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Abstract: Band structure engineering and heterojunction photocatalyst construction are efficient
approaches to improve the separation of photo-induced electrons and holes, along with enhancing
light response ability. By sulfur doping, sodium tantalite (NaTaO3) showed an improved photo-
catalytic property for the degradation of Rhodamine B (RhB). Sn3O4 nanoflakes were constructed
on the surface of NaTaO3 nanocubes, forming a surface heterostructure via a simple hydrothermal
process, initially. This heterostructure endows the photocatalyst with an enhanced charge separation
rate, resulting in an improved photocatalytic degradation of RhB. Moreover, a possible mechanism
over Sn3O4/NaTaO3 and the photodegradation pathway of RhB were proposed as the combined
effect of photo-induced electrons and holes. This facile process for band structure engineering and
heterostructure construction provides the possibility for the practical application of high-efficiency
photocatalysts.

Keywords: photocatalyst; NaTaO3; photodegradation; Sn3O4; heterojunction; sulfur doping

1. Introduction

In recent years, the extensive treatment of wastewater containing organic pollutants
has led to a negative impact on the environment and serious consequences for human
health. Although considerable efforts and strategies have been taken to alleviate the above-
mentioned problems, the photocatalytic oxidation of water as an advanced sewage disposal
mechanism is of confocal interest and is considered an effective solution [1–7]. For this
reason, there has been an upsurge in research on a variety of photocatalysts. Among these,
ABO3 perovskite-type oxides have been widely studied, due to their high performance in
photocatalytic reactions, such as with overall water splitting and the photodegradation of
organic pollutants, which provide a potential approach to solve our urgent energy and envi-
ronmental problems [8,9]. Sodium tantalite (NaTaO3) is a prominent ABO3 perovskite-like
oxide with a high performance in photocatalytic reactions, including abundance, photochem-
ical stability, photodegradation of organic pollutants, water splitting, and low environmental
impact, which attracts a lot of attention for its favorable layered structure and distinctive
separation effectiveness in charge separation [10–20]. Hence, NaTaO3-based photocatalysts
can intrinsically decrease the recombination rate of photo-induced carriers and promote
the efficiency of photocatalytic systems. It has been well-documented that tantalates are
superior to other metal oxides. Moreover, NaTaO3 is a new type of wide bandgap semicon-
ductor material, which has a bandgap of about 4.0 eV at room temperature [10]. To enhance
the photocatalytic performance, metal or non-metal ions doped with NaTaO3 (dopants:
Sr2+ [15,17], La3+ [20,21], Ba2+ [22], Ca2+ [23], N or S [12,23]) or semiconductors loaded on
NaTaO3, such In2S3 [10], WO3 [11], NiO [24], AgCl/Ag2O [25], g-C3N4 [18,26], RuO2 [27],
and CdS [28] have been typically studied. These works were developed to improve the
photocatalytic activity of NaTaO3-based materials. The assessment of composite photocata-
lysts included photocatalytic water splitting and photodegradation of organic pollutants.
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These techniques and other strategies make NaTaO3 a better photocatalyst. Concerning the
aforementioned, the potentiality of NaTaO3-based photocatalysts is apparent.

To date, heterovalent tin oxide Sn3O4 formed of mixed valences of Sn2+ and Sn4+ has
garnered noticeable attention. One third of Sn atoms are located in Sn (II) tetrahedral coordi-
nation sites and two-thirds are located in Sn (IV) octahedral sites [29–31]. Additionally, the
Sn3O4 tin structure has been reported to influence the physical properties of tin oxide. As
proposed by theoretical calculations, Sn3O4 has been experimentally confirmed to possess
absorption bands in a limited visible-light region, which may have promising applications
as a potential photocatalyst in environmental remediation and energy conversion. With
a direct bandgap energy of around 2.56 eV, Sn3O4 has also been widely studied for its
relatively negative conduction band edge and moderate charge transport features. The
proper energy band makes it a better material for constructing heterojunction catalysts with
other semiconductor materials [32–37]. Hence, it is very vital to broaden the photocatalytic
active spectral range and improve the separation of carriers of Sn3O4.

