Low-Threshold and Wavelength-Tunable InGaN Tubular WGM Laser Embedded in a Flexible Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microtubes Preparation
2.2. Transfer Process
2.3. Measurement Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byun, J.; Lee, Y.; Yoon, J.; Lee, B.; Oh, E.; Chung, S.; Lee, T.; Cho, K.-J.; Kim, J.; Hong, Y. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot. 2018, 3, eaas9020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Park, S. Electronic Skin: Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics (Adv. Mater. 48/2019). Adv. Mater. 2019, 31, 1970337. [Google Scholar] [CrossRef]
- Meacham, K.W.; Giuly, R.J.; Liang, G.; Hochman, S.; Deweerth, S.P. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdevices 2008, 10, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef]
- Chen, T.; Shi, Q.; Zhu, M.; He, T.; Yang, Z.; Liu, H.; Sun, L.; Yang, L.; Lee, C. Intuitive-augmented human-machine multidimensional nano-manipulation terminal using triboelectric stretchable strip sensors based on minimalist design. Nano Energy 2019, 60, 440–448. [Google Scholar] [CrossRef]
- Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X.F.; Chen, Y.S.; Pei, Q.B. Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes. ACS Nano 2014, 8, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.S.; Tang, Y.X.; Zhu, Z.Q.; Wei, J.Q.; Li, W.L.; Xia, H.R.; Jiang, Y.; Liu, Z.Y.; Luo, Y.F.; Ge, X.; et al. Honeycomb-Lantern-Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. Adv. Mater. 2018, 30, e1805468. [Google Scholar] [CrossRef]
- Kang, S.; Hong, S.Y.; Kim, N.; Oh, J.; Park, M.; Chung, K.Y.; Lee, S.S.; Lee, J.; Son, J.G. Stretchable Lithium-Ion Battery Based on Re-entrant Micro-honeycomb Electrodes and Cross-Linked Gel Electrolyte. ACS Nano 2020, 14, 3660–3668. [Google Scholar] [CrossRef]
- Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Nyein, H.Y.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Emaminejad, S.; Nyein, H.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Nyein, H.Y.Y.; Tai, L.-C.; Quynh Phuong, N.; Chao, M.; Zhang, G.B.; Gao, W.; Bariya, M.; Bullock, J.; Kim, H.; Fahad, H.M.; et al. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis. ACS Sens. 2018, 3, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-M.; Wang, C.-S.; Liao, C.-S.; Lin, S.-Y.; Perumal, P.; Chiang, C.-W.; Chen, Y.-F. Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano 2015, 9, 12436–12441. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.M.; Lai, Y.C.; Perumal, P.; Liao, W.C.; Chang, C.Y.; Liao, C.S.; Lin, S.Y.; Chen, Y.F. Highly Stretchable Label-like Random Laser on Universal Substrates. Adv. Mater. Technol. 2016, 1, 7. [Google Scholar] [CrossRef]
- Hu, H.W.; Haider, G.; Liao, Y.M.; Roy, P.K.; Ravindranath, R.; Chang, H.T.; Lu, C.H.; Tseng, C.Y.; Lin, T.Y.; Shih, W.H.; et al. Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random. Adv. Mater. 2017, 29, 10. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Chen, H.; Yoon, J. Stretchable, skin-conformal microscale surface-emitting lasers with dynamically tunable spectral and directional selectivity. Appl. Phys. Lett. 2019, 114, 041103. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, X.; Cui, Y.; Cheng, Y.; Fang, X.; Zhang, W.; Xiang, B.; Zhang, Z. Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges. AIP Adv. 2018, 8, 075306. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, K.; Zhou, B.; Ning, W.; Jiang, K.; Yang, C.; Kong, L.; Dai, Q. Wearable and Skin-Mountable Fiber-Optic Strain Sensors Interrogated by a Free-Running, Dual-Comb Fiber Laser. Adv. Opt. Mater. 2019, 7, 1900086. [Google Scholar] [CrossRef]
- He, L.; Özdemir, Ş.K.; Yang, L. Whispering gallery microcavity lasers. Laser Photonics Rev. 2013, 7, 60–82. [Google Scholar] [CrossRef]
- Li, K.H.; Cheung, Y.F.; Choi, H.W. Tunable GaN Photonic Crystal and Microdisk on PDMS Flexible Films. ACS Appl. Electron. Mater. 2019, 1, 1112–1119. [Google Scholar] [CrossRef]
- Zhang, Y.; Ryu, S.-W.; Yerino, C.; Leung, B.; Sun, Q.; Song, Q.; Cao, H.; Han, J. A conductivity-based selective etching for next generation GaN devices. Phys. Status Solidi B Basic Solid State Phys. 2010, 247, 1713–1716. [Google Scholar] [CrossRef]
- Holder, C.O.; Leonard, J.T.; Farrell, R.M.; Cohen, D.A.; Yonkee, B.; Speck, J.S.; DenBaars, S.P.; Nakamura, S.; Feezell, D.F. Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching. Appl. Phys. Lett. 2014, 105, 031111. [Google Scholar] [CrossRef]
