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Abstract: Moisture with harmful ions penetrates into the interior of concrete, which causes dete-
rioration of the concrete structure. In this study, a moisture saturation equilibrium relationship
of concrete was tested under different temperatures and relative humidity conditions to develop
moisture absorption and desorption curves. Based on experimental data and numerical simulation,
a model of moisture transport in concrete was established. The results from the model indicate
that the moisture absorption rate was lower at higher temperatures and largely dependent on the
saturation gradient, while the desorption was increased at higher temperatures and mostly affected
by the saturation gradient. The proposed model was highly in agreement with the experimental data.

Keywords: concrete; humidity; moisture absorption; moisture desorption; numerical simulation

1. Introduction

The inevitable ingress of moisture with harmful ions into concrete could reduce the
pH value of pore solution. Temperature is a key factor in the rate of moisture transport
in concrete because it can change pore pressures to cause concrete spalling at a critical
degree [1-3]. The rate of moisture transport in concrete directly affects the time and degree
of concrete deterioration. Therefore, understanding the moisture transport process in con-
crete is essential to design durable concrete structures [4-6]. The main factors determining
the rate of moisture transport in concrete include temperature, relative humidity (RH),
microstructure and porosity of concrete.

The isothermal absorption and desorption of moisture vapor in a cement-based mate-
rial reflect the ability of its pore structure to absorb and desorb moisture [7]. Therefore, the
moisture absorption and desorption processes are typically characterized using isothermal
absorption-desorption curves [8]. Concrete under an environment with different RH levels
will finally attain an equilibrium state at a constant temperature when the pore structure
reaches a particular moisture saturation level [9]. The Young-Laplace equation describes
the relationship between the capillary pressure and aperture, while the Kelvin equation
expresses gas-liquid equilibrium relationship between the curvature of liquid surface and
vapor pressure. These two equations can be used to transform the isothermal absorption-—
desorption curve so as to represent the relationship between the capillary pressure and
saturation [10,11]. Trabelsi et al. developed an isothermal absorption—desorption curve to
describe the moisture desorption using statistical and finite element methods [12]. Neitha-
lath et al. [13] calculated the intrinsic permeability of concrete based on the porosity, specific
surface area and tortuosity. Baroghel-Bouny et al. [14] obtained isothermal desorption
curves for concrete and determined a theoretical relationship between the relative perme-
ability coefficient and saturation based on findings in the literature [15]. The diffusion
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coefficient of moisture in concrete was determined, and then the moisture transfer curves
under the drying process were obtained.

Zhou and Li [16] studied the concrete permeability using a three-phase composite ran-
dom aggregate concrete simulation model based on the finite element method. Wang and
Ueda [17] discretely divided concrete at the mesoscale to characterize moisture transport
and investigated the influence of the interfacial transition zone on the capillary absorption
of the concrete. Li et al. [18] established a three-dimensional mesoscale model to evaluate
concrete permeability.

In previous numerical studies on moisture transport, the parameters that determine
the influences of temperature and RH in the driving force of capillary pressure, have
not been derived. In this paper, isothermal adsorption and desorption experiments were
carried out at three temperatures (20 °C, 35 °C, 50 °C) to obtain the adsorption-desorption
curves. The influences of different temperatures and RHs on the moisture transport
process of concrete were analyzed. Further, a model in function of RH and saturations of
adsorption and desorption process was regressed based on experimental data. Using the
Kelvin equation, the relationship between capillary pressure and saturation was evaluated.
A moisture transport model in respect of capillary pressure and saturation of concrete was
established and verified with the experiment results. In addition, the moisture transport
behavior of concrete at different temperatures and RHs was simulated.

2. Materials and Methods
2.1. Test Materials

Concrete was made of cement, mineral powder, fine aggregate, and coarse aggregate.
The binder material comprised P.042.5 ordinary Portland cement and mineral powder
with densities of 3060 and 2890 kg/m?3 respectively, in equal mass fraction. The chemical
composition of cement is shown in Table 1. The fine aggregate was well-graded medium
sand with a measured apparent density of 2623 kg/m? (Table 2). The coarse aggregate had
a 5-20 mm continuous particle gradation, a maximum particle size of 20 mm (Table 3),
and a measured apparent density of 2710 kg/m?3. The fresh concrete was cast into 120
molds in dimensions of 100 mm x 100 mm x 100 mm. After curing at 20 + 2 °C and
95% RH for 28 days, each specimen was cut horizontally into three pieces in a dimension
of 100 mm x 100 mm x 30 mm. To avoid separation from vibration, only the middle
piece was selected for testing. In total, 60 absorption and 60 desorption specimens were
prepared. Table 4 provides the mix proportion of concrete in accordance with previous
studies [19-21].