To the best of our knowledge, there is no research on the photocatalytic performance of
the Sn3O4/NaTaO3 heterostructure. Therefore, in the current work, sulfur-doped NaTaO3
cubes were synthesized to modify the band structure of NaTaO3. Based on the appropriate
valance band (EVB ~3.01 eV) and conduction band edge (ECB ~0.99 eV) of NaTaO3 [12,28],
which can match well with that of Sn3O4 (EVB ~1.07 eV and ECB ~1.55 eV vs. NHE,
pH = 7) [30], the heterojunction of Sn3O4/NaTaO3 was synthesized. An enhanced photo-
induced charge separation was highly expected, which results in the enhanced photocat-
alytic degradation of RhB. This work provides an ordinary and low-cost method for the
large-scale production of NaTaO3-based materials in various applications. It is expected to
offer an upfront approach for developing highly stable and effective heterostructures for
organic pollutant degradation.

2. Materials and Methods
2.1. Materials

Tantalum oxide (Ta2O5), hydrochloric acid (HCl), sulfuric acid (H2SO4), sodium hy-
droxide (NaOH), tin(II) chloride dehydrate (SnCl2·2H2O), ethanol (C2H5OH), sodium
citrate dihydrate (Na3C6H5O7·2H2O), and Rhodamine B (RhB) were purchased from
Sinopharm Chemical Reagent Co., Ltd. and used without any further purification. Deion-
ized water was used throughout the study.

2.2. Synthesis

NaTaO3 and sulfur anion doped in NaTaO3 were prepared via the reported effortless
hydrothermal approach. In a typical synthesis process, 0.442 g of Ta2O5, 1.2 g of NaOH, and
a certain amount of Na2S2O3·5H2O were added into a Teflon-lined stainless steel autoclave
(50 mL capacity) that was filled with deionized water to 75% of the total volume. The
autoclave was sealed and put into a preheated oven to perform hydrothermal treatment at
180 ◦C for 12 h. After cooling to room temperature, the acquired precipitates were collected
by centrifugation and thoroughly washed with deionized water several times, and then
dried at 80 ◦C for 12 h before further characterization and photocatalytic reaction. The
obtained products were NaTaO3 powders and S-doped NaTaO3 powders, respectively; the
latter had a calculated S:Ta molar ratio of 5%, where the amount of Na2S2O3•5H2O was
0.0248 g.

The Sn3O4/NaTaO3 and Sn3O4/NaTaO3-S were prepared via a facile hydrothermal co-
precipitation method. First, 5.0 mmol of SnCl2•2H2O and 12.5 mmol of Na3C6H5O7•2H2O
were dissolved in 12.5 mL of deionized water and stirred for 5 min to get a transparent
solution, where a certain amount of NaTaO3 or NaTaO3-S (0.175 g) was added. Then,
12.5 mL of 0.2 M NaOH aqueous solution was added to the above-mentioned solution,
with vigorous stirring followed by ultrasonic treatment and the solution was transferred
to a 50 mL Teflon-lined stainless steel autoclave and maintained at 180 ◦C for 12 h. The
acquired powder was washed with deionized water and ethanol several times and then
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finally dried at 60 ◦C for 12 h. Sn3O4/NaTaO3 and Sn3O4/NaTaO3-S composites were pre-
pared with the molar ratio of Sn:Ta 1:1. Pure Sn3O4 was synthesized without the addition
of cubic NaTaO3 in a similar process.

The samples acquired above are denoted as NaTaO3, NTO-S, Sn/NTO, Sn/NTO-S,
and Sn3O4, respectively.

