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Abstract: We investigated the growth of vertically coupled In0.75Ga0.25As quantum dots (QDs) by
varying the GaAs spacer thickness (d). Vertically-aligned triple-layer QDs of uniform size and highest
accumulated strain are formed with d = 5 nm. The electroluminescence (EL) characteristics for
In0.75Ga0.25As QDs show an emission spectrum at optical wavelength (λ) of 1100−1300 nm. The EL
spectra exhibit the highest optical gain at λ ~ 1200 nm, and the narrowest FWHM = 151 nm of the sam-
ple with d = 5 nm at injection current = 20 mA. Fabry–Perot measurements at λ = 1515 nm of TE and
TM polarizations were carried out to investigate the electro-optic modulation for a single-mode ridge
waveguide consisting of vertically-coupled triple-layer In0.75Ga0.25As QDs (d = 5 nm). The linear
(r) and quadratic (s) electro-optic coefficients are r = 2.99 × 10−11 m/V and s = 4.10 × 10−17 m2/V2

for TE polarization, and r = 1.37 × 10−11 m/V and s = 3.2 × 10−17 m2/V2 for TM polarization,
respectively. The results highlight the potential of TE/TM lightwave modulation by InGaAs QDs at
photon energy below energy band resonance.

Keywords: quantum dots; electroluminescence; electro-optic effect; molecular beam epitaxy; InGaAs

1. Introduction

Self-assembled InGaAs quantum dots (QDs) grown on GaAs have been extensively
explored for optoelectronic applications at optical wavelength (λ) = 1100–1300 nm. QD
structures, which possess zero-dimensional carrier confinement, have demonstrated low
threshold current, high characteristic temperature, and low chirp for the operations of
diode lasers [1–3]. However, due to the low areal density and inhomogeneous size distribu-
tion, a single QDs layer provides limited advantage for optoelectronic device performance.
Vertically-stacked multiple QDs layers are required to enhance the optical modal gain [4]
to facilitate device applications such as semiconductor optical amplifiers [5] and photode-
tectors [6]. Since the InGaAs QDs are under compressive strain, spacer layers of 30–50 nm
are often grown between the QDs layers to depress the strain accumulation and lattice
defects. The rather thick spacer would hamper the electronic coupling between the QDs
layers and reduce the dipole interaction between electron and photon. Close-stacking
QDs multiple layers of rigorously reduced spacer layer thickness are expected to enhance
the favorable optoelectronic characteristics, such as high modal gain and high oscillator
strength. One of the approaches is depositing a short-period GaAs/InAs superlattice on
top of a seed InAs QDs layer to form columnar quantum dots [7,8]. For each InAs/GaAs
cycle in the superlattice, the InAs thickness is lower than the critical thickness, and the
GaAs spacer thickness is only a few monolayers. The post-like nanostructures with high
aspect ratio are formed after the deposition of GaAs/InAs superlattice. The structure
provides not only the optical gain for transverse-electric (TE) mode (i.e., polarization along
the in-plane direction), but also transverse-magnetic (TM) mode (i.e., polarization along
the growth direction). On the other hand, two-layer InGaAs QDs separated by a nominally
10 nm thick GaAs spacer to form a quantum dot molecule have been studied to observe
the strong quantum coupling and entangling of excitons in the individual QD [9–12]. The
excitons, which can be coherently manipulated by laser beam in the quantum dot molecule,
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represent quantum bits applicable in quantum computing processors. Moreover, multiple
stacking QDs layers have been investigated for the implementations of intermediate-band
solar cells (IBSC) [13–16] in green energy harvest.

Meanwhile, lightwave communications are the major device applications for III–V
compound semiconductor nanostructures. In addition to optical transmitters, amplifiers
and receivers, optical signal modulation is the key technology in optical fiber communica-
tion at λ = 1.4–1.6 µm. Two major modulation techniques, namely intensity modulation
and phase modulation, are commonly adopted. Intensity modulation is based on optical
absorption near the band gap controlled by quantum-confined Stark effect (QCSE), such as
electro-absorption modulators (EAM) of quantum well structures [17,18]. Phase modula-
tion using the change of refractive index (∆n) to modulate the phase of optical signal is
governed by electro-optic effect. For electro-optic modulators (EOM), the photon energy of
the signal is well below the energy band resonance, and no optical absorption is required.
The III–V compound semiconductor bulk materials, such as GaAs and InP, exhibit lower
EO coefficients, both of linear Pockels effect and quadratic Kerr effect, compared to the
lithium niobate (LiNbO3) counterpart. However, much less work on EO effect of InGaAs
QDs has been reported [19–23].