Table 1. Chemical compositions of cement in mass.

Composition SiO, Fe, O3 Al,O3 CaO MgO Na,O SO3
% 22.4 3.7 4.7 60.3 2.7 0.13 2.1

Table 2. Particle size distribution of fine aggregate.

Size of Screen Mesh (mm) 4.75 2.36 1.18 0.60 0.30 0.15
Passing percent (%) 99.5 87.7 72.0 45.9 19.6 2.1

Table 3. Particle size distribution of coarse aggregate.

Size of Screen Mesh (mm) 26.5 16 9.5 4.75 2.36
Passing percent (%) 100.0 76.0 14.4 0.3 0.0
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Table 4. Concrete mix ratio for the absorption and desorption specimens.
Water Binder Material Fine Aggregate (Sand) Coarse Aggregate
kg/m? kg/m? kg/m?3 kg/m?
261.0 562.0 514.0 960.0

2.2. Test Method

The tests were performed as per ISO12571-2013 [22]. The specimens for the absorption
test were first oven-dried at 100 °C for 24 h and then placed in a dryer to cool down to
20 °C (room temperature) and weighed. Subsequently, all specimens were oven-dried for
another 12 h, cooled down to 20 °C in the dryer and weighed. These steps were repeated
until the change in mass was less than 0.5% to obtain a dry state. For the desorption test,
all dry specimens were placed in water for seven days to be saturated, surface-dried with a
towel and weighed. Then, the specimens were returned to the water for 24 h and weighed.
This was repeated until the change in the specimen mass was less than 0.5% to obtain a
saturated state.

Afterward, the specimens were moved to glass containers in a constant-temperature /
humidity chamber with a temperature accuracy of +1 °C and 50 + 2% RH as shown in
Figure 1. During the test, saturated salt solutions of LiCl, MgCl,, KBr and KNO; were
added at the bottom of glass containers to secure 10%, 35%, 80% and 95% RH respectively.
It should be noted that for the specimens at 50% RH, there was no saturated salt solution.
The testing temperatures were 20 °C, 35 °C and 50 °C.

— Concrete
1
B  specimen

Saturated
salt solution

(a)

Figure 1. Isothermal adsorption devices (a) glass container, (b) constant-temperature/humidity

chamber.

Each specimen was weighed at designated time interval until the change in mass was
less than 0.1%. It should be noted that since the mass change was decreasing over time,
the time interval of weight measurement in the early stage was shorter than in the later
stage. In total, there were 12 weight measurements for the absorption test and 13 weight
measurements for the desorption test.

The specimens were designated as X-% and P-% for the absorption and desorption
tests, respectively. The percentage represented the RH conditions. For example, specimens
X-10% is the absorption specimens for 10% RH.
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2.3. Determination of Saturation

The moisture content of a specimen can be defined as follows [8]:

5= )
Vo
where S is the moisture saturation, Vs is the volume occupied by water in the pores of the
specimen, and Vj is the volume of pores in the specimen.
In order to determine adsorption and desorption isotherms, the moisture saturation S
can be expressed based on the water content [23]:

mwyw — mg
Mywg — Mg

S= ()
where m, is the mass of specimen underwater (kg), m, is the mass of the specimen in a dry
state (kg) and my is the mass of the specimen under saturation state (kg).

3. Results and Discussion
3.1. Absorption—Desorption Curves

Absorption mainly refers to physical absorption, which is the phenomenon that
moisture enters concrete through capillary pressure, while desorption is the phenomenon
that moisture in concrete is transferred from liquid to gas and released from concrete.

Absorption—desorption curves representing the changes in the moisture contents of
the specimens over time at 20, 35, and 50 °C are shown in Figure 2.