2.3. Characterizations

The crystalline structures of the products were characterized by X-ray diffraction
(XRD) on a Bruker D8 Advance powder X-ray diffractometer with Cu Kα radiation
(λ = 0.15406 nm). The morphologies of the as-obtained catalysts were recorded by field
emission scanning electron microscopy (FE-SEM, HITACHIS-4800). The microstructures
of the samples were recorded using high-resolution transmission electron microscopy
(HRTEM, JOEL JEM 2100). UV–vis diffuse reflectance spectra (DRS) of the catalysts were
acquired on a UV–vis spectrophotometer (UV-2550, Shimadzu) with an integrating sphere
attachment within the wavelength range from 200 nm to 800 nm along with BaSO4 as the
reflectance standard. The photoluminescence (PL) emission spectra were carried out with
an FLS920 fluorescence spectrometer at room temperature under the excitation wavelength
of 300 nm.

2.4. Photocatalytic Degradation of RhB

The photocatalytic activities of as-obtained products determined by the degradation
of RhB were conducted in a photoreaction apparatus, an XPA-II photochemical reactor
(XPA-II, Nanjing Xujiang Machine-electronic Plant, China). In typical processing, a 30 mg
catalyst was added to 30 mL of RhB solution (20 mg/L). The mixer was stirred for 30 min in
the dark to achieve the adsorption–desorption equilibrium between the dye and the surface
of the catalyst, then the reaction system was performed via the irradiation of a 300 W
mercury lamp and by continuously stirring under favorable ambient conditions. At certain
intervals of time, 4 mL of the mixed solution was collected and taken out for centrifugation
to remove the catalyst and analyzed using a UV–vis spectrophotometer (UV-6100, Metash).
The residual samples were collected for repeated photocatalytic reactions.

3. Results and Discussion

To know the phase composition of hetero photocatalyst, crystallinity, and purity,
XRD was performed and is presented in Figure 1. The XRD pattern of NaTaO3 shows
that the peaks at 22.9◦, 32.5◦, 40.1◦, 46.6◦, 52.5◦, 57.8◦, 57.9◦, and 67.9◦ are attributed to
the (100), (101), (111), (200), (102), (112), (121), and (022) diffraction planes, respectively.
All the diffraction peaks can be readily indexed as a pure perovskite NaTaO3 with a
monoclinic structure (JCPDS No. 74-2478) [10,12], which can facilitate the separation of
photo-induced electron–hole pairs. As has been reported, NaTaO3 may exist in three
polymorphs, which are the orthorhombic, cubic, and monoclinic phases [10,12]. All the
phases share TaO6 octahedra frameworks at the corners, along with sodium ions residing
in the dodecahedral interspaces, but the local structure distortion is highly different among
various polymorphs [12]. The TaO6 octahedra of the monoclinic phase were close to
the ideal perovskite, favoring the separation of photo-induced electrons and holes and
representing better photocatalytic activity [14]. After doping the S anion, it can also be seen
that the diffraction peaks of NTO-S series samples still matched the monoclinic structure.
As for bare Sn3O4, its XRD pattern showed poorer crystallinity and lower diffraction peak
intensity. The principal diffraction peaks may correspond to the (101), (120), (111), (210), (121),
and (210) crystal planes of standard triclinic-phase Sn3O4 (JCPDS No.16-0737) [29–31,34].
Additionally, the XRD patterns of Sn/NTO and Sn/NTO-S have no detected impurities,
corresponding to the aforementioned NaTaO3 and Sn3O4.
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Figure 1. XRD patterns of as-obtained samples: NaTaO3, NTO-S, Sn/NTO, Sn/NTO-S composites,
and Sn3O4.

