synthesis with Relevant Vis-UV and FTIR Spectral Data

Compound 1 was obtained in a two-step process. First, Cu2CO3(OH)2 (green mala-
chite, 1 mmol, 0.22 g) and H4EDTA (1 mmol, 0.29 g) (Alpha-Aesar, Kandel, Germany) were
reacted in water (100 mL) inside an open Kitasato flask at 50 ◦C. Magnetic stirring was
aided by hand shaking from time to time to promote a full reaction of these products, to
give a clear blue solution of Cu2(µ-EDTA) chelate. Heat was then ceased, and the solution
filtered (without vacuum) to remove any malachite residue. Him (2 mmol, 0.19 g) was
added to the filtrate, which produced an intensification of the blue color in the resulting
solution. Slow evaporation of this mother liquor (about one week at r.t.) produced the
first crystals of 1 which were collected by filtration, washed with water, and air-dried to be
checked by FT-IR spectroscopy. The remaining mother liquor was placed in a crystallizer,
and put inside a desiccator to permit a slow diethyl ether diffusion. The formation of
blue crystals of 1 (many of them suitable for crystallographic purposes) was achieved in a
high yield (~0.50 g, ~85%). Elemental analysis (%): Calc. for C16H24Cu2N6O10: C 32.71,
H 4.12, N 14.31, Cu (as CuO) 27.08; Found: C 32.67, H 4.10, N 14.29, Cu 27.09 (as CuO,
final residue at 950 ◦C, in the TGA curve). UV–vis spectrum data: rather symmetrical d-d
band with maximum absorption at 665 nm. FT–IR data (cm−1): 3650–3200vbr νas/νs(H2O),
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peaks at 3161w, 3144w, 3124w νas(NH), 3045w ν(C-H)arom, 2988, 2934 νas(CH2), 2866, 2814
νas(CH2), ~1640sh δ(H2O), 1611 νas(COO), 1550vw or 1512vw δ(N-H), 1389m νs(COO),
910w or 902w π(C-H)arom for only one C-H (usually expected at 900-860), 840w π(C-H)arom
for two adjacent C-H (expected at 860-810). These spectra are reported as Supporting
Information Figures S1 and S2, respectively.

2.5. Theoretical Methods

The energies of the assemblies analyzed in this manuscript were computed using
the Gaussian-16 program [12], as follows. The interaction energies ∆E, were computed as
the energy difference between the dimeric assembly and the sum of the energies of the
monomers. The basis set superposition error was corrected using the Boys and Bernardi
approach [13]. The def2-TZVP [14,15] basis set combined with the PBE0 functional [16,17]
and the D3 dispersion correction [18,19] were used for the calculations. This level of
theory (functional and basis set) has been used before to study noncovalent interactions
in the solid state [20–24], including those analyzed in this work [25–27]. Moreover, X-ray
coordinates instead of optimized geometries were used to investigate the energetic features
of the noncovalent interactions in the solid state, because we were interested to analyze
them as they stand in the solid state, instead of investigating the optimal complexation
geometry. The MEP (molecular electrostatic potential) surfaces were computed using
the 0.001 isosurface and visualized using Gaussview software [12] at the same level of
theory. The noncovalent interaction (NCI) index [28,29] and quantum theory of atoms-in-
molecules (QTAIM) [30,31] analyses were calculated using the wavefunction generated by
Gaussian-16 as input for the AIMAll program [32].

3. Results and Discussion
3.1. A Comment About the Synthesis of Compound 1

The two step synthetic procedure here reported for 1 agrees with the desired stoichio-
metric ratio Cu:EDTA:Him 2:1:2. If Him is not added (second step), the reaction between
malachite and H4EDTA yields the binary dinuclear chelate, {[Cu2(µ4-EDTA)(H2O)2]·2H2O}n,
whose crystal structure has been previously reported [5]. On the other hand, Sergienko
et al. [6], reacting this binary dinuclear chelate (as stating reactant) and a large excess of Him
(Him:Cu mole ratio = ~7:1) synthesized and X-ray characterized the salt [Cu(Him)6][(Him)
(µ2-EDTA)Cu·Cu(Him)4·Cu(µ2-EDTA)(Him)]·6H2O (GEMPOE in CSD, with an averaged
Him/Cu mole ratio 3/1) [6]. In this compound the centrosymmetric trinuclear complex
anion has EDTA as pentadentate chelator (having a non-coordinated acetate arm) for both
the terminal Cu(II) atoms as well as the µ2-bridging ligand for the central Cu(Him)4 linker
moiety. This enables the N-binding of Him in one of the four closest sites of the elongated
coordination of the metal center at both terminal Cu(µ2-EDTA)(Him) moieties.