- Elafandy, R.T.; Majid, M.A.; Ng, T.K.; Zhao, L.; And, D.C.; Ooi, B.S. Exfoliation of Threading Dislocation-Free, Single-Crystalline, Ultrathin Gallium Nitride Nanomembranes. Adv. Funct. Mater. 2014, 24, 2305–2311. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lee, J.; Hwang, H.; Reitmeier, Z.; Davis, R.; Rogers, J.; Nuzzo, R. A Printable Form of Single-Crystalline Gallium Nitride for Flexible Optoelectronic Systems. Small 2010, 1, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Q.; Leung, B.; Simon, J.; Lee, M.L.; Han, J. The fabrication of large-area, free-standing GaN by a novel nanoetching process. Nanotechnology 2011, 22, 2362–2365. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.H.; Hsu, S.; Wang, Y.C.; Yang, Y.C.; Tsai, S.K.; Liu, Y.C.; Chang, Z.C.; Wu, M.C. Flexible compact microdisk lasers on a polydimethylsiloxane (PDMS) substrate. Opt. Express 2009, 17, 991–996. [Google Scholar] [CrossRef]
- Chen, R.; Ta, V.D.; Sun, H. Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers. ACS Photonics 2014, 1, 11–16. [Google Scholar] [CrossRef]
- Yang, S.; Eugene, T.Y.K.; Wang, Y.; Zhao, X.; Demir, H.V.; Sun, H. Wavelength tuning of the spirally drawn whispering gallery mode microfiber lasers and the perspectives for sensing applications. Opt. Express 2017, 25, 2618–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Zhou, J.; Cui, Y.; Liu, X.; Li, J.; He, K.; Fang, X.; Zhang, Z. Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate. Opt. Express 2018, 26, 16797–16804. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lu, J.; Peng, D.; Ma, W.; Li, F.; Chen, Q.; Wang, X.; Sun, J.; Liu, H.; Pan, C. Dynamically Modulated GaN Whispering Gallery Lasing Mode for Strain Sensor. Adv. Funct. Mater. 2019, 29, 1905051. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, T.; Huang, G.; Chu, P.K.; Mei, Y. Optical microcavities with tubular geometry: Properties and applications. Laser Photonics Rev. 2014, 8, 521–547. [Google Scholar] [CrossRef]
- Li, Y.; Feng, L.; Su, X.; Li, Q.; Yun, F.; Yuan, G.; Han, J. Whispering gallery mode lasing from InGaN/GaN quantum well microtube. Opt. Express 2017, 25, 18072–18080. [Google Scholar] [CrossRef]
- Li, Y.; Hu, P.; Feng, L.; Du, M.; Su, X.; Li, Q.; Yun, F. InGaN microtube optical resonator with sub-wavelength wall thickness and its application to refractive index sensing. J. Appl. Phys. 2019, 126, 075708. [Google Scholar] [CrossRef]
- Maqbool, M.; Main, K.; Kordesch, M. Titanium-doped sputter-deposited AlN infrared whispering gallery mode microlaser on optical fibers. Opt. Lett. 2010, 35, 3637–3639. [Google Scholar] [CrossRef] [PubMed]
- Venkataramudu, U.; Venkatakrishnarao, D.; Chandrasekhar, N.; Mohiddon, M.A.; Chandrasekar, R. Single-particle to single-particle transformation of an active type organic mu-tubular homo-structure photonic resonator into a passive type hetero-structure resonator. Phys. Chem. Chem. Phys. 2016, 18, 15528–15533. [Google Scholar] [CrossRef] [PubMed]
- Coulon, P.M.; Pugh, J.R.; Athanasiou, M.; Kusch, G.; Le Boulbar, E.D.; Sarua, A.; Smith, R.; Martin, R.W.; Wang, T.; Cryan, M.; et al. Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities. Opt. Express 2017, 25, 28246–28257. [Google Scholar] [CrossRef] [Green Version]
- Khurgin, J.B.; Noginov, M.A. How Do the Purcell Factor, the Q-Factor, and the Beta Factor Affect the Laser Threshold? Laser Photonics Rev. 2021, 15, 2000250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Li, Y.; Zhang, S.; Zhang, Y.; Tian, Z.; Yun, F. Low-Threshold and Wavelength-Tunable InGaN Tubular WGM Laser Embedded in a Flexible Substrate. Crystals 2021, 11, 1251. https://doi.org/10.3390/cryst11101251
Hu P, Li Y, Zhang S, Zhang Y, Tian Z, Yun F. Low-Threshold and Wavelength-Tunable InGaN Tubular WGM Laser Embedded in a Flexible Substrate. Crystals. 2021; 11(10):1251. https://doi.org/10.3390/cryst11101251
Chicago/Turabian StyleHu, Peng, Yufeng Li, Shengnan Zhang, Ye Zhang, Zhenhuan Tian, and Feng Yun. 2021. "Low-Threshold and Wavelength-Tunable InGaN Tubular WGM Laser Embedded in a Flexible Substrate" Crystals 11, no. 10: 1251. https://doi.org/10.3390/cryst11101251
APA StyleHu, P., Li, Y., Zhang, S., Zhang, Y., Tian, Z., & Yun, F. (2021). Low-Threshold and Wavelength-Tunable InGaN Tubular WGM Laser Embedded in a Flexible Substrate. Crystals, 11(10), 1251. https://doi.org/10.3390/cryst11101251