Figure 2a shows that, at the same temperature, the absorption curves tended to be
consistent between the different RH conditions, as the specimen saturation increased
significantly during the initial stage of the absorption process. As absorption progressed,
the saturation between the interior and exterior of concrete decreased due to decreased
moisture absorption capacity and eventually stabilized. The moisture absorption behaviors
of the specimens were similar at different temperatures. For a given temperature, a higher
RH resulted in faster moisture absorption. When the RH was lower than 50%, the moisture-
absorption process of the specimen was gradual, which reveals that temperature and RH
had little effect on the time required to reach the equilibrium. The absorption rate and
capacity increased sharply when the RH was greater than 50%. At 80% RH, the moisture
absorption capacity and equilibrium time both increased as temperature decreased. Under
low-RH conditions (i.e., less than 50% RH), the concrete exhibited less moisture absorption
capacity with saturation less than 0.1, and temperature’s effect on the moisture absorption
rate was marginal. When RH was greater than 50%, temperature’s effect on the moisture
absorption became significant.

During the desorption test, a lower RH came with a greater saturation between the
interior and exterior of concrete, and a longer time to reach equilibrium, as shown in
Figure 2b. When the RH was lower than 80%, the increment of temperature increased
desorption capacity and the time to reach equilibrium. When RH was higher than 80%,
the effect of temperature on the moisture transport rate decreased. Regardless of tempera-
ture, the saturation at equilibrium was approximately 0.9.
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Figure 2. Absorption and desorption over time: (a) 20 °C, (b) 35 °C, (c) 50 °C.

3.2. RH-Saturation Equilibrium

The RH-saturation curves during absorption and desorption for different RH condi-
tions are shown in Figure 3. The curves were substantially similar for different temperatures.
As RH increased, the saturation gradually increased. When RH was below 50%, the ab-
sorption process was gradual. The absorption capacity significantly increased when RH
was greater than 50%. Irrespective of temperature, 50% RH was an inflection point in
the moisture absorption process. Based on the Kelvin equation, the maximum pore size
that could be saturated was approximately 4 nm at 50% RH, and the boundary between
the gel pores and capillary pores was generally 10 nm (i.e., gel pores < 10 nm < capillary
pores). Therefore, when RH was below 50%, only part of the gel pores was saturated, while
for RH above 50%, the capillary pores saturated gradually, thereby rapidly increasing the
saturation [24]. Further, the saturation decreased with decreasing RH. As temperature
decreased, the saturation considerably decreased. At 80% RH, the equilibrium saturation
decreased substantially, which indicates that an RH greater than 80% could greatly affect
the equilibrium of the moisture desorption process in concrete.
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Figure 3. Absorption and desorption equilibrium curves: (a) 20 °C, (b) 35 °C, (c) 50 °C.

In Figure 3, since the desorption curve is above the absorption curve, it indicates a
higher saturation for a given RH. The desorption process displays a significantly hysteretic
nature compared to the absorption process, which implies that the gas-liquid equilibrium
in pores is nonhomogeneous. The hysteresis represents the “ink bottle effect,” which refers
to the effect that a small pore (bottleneck) exerts stress upon the water in a connected large
pore (bottle) [25]. Larger concrete capillary pores require a higher RH to reach equilibrium
saturation than small pores. For initially saturated pores, the liquid water in large pores
transports through the liquid water in small pores without forming a gas-liquid interface.
Therefore, the water in large pores can be discharged only when the ambient RH is below
the saturated RH of small pores. For a given RH, the saturation equilibrium of the moisture
absorption process is lower than that of the moisture desorption process [26].

For a given RH, the capillary condensation phenomenon is more likely to occur during
the absorption process, and a higher saturation can be attained at a lower temperature.
During desorption, at a higher temperature, the saturation is lower because the pore water
evaporates more easily [27]. According to a study by Zeng [8], the relationship between
the capillary pressure and RH is:

_ ART

P M

where M is the molar mass of water (kg/mol), R is the gas constant (given as 8.314 ] /mol/K),

pc is the capillary pressure (Pa), & is the RH, T is the absolute temperature (K) and p; is the
density of liquid water (kg/m?).

Using Equation (3), the isothermal equilibrium curve of RH and concrete saturation
can be converted into a moisture characteristic curve, as shown in Figure 4. When the
concrete was at the same saturation through absorption and desorption, the capillary
pressure of the desorbed concrete was greater than that of the absorbed concrete, reflecting

Inh 3)
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the hysteretic nature of the desorption process. When the temperature was lower during
both the absorption and desorption processes, the capillary pressure was greater, as well as
the equilibrium saturation corresponding to the same capillary pressure.

