Multi-Component Crystals of 2,2′-Bipyridine with Aliphatic Dicarboxylic Acids: Melting Point-Structure Relations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Co-Crystals
2.2. Single-Crystal X-ray Diffraction
2.3. Differential Scanning Calorimetry (DSC)
2.4. Powder X-ray Diffraction (PXRD)
3. Results and Discussion
3.1. Differential Scanning Calorimetry
3.2. Single-Crystal X-ray Diffraction
3.2.1. BPY H+·OXA−
3.2.2. BPY 2H+·2MAL−
3.3. Hirshfeld Surface Analysis
3.4. Cambridge Structural Database (CSD) Conformational Analysis of the 2,2′-Bipyridine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: How cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–8. [Google Scholar] [CrossRef]
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des. 2018, 18, 6370–6387. [Google Scholar] [CrossRef]
- Shan, N.; Zaworotko, M.J. The role of cocrystals in pharmaceutical science. Drug Discov. Today 2008, 13, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2012, 453, 101–125. [Google Scholar] [CrossRef] [PubMed]
- Suresh, A.; Minkov, V.S.; Namila, K.K.; Derevyannikova, E.; Losev, E.; Nangia, A.; Boldyreva, E.V. Novel synthons in sulfamethizole cocrystals: Structure−property relations and solubility. Cryst. Growth Des. 2015, 15, 3498–3510. [Google Scholar] [CrossRef]
- Batisai, E.; Ayamine, A.; Kilinkissa, O.E.Y.; Báthori, N.B. Melting point-solubility-structure correlations in multicomponent crystals containing fumaric or adipic acid. CrystEngComm 2014, 16, 9992–9998. [Google Scholar] [CrossRef]
- Batisai, E. Multicomponent crystals of anti-tuberculosis drugs: A mini-review. RSC Adv. 2020, 10, 37134–37141. [Google Scholar] [CrossRef]
- Kilinkissa, O.E.Y.; Govender, K.K.; Báthori, N.B. Melting point-solubility-structure correlations in chiral and racemic model cocrystals. CrystEngComm 2020, 22, 2766–2771. [Google Scholar] [CrossRef]
- Meyer, T.J. Chemical approaches to artificial photosynthesis. 2. Acc. Chem. Res. 1989, 22, 163–170. [Google Scholar] [CrossRef]
- Long, N.J. Organometallic Compounds for Nonlinear Optics–The Search for En-light-enment! Angew. Chem. Int. Ed. Engl. 1995, 34, 21–38. [Google Scholar] [CrossRef]
- Galasso, V.; De Alti, G. MO calculations on the preferred conformation and electronic structure of phenyl-derivatives of pyrrole, furan and thiophene. Tetrahedron 1971, 27, 4947–4951. [Google Scholar] [CrossRef]
- Howard, S.T. Conformers, energetics, and basicity of 2,2′-bipyridine. J. Am. Chem. Soc. 1996, 118, 10269–10274. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.A.; Tocher, D.A.; Price, S.L.; Mohamed, S.; Braun, D.E.; Issa, N.; Copley, R.C.B. Screening for cocrystals of succinic acid and 4-aminobenzoic acid. CrystEngComm 2012, 14, 2454. [Google Scholar] [CrossRef]
- Bruker. SAINT-Plus (Including XPREP); Version 7.12; Bruker AXS Inc.: Madison, WA, USA, 2003. [Google Scholar]
- Bruker. XPREP2; Version 6.14; Bruker AXS Inc.: Madison, WA, USA, 2003. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, L.J. X-seed–A software tool for supramolecular crystallography. J. Supramol. Chem. 2001, 1, 189–191. [Google Scholar] [CrossRef]
- Persistence of Vision Pty. Ltd. Persistence of Vision Raytracer (Version 3.6). 2004. Available online: http://www.povray.org/download/ (accessed on 11 August 2021).