3.2. Thermal Stability

Under air-dry flow, the weight loss versus temperature TGA behavior of 1 consists
of six steps (Figure 1). Experimental results, calculated loss weights, and evolved gases
or final residue are reported in Table 2. Detailed information of this TGA is supplied as
Supporting Information Figure S3.

First, compound 1 loses one of two uncoordinated water molecules (calculated for 2
H2O molecules 6.133%!) before starting the burning of organic ligands above 210 ◦C. Thus,
the remaining water at 210 ◦C will be most likely lost during the second step, overlapped
with the beginning of burning of organic ligands. The evolved gases suggest that this
phenomenon first affects EDTA, but weight loss in the second to sixth steps advise against
additional speculative attributions. Even so, it seems evident that the aromatic Him ligands
burn over 500 ◦C. Most organics burn below 515 ◦C, yielding a non-pure CuO residue.
Interestingly, a small weight loss during the last step leads to a final residue in excellent
agreement with the calculated value for a pure CuO residue.
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Figure 1. Weight loss versus temperature (in the range r.t. to 950 ◦C) in the thermo-gravimetric
analysis (TGA) analysis of 1 (sample: 11.03 mg).

Table 2. Summary of results obtained from the thermogravimetric analysis of compound 1.

Step or R Temp. (◦C) Time
(min)

Weight (%)
Exp. Cal.

Evolved Gases or Residue
(R)

1 40–210 2–19 3.366 3.066 * 1 H2O *, CO2 (t)
2 210–345 19–33 33.474 - H2O, CO2, CO (t)
3 345–400 33–38 3.704 - H2O, CO2, CO, CH4 (t)
4 400–425 38–42 14.307 - H2O, CO2, CO, CH4 (t)

5 425–515 42–51 14.817 - H2O, CO2, CO, CH4 (t)
N2O, NO, NO2

6 515–950 51–91 1.317 - H2O, CO2, CO (t), CH4 (t),
N2O, NO, NO2

R 950 95 27.088 27.080 2 CuO
* Calculated for the loss of only 1 H2O. t = trace amounts.

3.3. Copper(II) Coordination and Crystal Structure

Compound 1 is a polymer that agrees with the formula {[Cu2(µ4-EDTA)(Him)2]·2H2O}n.
It consists of centro-symmetric dinucelar complex motifs and non-coordinated water
(Figure 2). In each half of the dinuclear complex motif, the Cu(II) center exhibits a distorted
square-based pyramidal surrounding (Table 3), type 4+1. The square base is supplied
by the N(1), O(11), and O(21) donors from a mer-mida group from EDTA and the N(1)
imidazole donor, occupying the four shortest coordination sites of the Cu(II). One of the
acetate arms of the mida group acts as O(21)-monodentate, whereas the other one displays
an anti,syn-O(11),O(12)-bridging function. This µ2-carboxylate group represents the main
driving promoter for the polymerization of 1, supplying to each Cu(II) center of its distal
O12 6=1 donor atom, at the largest bond distance of 2.488(1) Å. The square base of the
coordination polyhedron is slightly distorted, and it reveals the Addison–Reedijk param-
eter (also the so-called trigonal index) τ, estimated for 1 from values of their trans-basal
coordination angles (θ or ϕ) as τ = (θ−ϕ)/60 = (172.70−168.16)/60 = 0.076 (Table 3). All
structural coordination parameters in 1 are in agreement with an expectable Jahn–Teller
distortion for copper(II) complexes, always related to its stable electronic configurations
([Ar]3d9) and the useful “hole formalism” (versus a 3d1). As reported for the closely
related compounds with pyridine coligands, [Cu2(µ4-EDTA)(py)2(H2O)2]·2H2O [6] and
{[Cu2(µ4-EDTA)(3hpy)2]}n [7], the efficient coordination of imidazole is due to the mutual
affinity between the Pearson’s borderline acid Cu(II) and N-heterocyclic borderline basis,
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as well as to the mer-mida tridentate group. This enables the binding of the N-Him donor
at one among the four closest donor sites around the copper(II) center. This is seen in
many other related five-coordinated Cu(II) compounds (of the type 4+1) that also promote
a displacement of the metal center (from the mean basal coordination plane) toward the
distal donor atom (0.03 Å in 1).
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Table 3. Coordination bond lengths (Å) and angles (◦) in the crystal of compound 1, {[Cu2(µ4-
EDTA)(Him)2]·2H2O}n. See Figure 2 for numbering scheme of relevant atoms.