The morphologies and microstructural details of the as-prepared NaTaO3, NTO-S,
Sn/NTO, and Sn/NTO-S were discussed based on the SEM and TEM images. Figure 2 con-
tains representative SEM images of the as-obtained samples. As shown (inset of Figure 2a,b),
NaTaO3 and NTO-S presented an approximate cubic structure with an average size between
300 nm and 500 nm, while the surfaces of some of them were a little coarse. Figure 2c,d
shows the synthesized Sn3O4 clusters with low and high magnification, respectively, which
are composed of thin flakes with a size range between 100 nm and 400 nm and a thickness
of approximately 5–10 nm. Then the SEM images of Sn/NTO (Figure 2e) and Sn/NTO-S
(Figure 2f) are displayed. Their surfaces were rough, which consisted of Sn3O4 nanoflakes
and might provide still more active faces and a larger specific area beneficial to heteroge-
neous nucleation and assembly growth of Sn3O4 nanoflakes.

As shown in Figure 3a,b, NaTaO3 always shows the cubic morphology before and
after constructing with Sn3O4. Additionally, the average size of those composites changes
little, approximately 300 nm. Evidently, the cubic NaTaO3 was essentially surrounded
by sheet-like Sn3O4 and a portion of small slices that were well dispersed on the outside
surface of the cubic NaTaO3 to compose a representative Sn/NTO heterojunction. Hence,
Figure 3c illustrates a schematic diagram of the growth process of Sn/NTO in two steps.
The first step is heterogeneous nucleation of Sn3O4 seeds on the outside surface of the
cubic NaTaO3, driven by the adsorption connecting -OH groups on the surface of the cubic
NaTaO3 with Sn2+ in the precursor [31]. The second step is Sn3O4 nanoflakes successfully
growing an assembly on the outside surface of cubic NaTaO3. The heterojunction between
Sn3O4 and NaTaO3 would facilitate photoresponse and interfacial electron transfer and
therefore enhance the photocatalytic activity.
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Figure 3. TEM images of NaTaO3 (a), Sn/NTO (b), and a schematic diagram of the growth process
of Sn/NTO (c).

The light properties of a material are very sensitive to and seriously influenced by
their intrinsic microstructures and, therefore, any changes in electronic structure. Figure 4a
determines the UV–vis diffuse reflectance spectra (DRS) of NaTaO3, NTO-S, Sn/NTO, and
Sn/NTO-S (molar ratio Sn/Ta = 1/1) heterostructures, along with pure Sn3O4. The bare
NaTaO3 presented steep absorption only in the UV region located at 308 nm. Sulfur ion
doping in NaTaO3 showed an intense absorption with an absorption red-shift of 323 nm.
The pure Sn3O4 could absorb the light irradiation as its optical absorption was determined
to be around 473 nm. After coupling NaTaO3 or NTO-S, it was found that Sn/NTO
and Sn/NTO-S heterostructures exhibited a broader absorption peak in contrast to pure
NaTaO3. The Sn/NTO composites presented a significant shift toward 484.7 nm. However,
the Sn/NTO-S heterostructure showed a continuous red-shift to 523.5 nm. According to
hv = 1240/λ and the Kubelka–Munk (KM) method, with the equation: αhv = A (hv − Eg)

