Effect of Interdendritic Precipitations on the Mechanical Properties of GBF or EMS Processed Al-Zn-Mg-Cu Alloys
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Feng, Z.; Ma, P.; Zhou, Y.; Li, G.; Zhan, L. Reversion of Natural Ageing and Restoration of Quick Bake-Hardening Response in Al-Zn-Mg-Cu Alloy. J. Mater. Sci. Technol. 2021, 95, 88–94. [Google Scholar] [CrossRef]
- Omer, K.; Abolhasani, A.; Kim, S.; Nikdejad, T.; Butcher, C.; Wells, M.; Esmaeili, S.; Worswick, M. Process Parameters for Hot Stamping of AA7075 and D-7xxx to Achieve High Performance Aged Products. J. Mater. Process. Technol. 2018, 257, 170–179. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, Y.; Li, X.; Wen, K.; Xiong, B.; Li, Z.; Yan, L.; Yan, H.; Liu, H.; Li, Y. Effect of Recrystallization on Plasticity, Fracture Toughness and Stress Corrosion Cracking of a High-Alloying Al-Zn-Mg-Cu Alloy. Mater. Lett. 2020, 275, 128074. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, K.; Fang, H.; Qi, X.; Liu, G. Effect of Yb Addition on Strength and Fracture Toughness of Al-Zn-Mg-Cu-Zr Aluminum Alloy. Trans. Nonferr. Met. Soc. China 2008, 18, 1037–1042. [Google Scholar] [CrossRef]
- Bai, P.; Hou, X.; Zhang, X.; Zhao, C.; Xing, Y. Microstructure and Mechanical Properties of a Large Billet of Spray Formed Al–Zn–Mg–Cu Alloy with High Zn Content. Mater. Sci. Eng. A 2009, 508, 23–27. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, J.; Guo, A.; Li, H.; Dai, G.; Zhang, X. Effects of Injection Velocity on Microstructure, Porosity and Mechanical Properties of a Rheo-Diecast Al-Zn-Mg-Cu Aluminum Alloy. J. Mater. Process. Technol. 2017, 249, 167–171. [Google Scholar] [CrossRef]
- Fan, C.H.; Chen, Z.H.; He, W.Q.; Chen, J.H.; Chen, D. Effects of the Casting Temperature on Microstructure and Mechanical Properties of the Squeeze-Cast Al–Zn–Mg–Cu Alloy. J. Alloys Compd. 2010, 504, L42–L45. [Google Scholar] [CrossRef]
- Koutiri, I.; Bellett, D.; Morel, F.; Augustins, L.; Adrien, J. High Cycle Fatigue Damage Mechanisms in Cast Aluminium Subject to Complex Loads. Int. J. Fatigue 2013, 47, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Zhang, Z.; Luo, Y.; Gao, M.; Li, B.; Chen, C. Effect of Coupled Annular Electromagnetic Stirring and Intercooling on the Microstructures, Macrosegregation and Properties of Large-Sized 2219 Aluminum Alloy Billets. Int. J. Mater. Res. 2018, 109, 469–475. [Google Scholar] [CrossRef]
- Mapelli, C.; Gruttadauria, A.; Peroni, M. Application of Electromagnetic Stirring for the Homogenization of Aluminium Billet Cast in a Semi-Continuous Machine. J. Mater. Process. Technol. 2010, 210, 306–314. [Google Scholar] [CrossRef]
- Guo, S.; Le, Q.; Zhao, Z.; Han, Y.; Cui, J. Effect of a Low Frequency Electromagnetic Field on the Direct-Chill (DC) Casting of AZ80 Magnesium Alloy Ingots. Int. J. Mater. Res. 2006, 97, 1539–1544. [Google Scholar] [CrossRef]
- Ghiaasiaan, R.; Amirkhiz, B.S.; Shankar, S. Quantitative Metallography of Precipitating and Secondary Phases after Strengthening Treatment of Net Shaped Casting of Al-Zn-Mg-Cu (7000) Alloys. Mater. Sci. Eng. A 2017, 698, 206–217. [Google Scholar] [CrossRef]