Atoms Distance or Angle

Cu(1)-O(11) 1.9389(12)
Cu(1)-N(1) 1.9451(14)
Cu(1)-O(21) 1.9608(12)
Cu(1)-N(10) 2.0207(14)

Cu(1)-O(12)#1 2.4878(12)
O(11)-Cu(1)-N(1) 97.23(5)
O(11)-Cu(1)-O(21) 168.16(5) (ϕ)
N(1)-Cu(1)-O(21) 94.22(5)

O(11)-Cu(1)-N(10) 84.79(5)
N(1)-Cu(1)-N(10) 172.70(5) (θ)
O(21)-Cu(1)-N(10) 84.23(5)

O(11)-Cu(1)-O(12) 6=1 88.90(5)
N(1)-Cu(1)-O(12)# 1 89.50(5)
O(21)-Cu(1)-O(12)#1 88.19(5)
N(10)-Cu(1)-O(12)#1 97.57(5)

Symmetry code: #1 − x + 1/2, y − 1/2, −z + 1/2.

The crystal of 1 consists of an infinite network, having non-coordinated water molecules
and polymeric 2D-layers of the metal complex. Such layers run parallel to the bc plane,
in such a manner that Him ligands are oriented toward their external faces. They are
then pillared along the a axis, connected by an extensive network of N(3)-H(3)···O(22) 6= 3
interactions (Figure 3a and Table 4). Such interactions are efficiently reinforced by π-staking
between appropriate pairs of symmetry related anti-parallel Him ligands from adjacent
layers: inter-centroids distance dc-c = 3.45 Å (depicted in Figure 3b), inter-planar distance
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dπ-π = 3.24 Å, dihedral angle α = 0◦, slipping angles β = γ = 20.2◦). Consequently, both
intermolecular interactions infer a strong 3D cohesion, at the same time generating funnels
parallel to the a axis (Figure 3a) where water molecules are hosted with certain disorder,
in two non-equivalent positions (see Section 2.2), identified by the O-number of water in
Figure 2.
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Figure 3. (a) Layers of the polymeric metal complex of 1, pillared along the a axis of the crystal connected by
(Him)N···O(carboxylate). Non-coordinated water and other intermolecular interactions omitted for clarity, to depict
void channels where water is hosted. (b) Crystal structure fragment showing the π-stacking interaction between a pair of
anti-parallel Him ligands, belonging to the external faces of two pillared layers of the polymeric metal complex of 1.

Table 4. Hydrogen bonds in the crystal of {[Cu2(µ4-EDTA)(Him)2]·2H2O}n (1) [Å, ◦]. D = H-donor
atom, A = H-acceptor atom.

D-H···A D(D···A) <(D-H···A)

N(3)-H(3)···O(22) 6= 3 2.774(2) 169.8
O(1)-H1A)···O(12) 6= 7 2.869(4) 154.7

Symmetry codes: c = #3 = −x, −y, −z, d = 6=4 = −x + 1/2, y + 1/2, −z + 1/2, e = #5 = −x + 1/2, −y − 1/2, −z,
g = #7 = x − 1/2, y − 1/2, z.