Here, we report the growth of p-i-n diodes consisting of triple-layer In0.75Ga0.25As
QDs by changing the GaAs spacer thickness (d). Material properties for the triple-layer QDs
are examined by transmission electron microscope (TEM) and X-ray diffraction (XRD). The
optical emission characteristics are measured by electroluminescence (EL) spectroscopy
at different injection currents. For the study of EO effect, a single-mode ridge-waveguide
based on the triple-layer InGaAs QDs is fabricated to measure the phase retardation at
λ = 1515 nm in TE and TM polarizations.

2. Epitaxial Growth

The p-i-n diodes consisting of triple-layer QDs were grown by molecular beam epitaxy
(MBE) on (100) n+-GaAs substrates, as shown in Figure 1. Arsenic valved cracker was used
to supply As4 flux at the cracking zone temperature of 640 ◦C. The As4 beam equivalent
pressure was 6 × 10−5 Torr. After removing the surface oxide, 0.5 m GaAs buffer layer and
0.5 m Al0.5Ga0.5As layer were grown at a substrate temperature (Ts) of 645 ◦C measured
by thermocouple. Both of the layers were n-type doped by Si at doping concentration of
2 × 1018 cm−3. The i-layer active region consisted of triple-layer QDs sandwiched between
0.2 m GaAs. The self-assembled In0.75Ga0.25As QDs were of 3.4 ML (≈1.5 θc, θc = 2.3 ML:
critical thickness) coverage grown at Ts = 520 ◦C. The QDs growth rate was of 0.1 ML/sec.
After the growth of QDs, a 10 nm In0.1Ga0.9As capping layer was directly grown on the
QDs at the same Ts. Then, the Ts was raised to 645 ◦C for the growth of the GaAs spacer
layer. The GaAs spacer thicknesses for the three samples were d = 40 nm, 20 nm, and 5 nm,
respectively. After the deposition of QDs active region, p-Al0.5Ga0.5As and GaAs contact
layers were grown to finish the p-i-n epi-structure. A reference sample of In0.75Ga0.25As
QDs single-layer without capping was grown to measure the size distribution by using
atomic force microscope (AFM). The average size was of diameter ~ 20 ± 5 nm, and height
~ 4 ± 1 nm for the In0.75Ga0.25As QDs. The QDs configurations in the epi-structures were
observed by transmission electron microscope (TEM). Figure 2 shows the cross-section
bright field (BF) images for the QDs. For the d = 40 nm and 20 nm samples, the position
of QDs is randomly located without any correlations. As the GaAs spacer decreases to
d = 5 nm, the QDs in each layer are well aligned in the vertical direction (epitaxial direction),
and the dot size is much more uniform. The areal density of each layer for the In0.75Ga0.25As
QDs was estimated from the TEM images. They are 2.8 × 1010 cm−2, 3.7 × 1010 cm−2, and
4.5 × 1010 cm−2 for d = 40 nm, 20 nm, and 5 nm, respectively. In the TEM images, two
lens-shaped dark features are observed at the bottom and top of each QDs layer. The dark
feature is attributive to indium segregation as the deposition of 10 nm thick In0.1Ga0.9As
capping layer is followed by GaAs spacer of high growth temperature (Ts = 645 ◦C). The
presence of indium adatoms floating to the surface is normally observed in the growth
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of III–V compound semiconductor heterostructures [24–27]. The nonuniform feature of
indium distribution might suggest the possible existence of double QDs and/or columnar
QDs in each 10 nm QDs layer. The intriguing material and optoelectronic characteristics
are further investigated.
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Figure 2. TEM cross-section BF images of the triple-layer In0.75Ga0.25As QDs with (a) d = 40 nm, (b) d = 20 nm, and
(c) d = 5 nm, respectively.

To investigate the formation of vertically aligned QDs, high-resolution ω/2θ XRD
scans across the (004) symmetric Bragg reflection were used to measure the effect of strain
accumulation and lattice distortion for the QDs. The XRD data of the three samples are,
respectively, shown in Figure 3. The X-ray wavelength is 1.54 Å and the Bragg angle (θB)
of the GaAs substrate is 33.035◦. For each sample, the XRD curve exhibits a maximum
peak from the GaAs substrate, and periodic satellite peaks along the negativeω/2θ axis.
The periodic satellite peaks are from the triple-layer In0.75Ga0.25As QDs. The increase of
the periodicity for the satellite peaks is consistent with the decrease in GaAs spacer layer
thickness from 40 nm to 5 nm. In addition, the position (∆θ) of zero-order satellite peak
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increases from –940 arcsec to –1600 arcsec against the decrease of GaAs spacer layer from
40 nm to 5 nm. We calculate the average perpendicular strain <ε⊥> given by [28]:

< ε⊥ >=
sin θB

sin(θB + ∆θ)
− 1 (1)
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Figure 3. X-ray diffraction curves for the triple-layer In0.75Ga0.25As QDs by varying GaAs spacer
thickness with 40 nm, 20 nm, and 5 nm, respectively.