700 ——@— Absorption 293.15K
=@ Absorption 308.15K
600 Absorption 323.15K
= @& = Desorption 293.15K
500 F = @& = Desorption 308.15K
Desorption 323.15K

400 | @

\

W
S
[«]

[\
S
[e]

100

Capillary pressure absolute value
(MPa)

0

0 01 02 03 04 05 06 0.7 08 09 1
Saturation

Figure 4. Equilibrium relationship between the capillary pressure and saturation.

3.3. RH and Saturation Equilibrium Model
In [28], a model representing the absorption of water by the hygroscopic material and
RH is shown as follows: )
—In(1-h),c
A(T + B) }
where W is the equilibrium moisture content and A, B and C are coefficients.

By replacing the equilibrium moisture content with the saturation, Equation (4) can be
applied to find the inverse function. The RH and saturation relationship is:

W= (4)

h=1—exp(—A(T + B)S®) (5)

where S is the saturation.

The model of the relationship between RH and equilibrium saturation can be obtained
by substituting the data from the experimental results as seen in Figure 3 into Equation (5).
Nonlinear regression was used to yield Equations (6) and (7) for the absorption and
desorption processes, respectively.

has = 1 —exp(—0.03(T — 180.7)8%8%)  R%2 =091 (6)
hgs = 1 —exp(—0.05(T — 258.76)5>%)  R? =091 @)

4. Moisture Transport Model
4.1. Moisture Movement in Unsaturated Concrete

The transport of liquid water in unsaturated concrete can be expressed by Darcy’s law.
For saturated concrete, the permeability coefficient is constant and a function of saturation
for unsaturated concrete.

According to the Darcy-Buckingham equation, the relationship between transport
rate of liquid water and capillary pressure is expressed as [11]:

k
o= —ﬁlgrad(r’c) ®)
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where v, is the rate (m/s); k; is the effective permeability for moisture transport (m?),
which is related to the moisture content in concrete and micro-geometric parameters of the
pore occupied by moisture; y is the dynamic viscosity coefficient of water (Pa-s).

If the conversion of liquid water to water vapor in the pores of concrete is neglected,
the moisture transport in the concrete conforms to the law of mass conservation. The
moisture transport equation in concrete can be written as below [29,30]:

0 . [k
5 = div [P[grad(pc)} 9)

Converting the left side of Equation (9) to pore moisture content and the right side
into the pore moisture saturation gradient, it becomes:

0 _ [0
5 = le[V 33 grad(S)} (10)

where 0 is the moisture content of the concrete.
The effective permeability to moisture transport (k;) can be expressed as

ky = kky (11)

Therefore, Equation (10) can be rewritten as follows:

% — div [kkﬂ aagcgrad(S)} (12)

where k is the intrinsic permeability of concrete (m?), and k,; is the relative permeability,
which is a parameter associated with the saturation.
Equation (12) can be expressed as:

P — div[D($)grad (s) (13)
k., 9pc
D(S) = “kig 14)

where D(S) is the transport coefficient of liquid water (m?/s).
The relationship between the dynamic viscosity coefficient of water (i), and tempera-
ture can be expressed as follows: [31]

0.001775
[140.0837(T — 273.15) 4 0.000221(T — 273.15)?]

H= (15)

The intrinsic permeability (k) of concrete can be determined based on the porosity,
specific surface area and tortuosity of concrete using the Kozeny—Carman model [13]:

(P3
T Raa gy "

where F; is the factor representing the influence of pore shape (2 for a circular and tubular
pore), T is the tortuosity and () is the specific surface.

4.2. Relationship between the Moisture Transport Parameters

By substituting Equations (6) and (7), which represent the equilibrium relationship
between RH and saturation, into Equation (3), the relationship between the capillary
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pressure and saturation during the moisture absorption and desorption processes can be
expressed as Equations (17) and (18), respectively.

Pas = % In(1 — exp(—0.03(T — 180.7)5%8%7)) (17)
Pas = % In(1 — exp(—0.05(T — 258.76)5>%)) (18)

The relationship between the relative permeability (k,;(S)), and relative saturation can
be established based on previous studies [14,15,32]:
pe = Aa(sTV/m 1)\ " (19)
2
ka(S) = VS[L— (1-8")"]
where m and A, are undetermined coefficients.

The value of m can be determined through regression of the capillary pressure versus
saturation curve. The absolute value of capillary pressure m for absorption and desorp-
tion processes at different temperatures can be derived based on Equation (19) through
nonlinear fitting.