- Rana, R.S.; Purohit, R.; Das, S. Reviews on the Influences of Alloying Elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites. Int. J. Sci. Res. Publ. 2012, 2, 1–8. [Google Scholar]
- Oh, S.W.; Bae, J.W.; Kang, C.G. Effect of Electromagnetic Stirring Conditions on Grain Size Characteristic of Wrought Aluminum for Rheo-Forging. J. Mater. Eng. Perform. 2008, 17, 57–63. [Google Scholar] [CrossRef]
- Degischer, H.P.; Lacom, W.; Zahra, A.; Zahra, C.Y. Decomposition Processes in an Al-5% Zn-1% Mg Alloy. Int. J. Mater. Res. 1980, 71, 231–238. [Google Scholar] [CrossRef]
- Yang, W.; Ji, S.; Zhang, Q.; Wang, M. Investigation of Mechanical and Corrosion Properties of an Al–Zn–Mg–Cu Alloy under Various Ageing Conditions and Interface Analysis of H′ Precipitate. Mater. Des. 2015, 85, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Marlaud, T.; Deschamps, A.; Bley, F.; Lefebvre, W.; Baroux, B. Influence of Alloy Composition and Heat Treatment on Precipitate Composition in Al–Zn–Mg–Cu Alloys. Acta Mater. 2010, 58, 248–260. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, J.; Li, Z.; Luo, R.; Chen, B. Precipitation in an Al-Zn-Mg-Cu Alloy during Isothermal Aging: Atomic-Scale HAADF-STEM Investigation. Mater. Sci. Eng. A 2017, 691, 60–70. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Lin, H.; Sun, L.; Long, T.; Ye, L.; Deng, Y. Effect of Quench-Induced Precipitation on Microstructure and Mechanical Properties of 7085 Aluminum Alloy. Mater. Des. 2017, 132, 119–128. [Google Scholar] [CrossRef]
- Dai, P.; Luo, X.; Yang, Y.; Kou, Z.; Huang, B.; Zang, J.; Ru, J. High Temperature Tensile Properties, Fracture Behaviors and Nanoscale Precipitate Variation of an Al–Zn–Mg–Cu Alloy. Prog. Nat. Sci. 2020, 30, 63–73. [Google Scholar] [CrossRef]
- Lervik, A.; Marioara, C.D.; Kadanik, M.; Walmsley, J.C.; Milkereit, B.; Holmestad, R. Precipitation in an Extruded AA7003 Aluminium Alloy: Observations of 6xxx-Type Hardening Phases. Mater. Des. 2020, 186, 108204. [Google Scholar] [CrossRef]
- Guo, W.; Guo, J.; Wang, J.; Yang, M.; Li, H.; Wen, X.; Zhang, J. Evolution of Precipitate Microstructure during Stress Aging of an Al–Zn–Mg–Cu Alloy. Mater. Sci. Eng. A 2015, 634, 167–175. [Google Scholar] [CrossRef]
- Kverneland, A.; Hansen, V.; Thorkildsen, G.; Larsen, H.B.; Pattison, P.; Li, X.Z.; Gjønnes, J. Transformations and Structures in the Al–Zn–Mg Alloy System: A Diffraction Study Using Synchrotron Radiation and Electron Precession. Mater. Sci. Eng. A 2011, 528, 880–887. [Google Scholar] [CrossRef]
- Chung, T.-F.; Yang, Y.-L.; Huang, B.-M.; Shi, Z.; Lin, J.; Ohmura, T.; Yang, J.-R. Transmission Electron Microscopy Investigation of Separated Nucleation and In-Situ Nucleation in AA7050 Aluminium Alloy. Acta Mater. 2018, 149, 377–387. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Samuel, A.M.; Samuel, F.H. A Preliminary Study on Optimizing the Heat Treatment of High Strength Al–Cu–Mg–Zn Alloys. Mater. Des. 2014, 57, 342–350. [Google Scholar] [CrossRef]
- Zhan, L.; Lin, J.; Dean, T.A.; Huang, M. Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 under Creep Age Forming Conditions. Int. J. Mech. Sci. 2011, 53, 595–605. [Google Scholar] [CrossRef]