2,
in which α, hv, Eg, and A are the absorption coefficient, the photon energy, indirect bandgap,
and a constant, respectively [10,11,31], the bandgap energies of NaTaO3, NTO-S, Sn3O4,
Sn/NTO, and Sn/NTO-S shown in Figure 4b were calculated to be 4.03 eV, 3.84 eV, 2.62 eV,
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2.56 eV, and 2.37 eV, respectively. Hence, the bandgaps of the composites were greatly
reduced. Interestingly, the bandgap values of Sn/NTO and Sn/NTO-S composites were not
between pure NaTaO3 and Sn3O4; the optical transitions of the composites extend much
wider. Consequently, it can be inferred that the bandgap value of the composite narrowed
via sulfur doping; then, the light absorption was further enhanced by coupling Sn3O4. The
enhanced light response could be attributed to the formation of a heterojunction between
them [10,11,18,26–29,31].
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To investigate the photocatalytic degradation capabilities of the as-obtained catalysts,
we carried out a degradation properties assessment using different samples on RhB in a
photocatalytic device that had been specially designed. The degradation of RhB and the
corresponding kinetic plots are displayed in Figure 5a,b, respectively. Figure 5a shows
the different relative concentration variations of the RhB over 140 min. C0 is the initial
concentration of the RhB, and Ct is the concentration of the RhB after a reaction for t. The
concentration of the RhB was almost constant, which implies that the RhB had attained the
adsorption equilibrium in a short time and prior reaction. Therefore, it was confirmed that
the decrease of RhB was a result of degradation as time went by. Cubic NaTaO3 presented
a steady degradation rate under UV light irradiation. After 120 min, the concentration
of the RhB decreased by 63%. The photodegradation of the RhB in the presence of pure
Sn3O4 performed relatively slowest, as only 18% of the RhB was degraded in the 120 min
illumination period. The reduced degradation rate possibly contributed to the inhibited
electron transportation efficiency and narrow spectral response in bare Sn3O4, which led
to the fast recombination of photo-induced electron–hole pairs and poor activity. It is
well known that NaTaO3 exhibits low photocatalytic activity, even under UV illumination,
due to its large bandgap. However, after having been doped in sulfur ion or coupled
with Sn3O4, the photocatalytic degradation ability of NTO-S or Sn/NTO was very much
enhanced in contrast to that of the pure NaTaO3 or the Sn3O4 catalyst. Interestingly, both
displayed similar photocatalytic degradation rates of RhB under UV light irradiation.
The Sn/NTO-S showed the best performance. The RhB was degraded almost entirely in
120 min, which also demonstrated that heterojunction structure plays a decisive role in the
transportation and separation of photo-induced carriers.
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Furthermore, the degradation rate for RhB can be acquired from the slope (min−1) of
–Ln(Ct/C0) ~ t plots (Figure 5b); the calculated results of the decolorization rate constant κ
(min−1) for NaTaO3, NTO-S, Sn/NTO, Sn/NTO-S, and Sn3O4 were 0.3366, 0.5790, 0.6060,
1.3350, and 0.0555 min−1, respectively. Evidently, the Sn/NTO-S catalyst exhibited the
highest κ values (1.3550 min−1), which were about 4.0 times those of NaTaO3.

Based on the experimental results mentioned above, a schematic model of a proposed
reaction pathway of degraded products is illustrated in Scheme 1. The band edge position-
ings of NaTaO3 and Sn3O4 were carefully made based on experimental results and earlier
studies. Via DRS, the bandgap energy of NaTaO3 (4.03 eV) was wider than that of Sn3O4
(2.62 eV) [38]. The CB of NaTaO3 was estimated to be −0.99 eV, as documented [10,39].
The narrowing of bandgap energy as a result of doping S anion is a very key factor. The
photodegradation efficiency of NTO-S was found to be greater than that of pure NaTaO3.
The reason may be that the substitution of resident O atoms within the NaTaO3 lattice by
sulfur atoms induced the local states just above the valence level as the new hybridized
orbitals were formed [12,40]. Aside from the bandgap width, the photocatalytic degra-
dation activity of a sample highly depended on the recombination of electron (e−)–hole
(h+) pairs [12,41–44]. Under photo-irradiation, the photo-induced e−/h+ pairs on the
CB/VB of each semiconductor were created. As reported previously, the principal active
species for the photocatalytic degradation of RhB included hydroxyl radicals (•OH) and
superoxide radicals (•O2

−), which were composed of the creation of h+ and e− [34], and
some researchers have explored intermediates and key reaction species [45–47]. S-doped
catalysts displayed a less intense emission than pure NaTaO3 samples, indicating a reduced
e−/h+ recombination and an enhanced RhB photodegradation performance [12].
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Scheme 1. Schematic model of a proposed reaction pathway of degraded products.

This plausible mechanism comprised excitation of the CB of the Sn3O4; then, the e−

on the CB of the NaTaO3 reacted with the available O2 to produce the superoxide radicals
•O2

−. Then, the •O2
− degraded RhB, or the RhB intermediate, into degraded products [45].