The observed “host” role for the 3D-crystal network here reported as “guest disor-
dered water” requires some comments. First of all, the labile O(2)H2 falls inside channels
without being involved in identified intermolecular interactions. In clear contrast, the
water numbered as O(1)H2 is retained inside the channels by the cooperating action of
two weak intermolecular forces: the O1-H1A···O12) 6=7 H-bond (#7 = x − 1/2, y − 1/2, z,
see Table 4) and the quite unusual O1-H1B/π(Him) interaction (Figure 4). Now, the TGA
behavior of 1 can be rationalized, emphasizing that the “more labile water” is retained in a
surprisingly broad range of temperatures (r.t.–210 ◦C), because it is hosted within channels.
Starting from 210 ◦C, the hardly retained water should be lost, overlapped to the beginning
of the combustion of organic ligands.
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Figure 4. Crystal structure fragment representing the intermolecular (water)O1-H1B···π(Him) in-
teraction. In brackets, assumable geometric parameters (d, Θ, Φ) typically used to recognize this
kind of interaction [33–38]: d(O)···Him(Cg, centroid) 3.31 (4.3) Å, θ(O1-Cg-H1B) 15.57◦ (<25◦),
ϕ(O1-H1B···Cg) 120.1 (120–180◦).

A graphical summary of all coordination bonds and intermolecular interactions con-
tributing to the stability of 1 is illustrated in Figure 5.
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Figure 5. Intermolecular interactions contributing to the stability of the crystal of 1, uniting the
association of the 2D layered coordination polymer (N-H···O, π–staking) and reinforcing the retention
of half the water (cooperation of O-H···O, O-H/π).

3.4. Magnetic Porperties

The X-band (9.395 GHz) EPR spectrum shows the characteristic features of a rhombic
g tensor from 5 K to room temperature (Figure 6). The main components of the g tensor,
estimated by the comparison of the experimental spectra with those obtained by a computer
simulation program working at the second order of the perturbation theory, are g1 = 2.194,
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g2 = 2.125, and g3 = 2.066 (<g> = 2.128). It is notable that these parameters do not agree
with the axially elongated square-base pyramidal coordination of copper in 1. This fact
suggests the presence of exchange interactions between magnetically non-equivalent Cu2+

ions, as confirmed by the 2.0 value deduced for the Hathaway G parameter [36]. In this
way, Cu1 and Cu1d (d = 6=4 = −x + 1/2, y + 1/2, −z + 1/2) related by a two-fold screw axis
and connected by a anti,syn-carboxylate bridge, with Cu···Cud separation of 5.766(1) Å)
are crystallographically equivalents, but not from a magnetic point of view. If the exchange
interaction (J) between them is larger than the difference between their Zeeman energies, the
individual resonances must be averaged. This would explain why the observed spectrum
does not adequately reflect the coordination geometry of the environment of the Cu(II)
ions.
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The Q-band (34.1 GHz) room temperature spectrum (Figure 7) supports this hypothe-
sis. It shows the overlapping of two signals, a rhombic one with similar g values to those
deduced from the X-band spectrum (g1 = 2.192, g2 = 2.136 and g3 = 2.063; <g> = 2.130,
G = 2.0) and an axial one with g// = 2.260 and g⊥ = 2.063 (<g> = 2.130, G = 4.1). The g
values of the axial signal are in good agreement with the structural characteristics of the
CuN2O3 chromophore. Thus, it appears that the powder Q band spectrum shows the
simultaneous presence of averaged and individual resonances for Cu1 and Cu1d ions. This
behavior has already been observed previously, and occurs when the condition J>|g(Cu1)-
g(Cu1d)|βH is not fulfilled for all orientations of the magnetic field when the spectrum is
recorded at Q-band [37]. Assuming near axial symmetry for the molecular g tensor, the
following relations between the exchange and molecular components of the g tensors can
be established [38]:

(gex
1 )2 = g2

‖cos2α + g2
⊥sin2α

(gex
2 )2 = g2

‖sin2α + g2
⊥cos2α

gex
3 = g⊥

cos2α =
gex

1 − gex
2

gex
1 + gex

2 − 2gex
3

where 2α is the canting angle between the parallel axis of the two tensors, i.e., the canting
angle between the normals to the equatorial planes of the two interacting chromophores.
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The value of 2α that can be deduced from the last equation (73.9◦) is practically the
same as can be obtained from the crystallographic data (73.8◦). Therefore, the molecular g
values in this compound are: g// = 2.261 and g⊥ = 2.063, in good agreement with a dx