- Wen, K.; Fan, Y.; Wang, G.; Jin, L.; Li, X.; Li, Z.; Zhang, Y.; Xiong, B. Aging Behavior and Precipitate Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy with Various Tempers. Mater. Des. 2016, 101, 16–23. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Q.; Zhang, Z.; Li, L.; Tian, W.; Liu, R.; Zhang, P.; Xu, Y.; Li, Y.; Zhang, Z.; et al. Nanoparticle Additions Promote Outstanding Fracture Toughness and Fatigue Strength in a Cast Al–Cu Alloy. Mater. Des. 2020, 186, 108221. [Google Scholar] [CrossRef]
- Paidar, M.; Tahani, K.; Vaira Vignesh, R.; Ojo, O.O.; Ezatpour, H.R.; Moharrami, A. Modified Friction Stir Clinching of 2024-T3 to 6061-T6 Aluminium Alloy: Effect of Dwell Time and Precipitation-Hardening Heat Treatment. Mater. Sci. Eng. A 2020, 791, 139734. [Google Scholar] [CrossRef]
- Wannasin, J.; Martinez, R.A.; Flemings, M.C. Grain Refinement of an Aluminum Alloy by Introducing Gas Bubbles during Solidification. Scr. Mater. 2006, 55, 115–118. [Google Scholar] [CrossRef]
- Lee, C.; So, T.; Shin, K. Effect of Gas Bubbling Filtration Treatment on Microporosity Variation in A356 Aluminium Alloy. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Kang, C.G.; Seo, P.K. Evolution of the Rheocasting Structure of A356 Alloy Investigated by Large-Scale Crystal Orientation Observation. Scr. Mater. 2005, 52, 283–288. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. on the role of traps in the microstructural control of environmental hydrogen embrittlement of a 7xxx series aluminum alloy. J. Alloys Compd. 2021, 855, 157300. [Google Scholar] [CrossRef]
- Kayani, S.H.; Jung, J.G.; Kim, M.S.; Kwangjun, E. Effect of cooling rate on precipitation behavior of Al–7.65Zn–2.59Mg–1.95Cu alloy with minor elements of Zr and Ti. Met. Mat. Int. 2020, 26, 1079–1086. [Google Scholar] [CrossRef]
- Robson, J.D. Microstructural evolution in aluminum alloy 7050 during processing. Mater. Sci. Eng. A 2004, 382, 112–121. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, H.; Guo, Q.; Liu, C.; Li, C.; Liu, Y. The Precipitation of η Phase during the Solution Treatments of Allvac 718Plus. Mater. Charact. 2021, 176, 111142. [Google Scholar] [CrossRef]
- Guinier, A. Structure of Age-Hardened Aluminium-Copper Alloys. Nature 1938, 142, 569–570. [Google Scholar] [CrossRef]
- Preston, G.D. The Diffraction of X-Rays by Age-Hardening Aluminium Copper Alloys. Proc. R. Soc. Lond. A 1938, 167, 526–538. [Google Scholar] [CrossRef] [Green Version]
- Rioja, R.J.; LAughlin, D.E. The Early Stages of GP Zone Formation in Naturally Aged Ai-4 Wt Pct Cu Alloys. Metall. Mater. Trans. A 1977, 8, 1257–1261. [Google Scholar] [CrossRef]
- Nicholson, R.B.; Nutting, J. Direct Observation of the Strain Field Produced by Coherent Precipitated Particles in an Age-Hardened Alloy. J. Theor. Appl. Phys. 2006, 3, 531–535. [Google Scholar] [CrossRef]
- Chang, Y.-C. Crystal Structure and Nucleation Behavior of (111) Precipitates in an Aluminum-3.9copper-0.5magnesium-0.5silver (Wt. Percent) Alloy. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1992. Available online: https://www.proquest.com/docview/303989724?pq-origsite=gscholar&fromopenview=true (accessed on 15 July 2021).