The experimental data is summarized in Table 1. The <ε⊥> increases from 0.00704
(d = 40 nm) to 0.01312 (d = 5 nm). The strain values indicate an 86% enhancement of
compressive strain due to the closely packed QDs (d = 5 nm) of less strain relaxation. The
enhancement of <ε⊥> in the d = 5 nm sample suggests that the formation of vertically-
aligned QDs is similar to the growth of quantum dot lattice [29]. The bottom layer of
QDs works as a seed layer. The strong compressive strain and high growth temperature
(Ts = 645 ◦C) of the GaAs spacer provide driving forces for indium adatoms diffusion
towards the top of seed sites. The <ε⊥> data is also consistent with the full width at half-
maximum (FWHM) of the zero-order satellite peak. A narrow FWHM = 170 arcsec for the
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d = 40 nm sample attributed to a more uniform distribution of the vertical lattice constant,
and less accumulated compressive strain of the epitaxial wafer. As the GaAs spacer layer
thickness decreases to 20 nm and 5 nm, more compressive strain is accumulated, and the
FWHM increases to 240 arcsec and 400 arcsec, respectively.

Table 1. XRD data including the FWHM and ∆θ for the zero-order satellite peak, and the average
perpendicular strain <ε⊥> for the triple-layer In0.75Ga0.25As QDs of d = 40 nm, 20 nm, and 5 nm.

d = 40 nm d = 20 nm d = 5 nm

FWHM (arcs) 170 240 400

∆θ (arcs) –940 –1600 –1730

<ε⊥> 0.0070 0.0121 0.0131

3. Electroluminescence Spectroscopy

Diodes of mesa structure were fabricated for the QDs samples to study the lumi-
nescence characteristics by electroluminescence (EL) spectroscopy. Figure 4 shows the
room-temperature EL spectra of the triple-layer InGaAs QDs by varying the space layer
thickness by 40, 20, and 5 nm, respectively. The EL spectra, which concentrate at optical
wavelength (λ) ranging from 1100 nm to 1300 nm, confirm the optical emission from the
QDs. As we increase the forward injection current from 2 mA to 20 mA, the EL spectra ex-
tend to shorter wavelengths, and the FWHM increases. The data indicates optical emission
from higher subband transitions as more electron–hole pairs are injected. We normalized
the EL spectra against the ground transition (S0) near λ = 1300 nm, and the band-filling
effect of the subband transition is observed as the injection current increases. The first
subband transition (S1) and second subband transition (S2) are observed near λ = 1200 nm
and 1160 nm, respectively. The major emission peak is near λ = 1200 nm, indicating the
highest optical gain for the first subband transition (S1). The observed energy separation
between S0 and S1 peaks is ~48 meV both for d = 40 nm and 20 nm samples, while the en-
ergy separation increases to 66 meV for d = 5 nm sample. The increase of energy separation
between S0 and S1 for the d = 5 nm sample indicates the enhancement of subband energy
level separation by the exchange energy of interlayer tunnelling [30]. The FWHM of the
whole EL spectrum is a qualified indicator to evaluate the size distribution and epitaxy
homogeneity for the QDs. At 20 mA injection current, the FWHMs of the whole EL spectra
are 262 nm, 213 nm, and 151 nm for d = 40 nm, 20 nm, and 5 nm, respectively. The EL
results indicate a much more homogeneous size distribution for the triple-layer QDs with
d = 5 nm, which is consistent with the data observed in material characterizations by TEM,
and XRD.
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4. Electro-Optic Modulation