The h+ of the NTO-S transmitted to the VB of the Sn3O4 [31], and holes contributed
more to the high photocatalytic performance, while •OH showed less importance in
its ability to degrade RhB [34]. In this case, the RhB reacted with h+ and formed the
intermediate RhB that was finally converted to degraded products. Comprehensively, the
photocatalytic degradation mechanisms could be depicted as the interfacial charge transfer
of the composite-enhanced RhB photosensitization process under irradiation, which could
effectively separate and transfer photogenerated carriers. Therefore, the resultant •O2

− and
h+ favored the photodegradation procedure, and the coupled semiconducting materials
formed more dynamic catalytic centers that improved the efficiency of RhB dye removal.
This suggested that high-quality interfaces in the heterostructure composites played a vital
role in enhancing the catalytic performance.
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To prove the rationality of the proposed reaction pathway and investigate the capabil-
ities of photo-induced e−/h+ pairs in the semiconductors, PL emission spectra of NaTaO3,
NTO-S, Sn/NTO, Sn/NTO-S, and Sn3O4 were carried out, respectively. PL emission arises
from the recombination of free carriers, and a higher PL intensity reveals a higher recombi-
nation rate of photogenerated e−/h+ pairs. By contrast, a weaker PL intensity indicates
a lower recombination rate of photo-excited e−/h+ pairs, and accordingly, much more
photo-induced carriers can participate in the photocatalytic reaction [10,34]. As shown
in Figure 6, the spectrum of NaTaO3 nanocubes showed three peaks at around 395 nm,
451 nm, and 469 nm. The emission at 451 nm and 469 nm was due to band-to-band mixing
of Ta4+-O− states in the octahedral TaO6 motifs of NaTaO3 [48]. After doping the S anion in
NaTaO3, the PL intensity of NTO-S was weaker than that of pure NaTaO3. It indicated that
the NTO-S could suppress the recombination of e−/h+ pairs. Noticeably, the intensities of
the PL spectra of Sn/NTO and the Sn/NTO-S heterojunction photocatalysts strongly de-
creased with the Sn/NTO heterojunctions formed as compared to pure cubic NaTaO3; this
can be seen at the maximum PL intensity at around 469 nm. The lower PL intensity implied
the efficient inhibition of photogenerated pairs and therefore higher photocatalytic activity
in the UV light region, which could effectively explain the variation of the photocatalytic
activities of the different samples.
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4. Conclusions

On the whole, we have successfully synthesized a novel Sn3O4/NaTaO3 heterojunc-
tion with doping sulfur anion via a simple hydrothermal method. The bandgap value
of NaTaO3 and the composite narrowed via sulfur doping, which induced an increase in
light absorption. With coupling Sn3O4, it was found that the as-obtained Sn/NTO and
Sn/NTO-S composites exhibited cubic NaTaO3, or that NTO-S assembled by countless
interlaced fine Sn3O4 nanoflakes were successfully synthesized for the first time. The fabri-
cation of enough interfaces with high qualities played a critical role in light absorption and
enhancing photocatalytic performance. Assessed by the degradation of the RhB solution,
the Sn/NTO-S composite presents a superior photoreactivity toward RhB degradation
under UV light illumination in contrast to individual Sn3O4 or NaTaO3. The calculated de-
colorization rate constant is much greater (1.3550 min−1) than single Sn3O4 (0.0555 min−1)
or NaTaO3 (0.3366 min−1). This could be due to the enhanced light absorbance by the
larger specific surface area of the Sn3O4 nanoflakes and the formation of the heterojunction
between NTO-S and Sn3O4, which can separate photo-induced carriers efficiently. It is also
proposed that the formed •O2

− and h+ favored the photocatalytic degradation of RhB. This
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work highlights the importance of heterostructured Sn3O4/NaTaO3, which may provide a
lead to develop high potential and NaTaO3-based photocatalysts for the degradation of
organic dyes.
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