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
BPY H+·OXA− | BPY 2H+·2MAL− | |
---|---|---|
CCDC number | 1979405 | 1979404 |
Molecular formula | C12H10N2O4 | C18 H14 N2 O8 |
Formula weight | 246.22 | 386.31 |
Temperature (K) | 173 | 173 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/c | P21/n |
a/Å | 12.225 (2) | 12.038 (4) |
b/Å | 5.3046 (9) | 5.4644 (18) |
c/Å | 17.680 (3) | 13.068 (4) |
α/° | 90 | 90 |
β/° | 106.409 (3) | 90.207 (7)° |
γ/° | 90 | 90 |
Volume (Å3) | 1099.9 (3) | 859.6 (5) |
Z | 4 | 2 |
ρ (g cm−3) | 1.487 | 1.492 |
μ (mm−1) | 0.114 mm−1 | 0.120 |
Limiting indices (hkl) | ±16; ±7; ±23 | ±16; 6, −7; ±17 |
Reflections collected/unique | 16779/2730 | 6525/2129 |
Rint | 0.0298 | 0.0479 |
Final R indices [I > 2σ(I)] | R1 = 0.0373, wR2 = 0.0992 | R1 = 0.0668, wR2 = 0.1709 |
D–H···A | D–H (Å) | H···A (Å) | D–H···A (Å) | ∠D–H···A (°) |
---|---|---|---|---|
BPY H+·OXA− | ||||
N12–H12···O18 i | 0.88 | 1.87 | 2.6697 (5) | 150 |
O13–H13···O16 i | 0.84 | 1.68 | 2.5170 (4) | 172 |
C8–H8···O16 ii | 0.95 | 2.50 | 3.4408 (6) | 173 |
C9–H9···O15 ii | 0.95 | 2.43 | 3.2465 (6) | 143 |
C10–H10···O15 iii | 0.95 | 2.34 | 3.2810 (6) | 169 |
C11–H11···O18 iv | 0.95 | 2.39 | 3.0801 (5) | 129 |
BPY 2H+·2MAL− | ||||
N1–H1···O9 v | 1.03 | 1.99 | 2.9688 (10) | 158 |
C3–H3···O7 vi | 0.95 | 2.59 | 3.5369 (12) | 177 |
C5–H5···N1 vii | 0.95 | 2.38 | 3.3046 (11) | 166 |
Compound | O···H (%) | C···H (%) | N···H (%) | H···H (%) | Aromatic (%) | Other (%) | Melting Point (°C) |
---|---|---|---|---|---|---|---|
BPY·SUC | 16.5 | 23.9 | 11.2 | 39.6 | 8.6 | 0.2 | 93.4 |
BPY 2H+·2MAL− | 31.3 | 18.2 | 1.9 | 35.3 | 10.6 | 2.7 | 117.0 |
BPY H+·OXA− | 28.3 | 24.8 | 7.1 | 26.9 | 12.1 | 0.8 | 135.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nethanani, V.; Batisai, E. Multi-Component Crystals of 2,2′-Bipyridine with Aliphatic Dicarboxylic Acids: Melting Point-Structure Relations. Crystals 2021, 11, 1151. https://doi.org/10.3390/cryst11101151
Nethanani V, Batisai E. Multi-Component Crystals of 2,2′-Bipyridine with Aliphatic Dicarboxylic Acids: Melting Point-Structure Relations. Crystals. 2021; 11(10):1151. https://doi.org/10.3390/cryst11101151
Chicago/Turabian StyleNethanani, Vhukhudo, and Eustina Batisai. 2021. "Multi-Component Crystals of 2,2′-Bipyridine with Aliphatic Dicarboxylic Acids: Melting Point-Structure Relations" Crystals 11, no. 10: 1151. https://doi.org/10.3390/cryst11101151
APA StyleNethanani, V., & Batisai, E. (2021). Multi-Component Crystals of 2,2′-Bipyridine with Aliphatic Dicarboxylic Acids: Melting Point-Structure Relations. Crystals, 11(10), 1151. https://doi.org/10.3390/cryst11101151