The wafer of triple-layer InGaAs QDs (d = 5 nm) was used to fabricate the ridge-
waveguide EO modulator in view of the strong coupling between QDs and high accumu-
lated strain field within the InGaAs QDs. Single-mode ridge waveguides of 2.2 µm width
and 1 µm height were formed by ICP-RIE etching with Ar/SiCl4 mixture gas. Therefore,
the QDs active region is located within the ridge waveguide to ensure the optical signal is
highly overlapped with the QDs. After the dry etching, 300 nm thick SiO2 was deposited to
protect the waveguides. The p-contact (Cr/Au) was realized on the waveguide surface by
thermal evaporation. After p-contact deposition, the wafer was thinned down to 150 µm
and the n-contact (Au/Ge/Au) was deposited on the substrate side. Figure 5a shows
the schematic diagram of the single-mode ridge waveguide for the measurement of EO
modulation. TE and TM optical mode profiles at λ = 1515 nm for the ridge waveguide were
simulated. The TE mode profile is shown in Figure 5b. The intensity peaks of the TE and
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TM modes are overlapped with the triple-layer QDs active region. The optical confinement
factor (Γ) [31] is the fraction of the squared electric field confined to the triple-layer QDs
active region. The Γ values of the TE and TM polarization are 0.07, and 0.061, respectively.
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Fabry–Perot (FP) measurements near λ = 1515 nm were carried out by TE/TM polar-
ized light from a tunable laser through the fiber polarization controller. The optical output
at the end facet of a 1.52 mm long waveguide is collected by lens fiber and measured by
photodetector. The applied electric field by reverse bias voltage is perpendicular to the
epitaxy layers. The FP resonance fringes for TE and TM at different reverse bias are shown
in Figure 6a,b, respectively. By applying voltage bias, the phase of the FP resonance fringes
shift, indicating the change of refractive index (∆n) by EO effect. The phase retardation
(∆Φ) increases as we increase the reverse bias from 0 V to −4 V. From the wavelengths
of the resonance peaks, we calculate the TE mode effective index nTE = 3.367. Voltage-
dependent phase shift is also observed for TM polarization, as shown in Figure 6b. The
TM mode effective index nTM is 3.355. We measured the phase shift of the Fabry–Perot
resonance under reverse-bias voltages. The index change is related to the phase shift given
by [20]:

∆φ = πLn0
3Γ(r·E + s·E2)

∆n = ∆φ λ / 2πL (2)

where L is the waveguide length, n0 is the effective refractive index, E is the electric field
applied in the active region, r and s are the linear and quadratic electro-optic coefficients,
respectively, and Γ is the confinement factor. At λ = 1515 nm and voltage bias = −4 V, we
obtain ∆φ = 96.4◦/mm and ∆n = 4.06 × 10−4 for TE polarization, and ∆φ = 74.8◦/mm and
∆n = 3.16 × 10−4 for TM polarization, respectively.

The phase retardation and refractive index change as a function of reverse bias, as
shown in Figure 7. The linear (Pockels) and quadratic (Kerr) electro-optic coefficients are
extracted according to Equation (2). For the data of TE polarization shown in Figure 7a,
the linear (r) and quadratic (s) electro-optic coefficient are r = 2.99 × 10−11 m/V and
s = 4.10 × 10−17 m2/V2, respectively. For TM polarization shown in Figure 7b, electro-
optic coefficient r = 1.37 × 10−11 m/V and s = 3.2 × 10−17 m2/V2 are extracted. The
electro-optic coefficients are comparable to r = 3.1 × 10−11 m/V for LiNbO3 electro-optic
modulators and InAs quantum dot waveguides [19–23], and larger than bulk GaAs material
and InGaAs-based multiple quantum wells at λ ~ 1500 nm [32,33].
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Figure 7. Phase retardation (∆φ) and refractive index change (∆n) as a function of reverse bias
voltages for (a) TE and (b) TM polarization. The curve is a fit to the ∆φ data to extract EO linear
coefficient (r) and quadratic coefficient (s).

5. Conclusions

Triple-layer In0.75Ga0.25As QDs structures were grown by varying the GaAs spacer
thickness of 40 nm, 20 nm, and 5 nm, respectively. Vertically-aligned QDs formation
and homogeneous distribution of QD size and position were observed for the sample
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of d = 5 nm. The results are attributed to the higher strain accumulation, as shown in
XRD data. The optical emission characteristics for the triple-layer In0.75Ga0.25As QDs
were measured by electroluminescence spectroscopy. The EL spectra concentrated at
λ = 1100–1300 nm. As injection current increases, the emission spectra are extended to
shorter wavelengths by subband filling effect for the QDs. The EL spectrum shows the
narrowest FWHM = 151 nm for the triple-layer In0.75Ga0.25As QDs with d = 5 nm. The
data indicates a homogeneous QD size distribution for the d = 5 nm sample, which is
consistent with the TEM and XRD results. A single-mode ridge waveguide consisting of
the triple-layer In0.75Ga0.25As QDs (d = 5 nm) was fabricated to measure the electro-optic
coefficients both in TE and TM polarizations. The linear (r) and quadratic (s) electro-optic
coefficients at λ = 1515 nm are r = 2.99 × 10−11 m/V and s = 4.10 × 10−17 m2/V2 for TE
polarization, and r = 1.37 × 10−11 m/V and s = 3.2 × 10−17 m2/V2 for TM polarization,
respectively. The results are comparable to LiNbO3 electro-optic modulators, and highlight
the potential of TE/TM lightwave modulation by InGaAs QDs at photon energy below
energy band resonance.
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