Using the data in Table 5 to fit the relationship between m and T for the absorption
and desorption processes gives Equations (21) and (22), respectively.

(20)

Mas = 1/(2.89In(T) — 14.89) (1)

mas = 1/(21.06 — 3.16In(T)) (22)

Table 5. m values corresponding to the absorption and desorption process.

Moisture Absorption Moisture Desorption
T(K) 293.15 308.15 323.15 293.15 308.15 323.15
m 0.672 0.579 0.573 0.328 0.324 0.362
R? 0.985 0.988 0.991 0.999 0.997 0.992

Equations (21) and (22) are then substituted into Equation (20) to express the rela-
tionship between the relative permeability and saturation during the moisture absorption
process.

n(T)— 2
Kitas(S) = VS[1 — (1 — §289In(0) 1489 VI 1 23)

Thus, the relationship between the relative permeability and saturation during the
moisture desorption process is:

3161n(T).2
Ki_as(S) = VS[1 — (1 — 5210631611/ B A6y (24)

4.3. Moisture Transport Model

The relationships between capillary pressure and saturation during the process of
moisture absorption and desorption are shown in Equations (17) and (18). These equa-
tions are then substituted into Equation (13) to develop the moisture transport model for
absorption and desorption processes.

¢S

Tl div[D(S)grad(S)] (25)

where ¢ is the porosity of concrete.
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Transport coefficient D(S) of Equation (25) in absorption and desorption processes
are then represented as Equations (26) and (27), respectively.

() L0251k pIRT(T —180.7)5 0160 exp(~0.03(T ~1807)5%7)
as(0) = M (1 — exp(—0.03(T — 180.7)S59-837))

Dys(S) = 0.252kky1_gs01 RT (T — 258.76) S*0% exp (—0.05(T — 258.76)S5504)
R UM (1 — exp(—0.05(T — 258.76)S>04))

(27)

4.4. Heat Balance Equation
The heat balance equation correlated to the saturation can be established based on
Fourier’s law [11,33]:

0
CPET{ + V. [-AsVT]=Q (28)

where c is the specific heat of material (J/kg-K), Ag is the thermal conductivity at different
saturations (W/m-K), p is the material density (kg/m?) and Q is the heat flux (J/m?s).
The negative sign indicates that the direction of heat flow is opposite to the direction of the
temperature gradient.

The transient plane source (TPS) technique was used to determine the thermal conduc-
tivity for the concrete in the same mix proportion as in the present study and at the same
saturation values of 0, 0.3, 0.5, 0.7, 0.9 and 1.0 as in the moisture absorption and desorption
tests described in Section 2.1. The relationship between the thermal conductivity and
saturation is:

Ag = (14 0.34325%)A, (29)

where A, is the thermal conductivity under dry state (W/m:-K).

5. Numerical Simulation
5.1. Model Parameters and Mesh Generation

The concrete was considered as a uniform and isotropic continuous medium; thus
the concrete skeleton was assumed as an impermeable material that did not react with
gas or liquid phases. COMSOL®® software (COMSOL Inc., Stockholm, Sweden) was
used to establish a three-dimensional numerical model based on Equations (25)—(28), and
one-dimensional transmission was adopted. The physical parameters of heat and moisture
transport are shown in Tables 6 and 7. The size of the simulated specimen was the same as
that of the experimental specimen used in the test, namely 30 mm x 100 mm x 100 mm.
A total of 9520 tetrahedral elements were used in COMSOL®® software to develop the
finite element model with DOFs of 28,186 and convergence criteria of 1072, as shown in
Figure 5.

Table 6. Heat transfer physical parameters.

Parameter Dry Thermal Conductivity, A,(W/m-K) Specific Heat, ¢ (J/kg-K) Concrete Density, p  Porosity, ¢
Value 1.578 900 2297 0.1796
Table 7. Moisture transport physical parameters.
Parameter Intrinsic Permeability, k Water Density, pq Gas Constant R Molar Mass of Water, M
(m?) (kg/m?) (J/mol-K) (kg/mol)
Value 1413 x 10721 1000 8.3144 0.018
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Figure 5. Mesh elements division of concrete.