2−y
2

ground state, as expected for Cu(II) ions in elongated square-pyramidal geometry.
Moreover, the low value of the exchange interaction was confirmed by magnetic

susceptibility measurements in the temperature range 2 to 300 K. The room temperature
XmT value (0.838 cm3K/mol, µeff = 2.59 BM) is in good agreement with that expected for
two isolated S = 1/2 ions with nearly quenched magnetic orbital contribution (g = 2.12).
The magnetic effective moment remains practically constant down to 5 K, and slightly
decreases below this temperature (Figure 8).
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Figure 8. Magnetic behavior of compound X. The solid line corresponds to the Curie–Weiss fit (see
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The susceptibility data are well described by a Curie–Weiss expression for all the
recorded temperature range, being Cm = 0.84 cm3·K·mol−1 and θ = −0.1 K. The weakness
of the magnetic interactions in this compound is not surprising, considering the long
exchange pathways and the non-favorable disposition of the dx2−y2 magnetic orbitals.



Crystals 2021, 11, 48 11 of 15

3.5. DFT Calculations

The theoretical study reported herein analyzes the supramolecular assemblies high-
lighted above in Figures 3–5. Due to the polymeric nature of the compound, we used two
different models of the system, depending on the assembly under investigation. In order
to minimize the effect of dominant electrostatic forces, the here considered models were
adjusted to be neutral, as detailed in Figure 9. For the evaluation of the OH···π interaction
we used the mononuclear model, A, constructed using a half-molecule of EDTA and acetic
acid as apical ligand. For the evaluation of the H-bonds and Him···Him π-stacking interac-
tions, we used model B, that is dinuclear, the entire EDTA molecule is considered, and two
water molecules are used as apical ligands. Model A was used for the theoretical study of
the OH/π interaction because the water molecule also establishes an H-bonding interaction
with carboxylate group in the X-ray structure. Model B was used to study the energetic
features of the N–H···O interactions and π-stacking interactions, shown in Figure 5.
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Figure 9. Representation of the theoretical models of 1 used to investigate the noncovalent interac-
tions.

Figure 10a shows the MEP surface of model A, where the MEP maximum (+63 kcal/mol)
is located at the NH group of Him ligand. Him coordination to Cu-atom increases the
acidity of the NH group. The MEP minimum is located at the coordinated carboxylate
group. Consequently, the NH···O interactions are electrostatically very favored. The MEP
is also negative at the apical O-atom (−22 kcal/mol) and over the C5 atom of the Him ring
(see Figure 2 for numbering scheme).
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The Figure 10b shows the QTAIM distribution of critical points (CPs) and bond
paths obtained for the complex of model A with water. It confirms the existence of the
OH/π interaction that is characterized by a bond CP and bond path that connects the
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H-atom of water to C5(Him). Moreover, it also shows the existence of the O–H···O H-bond
characterized by the corresponding bond CP and bond path. The NCI index also confirms
the existence of both interactions and shows that the H-bond (blue isosurface) is stronger
than the C–H···π (green isosurface). It also shows that the green isosurface embraces
the entire water molecule, thus suggesting a larger interaction region that embraces both
H-atoms of water. We also evaluated the dissociation energy (Edis) of each individual
contact by using the methodology proposed by Espinosa et al. [39]. It is based on the
potential energy density value measured at the bond CP that characterizes the H-bond.
The CPs that characterize the contacts involving the water trimer are labelled as “a” and
“b” in Figure 10b. The corresponding Vr values, along with the Edis values derived from
the formula (Edis = −0.5 × Vr), are indicated in the top-left corner of Figure 10b. It
can be observed that the H-bond is stronger (5.6 kcal/mol) than the O–H···π interaction
(1.3 kcal/mol), in agreement with the MEP surface analysis. It also agrees well with
the color of the NCIplot isosurfaces for these HBs. The sum of the O–H···π and OH···O
dissociation energies derived from the Vr predictor is 6.9 kcal/mol, which is smaller than
the interaction energy (in absolute value), ∆E1 = −8.1 kcal/mol. This difference can be
attributed to the contribution of additional van der Waals interactions, characterized by
the extended green NCIplot isosurface, labeled as vdW in Figure 10b.