- Ning, Z.L.; Guo, S.; Zhang, M.X.; Cao, F.Y.; Jia, Y.D.; Sun, J.F. Characterization of the Secondary Phases in Spray Formed Al-Zn-Mg-Cu-Sc-Zr Alloy during Hot Compression. J. Mater. Res. 2016, 31, 2465–2472. [Google Scholar] [CrossRef]
- Chung, T.-F.; Yo-Lun, Y.; Hsiao, C.-N.; Li, W.-C.; Huang, B.-M.; Tsao, C.-S.; Shi, Z.; Lin, J.; Fischione, P.; Ohmura, T.; et al. Morphological Evolution of GP Zones and Nanometer-Sized Precipitates in the AA2050 Aluminium Alloy. Int. J. Lightweight Mater. Manuf. 2018, 1, 142–156. [Google Scholar] [CrossRef]
- Yong, Q.L. Secondary Phases in Steels; Press of Metallurgy Industry: Beijing, China, 2006. [Google Scholar]
- Li, Z.; Chai, F.; Yang, L.; Luo, X.; Yang, C. Mechanical Properties and Nanoparticles Precipitation Behavior of Multi-Component Ultra High Strength Steel. Mater. Des. 2020, 191, 108637. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Ghiaasiaan, R.; Shankar, S. Structure-Property Models in Al-Zn-Mg-Cu Alloys: A Critical Experimental Assessment of Shape Castings. Mater. Sci. Eng. A 2018, 733, 235–245. [Google Scholar] [CrossRef]
Elements | Specimens | ||||
---|---|---|---|---|---|
G-A | G-T4 | E30-A | E30-T4 | Phase | |
Al | 58.28 | 47.93 | 57.10 | 49.10 | Al7Cu2Fe |
Mg | 0.49 | 0.07 | 0.29 | 0.04 | |
Zn | - | 1.06 | - | 1.43 | |
Cu | 8.76 | 35.81 | 9.11 | 36.64 | |
Fe | 32.48 | 15.13 | 33.50 | 12.79 | |
Al | 13.23 | 4.76 | 17.68 | 0.57 | Al2(ZnMgCu)3 |
Mg | 18.28 | 0.21 | 12.97 | 0.05 | |
Zn | 37.68 | 12.38 | 38.53 | 9.68 | |
Cu | 30.81 | 76.85 | 30.82 | 88.86 | |
Fe | - | 4.76 | - | 0.83 |
Specimens | Vickers Hardness (Hv) | ||
---|---|---|---|
A | T4 | T6 | |
G | 142 ± 1.4 | 169 ± 1.7 | 182 ± 1.8 |
E30 | 125 ± 1.2 | 161 ± 1.6 | 174 ± 1.7 |
E50 | 137 ± 1.4 | 165 ± 1.6 | 183 ± 1.8 |
Heat Treatment | Specimen | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|---|
T4 | G | 370 ± 4.4 | 492 ± 5.9 | 8.1 ± 0.10 |
E30 | 372 ± 4.5 | 489 ± 5.8 | 7.5 ± 0.05 | |
E50 | 359 ± 4.3 | 440 ± 5.3 | 4.4 ± 0.05 | |
T6 | G | 526 ± 6.3 | 545 ± 6.5 | 1.8 ± 0.02 |
E30 | 521 ± 6.2 | 530 ± 6.4 | 0.5 ± 0.01 | |
E50 | 516 ± 6.2 | 521 ± 6.3 | 0.4 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kayani, S.H.; Kim, H.; Jung, I.D.; Reddy, N.S.; Euh, K.; Seol, J.B.; Kim, J.G.; Sung, H. Effect of Interdendritic Precipitations on the Mechanical Properties of GBF or EMS Processed Al-Zn-Mg-Cu Alloys. Crystals 2021, 11, 1162. https://doi.org/10.3390/cryst11101162
Park S, Kayani SH, Kim H, Jung ID, Reddy NS, Euh K, Seol JB, Kim JG, Sung H. Effect of Interdendritic Precipitations on the Mechanical Properties of GBF or EMS Processed Al-Zn-Mg-Cu Alloys. Crystals. 2021; 11(10):1162. https://doi.org/10.3390/cryst11101162
Chicago/Turabian StylePark, Sangeun, Saif Haider Kayani, Hyungrae Kim, Im Doo Jung, N.S. Reddy, Kwangjun Euh, Jae Bok Seol, Jung Gi Kim, and Hyokyung Sung. 2021. "Effect of Interdendritic Precipitations on the Mechanical Properties of GBF or EMS Processed Al-Zn-Mg-Cu Alloys" Crystals 11, no. 10: 1162. https://doi.org/10.3390/cryst11101162
APA StylePark, S., Kayani, S. H., Kim, H., Jung, I. D., Reddy, N. S., Euh, K., Seol, J. B., Kim, J. G., & Sung, H. (2021). Effect of Interdendritic Precipitations on the Mechanical Properties of GBF or EMS Processed Al-Zn-Mg-Cu Alloys. Crystals, 11(10), 1162. https://doi.org/10.3390/cryst11101162