5.2. Moisture Transport Model Validation

The experimental results shown in Figure 2 were simulated for 80% and 95% RH at 20,
35 and 50 °C to validate the moisture transport model. The initial internal saturation of the
concrete was set as 0.08, and the boundary saturation was the corresponding equilibrium
saturation. The initial temperature of inside concrete was 283.15 K, and the simulation time
was the hygroscopic equilibrium time for the three temperatures, which was approximately
350 h. The simulated results were compared with the experimental results, as shown in
Figure 6.

1  =——@— 293.15K test value 1 [ =—@— 293.15K test value
= % =293.15K simulation value = % =293.15K simulation value
091 308.15K test value 09 f 308.15K test value
0.8 b — ® =308.15K simulation value 08 | — ™ —308.15K simulation value f..‘
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L06 1 -
205 | - = XXX 8
g AR - ana 8
204 | wm - | 2
wn 7, wn)
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0 " " " " " " " " J 0 ' 1 1 1 A i i i J
0 40 80 120 160 200 240 280 320 360 0 40 80 120 160 200 240 280 320 360
Time (h) Time (h)
(a) (b)

Figure 6. Test and simulation values of moisture absorption process: (a) is 80% RH, (b) is 95% RH.

The simulated and experimental results show a similar trend, and the values also
agreed well. The simulated results were slightly lower than the experimental results.
Under the simulated conditions, the moisture absorption rate decreased, and the moisture
absorption capacity was slightly lower than that in the experiment. This could be because
the moisture transport model only considers the transport of liquid water, not the moisture
vapor transport that occurred under low-saturation conditions.

The experimental results provided in Figure 2 were applied to validate the moisture
desorption model. The simulation was performed under the conditions of 10% and 35%
RH at 20, 35 and 50 °C. The initial temperature inside the concrete was 283.15 K. The
concrete interior was initially saturated and the boundary saturation was the corresponding
equilibrium saturation. The simulation time was 250 h.

Figure 7 provides a comparison of the simulated and experimental results, which
shows that the simulated values were in good agreement with the experimental values
under 35% RH and were slightly higher than the experimental values at 10% RH. The
overall results demonstrated that the simulated model of moisture desorption was valid.
This also indicates that the simulated results remained accurate when the concrete was at a
higher saturation level. When the saturation decreased, the simulated moisture desorption
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rate was slightly lower than the experimental rate, implying that the water vapor transport
in the concrete exerted limited influence under the low-saturation condition. In the marine
environment, it is difficult for concrete to reach a low saturation state due to high RH.
Therefore, the simulated model of moisture transport was accurate for the applications in
the high RH environment.

1?\
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Figure 7. Test and simulation values of moisture desorption process: (a) is 10% RH, (b) is 35% RH.

5.3. Absorption

The upper, lower and right ends of the two-dimensional geometric model of concrete
were defined as heat and moisture insulation. Therefore, moisture absorption was from
left to inside. The effect of temperature on the moisture absorption process at 95% RH was
evaluated under the temperatures of 293.15, 308.15 and 323.15 K and the boundary satura-
tion values of 0.80, 0.72, and 0.39, respectively. The simulation had an initial temperature
of 273.15 K, saturation of 0.2 and time of 500 days.

The simulated results are shown in Figure 8. It can be seen that the saturation was the
lowest at 323.15 K (i.e., the highest temperature) but the highest at 293.15 K (i.e., the lowest
temperature). For a given RH, an increased temperature decreased boundary saturation,
moisture transport rate, moisture transport capacity, moisture transport distance and mois-
ture absorption. The saturation gradient is the main driving potential of moisture transfer.
A higher temperature reduced moisture absorption rate. Meanwhile, with temperature
increasing, the equilibrium saturation of the concrete boundary further decreased. Such a
combined effect decreased moisture absorption of concrete.
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0.8 323.15K
0.7 F
0.6 |
0.5 |
0.4 t
03
02
0.1

0

Saturation

0 10 20 30 40 50 60 70 80 90 100
Depth from concrete surface (mm)

Figure 8. Simulated distribution at different temperatures.