As commented above, the imidazole ring establishes a π–π interaction at the opposite
side of the OH···π interaction in the solid state (see Figures 3b and 5). Consequently, we
further analyzed the influence of the π-stacking on the OH···π interaction, using the trimeric
model shown in Figure 10c. The interaction energy (evaluate as a dimer, considering the
π-π stacking as a monomer) is almost equivalent (∆E1′ = −8.2 kcal/mol) to ∆E1, thus
evidencing that the interplay between the π-π and O–H···π interaction is negligible.

By using model B, the H-bonding and π-stacking interactions were analyzed, since
they are also very relevant in the crystal packing. Figure 11a shows the H-bonded cen-
trosymmetric homodimer where the NH group of each imidazole ligand interacts with
the carboxylate group of the adjacent molecule, forming two symmetrically related and
strong H-bonds. They are characterized by the corresponding bond CPs (denoted as “a”),
bond paths and strong blue isosurfaces. The QTAIM analysis also revealed the formation
of ancillary H-bonds established between the C–H bond of two imidazole ligands and the
O-atom of the carboxylate groups (denoted as “b”). These C–H···O contacts are expected to
be extremely weak since they are characterized by green isosurfaces and the H···O distance
is very long (>3Å). The dimerization energy is very large (∆E2 = −37.4 kcal/mol) due to
the strong nature of the N–H···O H-bonds (9.2 kcal/mol each, as deduced using the Vr
energy predictor). Moreover, the Vr value at the bond CP labelled as “b” (see Figure 8)
confirms the weak nature of the C–H···O contact that is 0.3 kcal/mol.
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(c) Combined QTAIM/NCIplot analysis of a π–π homodimer of two uncoordinated imidazole rings. Bond and ring critical
points are represented as red and ring spheres, respectively. For the NCIplot isosurface (0.5 a.u.), the –0.04 < sign(λ2)ρ < 0.04
color scale was used. Gradient cut-off = 0.04 a.u. Only the intermolecular interactions have been represented in the NCIplot
index analysis.
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We also studied the antiparallel π-stacking interaction involving the π-clouds of the
imidazole ligands, which are also relevant in the solid state of compound 1 (see Figure 11b).
The dimerization energy is significant ∆E3 = −7.4 kcal/mol taking into consideration that
it is a π-stacking interaction. The NCIplot index reveals the existence of a large isosurface
located between the aromatic rings, and suggesting a large overlap of the π-systems. The
QTAIM analysis shows two bond CPs and bond paths interconnecting the aromatic ligands.
We studied the effect of the Cu-coordination on the interaction energy by computing a
model where only the imidazole rings are considered. As a result, the interaction energy
is reduced to −6.1 kcal/mol (see Figure 11c), thus evidencing that the coordination of
the ligand to the Cu-atom reinforces the π-stacking, likely due to the polarization of
the π-system that favors the antiparallel arrangement and increases the dipole···dipole
attraction.

4. Concluding Remarks

A new polymeric compound {[Cu2(µ4-EDTA) (Him)2]·2H2O}n was synthesized and X-
ray characterized. Once again the use of basic carbonate of copper(II) proved the advantage
of yielding CO2, expected as the only by-product from its reaction with H4EDTA (besides
water) [37]. The ESR spectra and magnetic measurements indicated that symmetry related
Cu(II) centers connected by the bridging carboxylate groups behave magnetically not
equivalently, enabling an exchange interaction larger than their individual Zeeman energies.
The noncovalent interactions were analyzed in detail, revealing the formation of strong
N–H···O H-bonds and also antiparallel π-stacking interactions that are reinforced due to
the coordination of the Him rings to the Cu-metal centers, as confirmed by DFT calculations.
The role of the O–H···π interaction involving a lattice water molecule has been disclosed
and characterized by QTAIM and NCI index computational tools. The energy associated to
this interaction is weak compared to the strong H-bonds that dominate the X-ray packing.
Interestingly the channels generated in the polymeric 3D-network confers to the here
reported a host role, where the water molecules are distinctly guested. Finally, we underline
that imidazole represents the five-membered ring moiety of all purine nucleobases and
related natural or synthetic purine nucleosides. Thus, the O–H···π interaction here reported
provides further support to a very recent investigation emphasizing such interactions
between water and nucleobase in functional RNAs [40].
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