The combined influences of the temperature and saturation in the moisture transport
process were investigated at three conditions: high temperature and RH (boundary temper-
ature T = 323.15 K, boundary saturation S = 0.9), medium temperature and RH (boundary
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temperature T = 308.15 K, boundary saturation S = 0.75) and low temperature and RH
(boundary temperature T = 293.15 K, boundary saturation S = 0.6). The simulation had
an initial temperature of 273.15 K, saturation of 0.2 and time of 500 days. The simulated
results are provided in Figure 9, which shows the same trend among the three conditions.
The transport rate is directly correlated with temperature and RH. It also shows that the
saturation gradient mostly affected moisture transport rate. Although the saturation was
large at high temperature, the moisture transport rate was notably high. Therefore, the
effect of RH on the moisture transport rate in the concrete was greater than that of tem-
perature. The transport process of moisture in concrete at the temperature of 293.15 K and
saturation 0.6 for simulation at 500d is shown in Figure 10. It can be seen that the moisture
is gradually transferred from the left end of the concrete to the interior, and the saturation
is reduced with depth increasing, which is coherent with the trend in Figure 9.

Temperature 323.15 K, saturation 0.9
= == = Temperature 308.15 K, saturation 0.75
Temperature 293.15 K, saturation 0.6
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Figure 9. Saturation distribution during the absorption simulation.
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Figure 10. Cloud atlas of moisture in absorption process at temperature of 293.15 K and saturation of 0.6.

5.4. Desorption

The upper and lower ends of the two-dimensional geometric model of concrete were
treated as heat and moisture insulation. The direction of moisture desorption was from
inside to both sides. The effect of temperature on the moisture desorption process at 10%
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RH was analyzed at temperatures of 293.15, 308.15 and 323.15 K and boundary saturation
values of 0.70, 0.46 and 0.36, respectively. The simulation time was 200 days with an initial
temperature of 273.15 K and saturation of 0.9.

Figure 11 presents the simulated results. It illustrates that, for a given RH, higher
temperatures lowered the boundary saturation. When the internal saturation of concrete
was higher, the difference in saturation was greater between the outside and inside of
concrete, resulting in a significant loss of moisture in the concrete. The boundary saturation
was lower at higher temperatures, which increased the moisture desorption rate as well as
the moisture desorption capacity.
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Figure 11. Saturation distribution during the desorption simulation.

Additionally, the combined effects of temperature and saturation on the moisture
transport process during desorption were investigated for three conditions: low tempera-
ture and high RH (boundary temperature T = 293.15 K, internal saturation S = 0.9), medium
temperature and RH (boundary temperature T = 308.15 K, internal saturation S = 0.75) and
high temperature and low RH (boundary temperature T = 323.15 K, internal saturation
5 =0.6). The simulation time was 500 days with an initial temperature of 273.15 K and
saturation of 0.2.

As shown in Figure 12, the three curves displayed a similar trend. The saturation
values for the three conditions at the internal depth of 50 mm were 0.552, 0.481 and 0.417,
respectively. Even at low temperature, the greatest moisture transport rate was observed at
the highest RH. The temperature had a greater effect on the moisture desorption process
than saturation. The change of saturation of moisture in the desorption process at a
temperature of 308.15 K and saturation of 0.75 is shown for the simulation at 500d in
Figure 13. This indicates that the moisture was uniformly desorbed to both sides. The
rate of saturation reduction was high close to both sides, while it was slow in the middle.
This is due to the fact that the boundary temperature is higher at the concrete’s surface,
resulting in faster moisture transport.
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Figure 12. Internal average saturation distribution during the desorption process.
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Figure 13. Cloud atlas of moisture in the desorption process at a temperature of 308.15 K and saturation of 0.75.

6. Conclusions

This study sought to elucidate the mechanisms of moisture transport in concrete. A
numerical model was developed. Based on the experimental and simulated results, the
following conclusions can be drawn.

(1) Under isothermal conditions, a higher RH increased the moisture absorption
rate, and the moisture absorption capacity was greater at lower temperatures. When RH
exceeded 50%, the moisture absorption rate increased significantly. Similarly, a lower RH
resulted in a faster desorption, and higher temperatures increased the moisture desorption
capacity.

(2) A model of the relationship between RH and equilibrium saturation in absorption
and desorption processes was proposed. A formula in the function of capillary pressure
and moisture saturation of concrete was established, and a model of moisture transport in
the concrete was developed. The experimental results verified the accuracy of the moisture
transport model.

(3) Based on the simulated results, an increased temperature reduced the rate of
moisture absorption. The saturation had more effects on the absorption rate than tempera-
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ture. Although an increment of temperature increased the moisture desorption rate, the
saturation had more effects on the moisture desorption than temperature.

(4) Under low saturation, the transport of water vapor affected the moisture desorption
rate in concrete. Hence, the transport of water vapor should be further considered in the
moisture transport model.
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