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Abstract: The increase in infrastructure requirement drives people to use all types of soils, including
poor soils. These poor soils, which are weak at construction, must be improved using different
techniques. The extinction of natural resources and the increase in cost of available materials require
us to think of alternate resources. The usage of industry by-products and related methods for
improving the properties of different soils has been studied for several years. Granite dust is an
industrial by-product originating from the primary crushing of aggregates. The production of huge
quantities of granite dust in the industry causes severe problems from the handling to the disposal
stage. Accordingly, in the civil engineering field, the massive utilization of granite dust has been
proposed for various applications to resolve these issues. In this context, the present review provides
precise and valuable content on granite dust characterization, its effect as a stabilizer on the behavior
of different soils, and its interaction mechanisms. The efficacy of the granite dust in replacing
sand in concrete is explored followed by its ability to improve the geotechnical characteristics of
clays of varying plasticity are explored. The review is even extended to study the effect of binary
stabilization on clays with granite dust in the presence of calcium-based binders. The practical
limitations encountered and its efficiency over other stabilizers are also assessed. This review is
further extended to analyze the effect of the granite dust dosage for various field applications.

Keywords: granite dust; stabilizer; particle size; plasticity; unconfined compression strength

1. Introduction

Soil stabilization is a technique used to improve the geotechnical properties of soil,
either physically or chemically. Different types of stabilization methods exist, and each
process varies with the type of additive used. Additives include lime, cement, bitumen
geosynthetics, and some industrial by-products like flyash, slag, coal, and stone dust,
chemicals, reagents, and recycled materials like rubber tire chips, waste plastics, and
crushed glass that follows recent advanced bio-stabilization techniques like microbial-
induced calcite precipitation and enzyme-induced calcite precipitation [1]. Among these
stabilization methods, the most commonly adopted process is the addition of calcium-
based materials like lime, cement, and flyash [2,3]. However, these additives have their
own limitations in terms of carbon emissions [4,5]. Stabilization with lime and cement
also causes a problematic expansion in the presence of sulphate [6]. In silica-rich soils,
adding lime decreases the soil performance beyond its optimum level because the soil
develops silica gel that withholds water and retains the soil plasticity [7]. Expansive semi-
arid soils have been treated with lime and tested for their lime leachability. At 4% lime
content, the lime leachability was minimized with increase in the curing period due to
pozzolanic reactions [8]. The laterite soil when stabilized with lime caused a decrease in
the unconfined compressive strength (UCS) and California bearing ratio (CBR) with the
increase in the delay of compaction in hours [9,10]. High-plastic clays stabilize with lime,
and the UCS and the coefficient of permeability increase with the increase in the delay of
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compaction due to the formation of pozzolanic reactions [11]. The stabilization of sand
with cement induces cohesion, but is not effective in developing interfacial friction [12].
Previous studies have shown that brittleness is associated with cement-stabilized sands [13].
Alkaline materials, such as cement, lime, and gypsum, make the treated soil brittle with
concentration increase and alter the soil pH [14]. Polypropylene fibers and flyash–cement
mixtures are used to improve the unconfined compressive strength of clay. The presence
of composite cement turns the treated soil to brittle; however, due to the presence of
fibers, the treated soil exhibits a plastic behavior upon load application [15]. In order
curb the usage of cement and respective alkaline materials, researchers are working on
disposal wastes that act as a sustainable supplementary cementitious material. Recently,
biopolymer stabilization of plastic and non-plastic fines is gaining attention owing to its
sustainable approach and associated low carbon footprint emissions [16]. Coal gangue is
another sustainable generated from the coal production process. Coal gangue utilization
can reduce ecological issues, but due care should be given to associated leaching of trace
elements [4,5,17]. Enzyme-mediated calcite precipitation is a technique used to improve
the compressive strength of sand. The substitution of magnesium sulphate in enzymes
yields a better improvement compared to conventional calcite precipitation [18,19]. Many
other additives like polypropylene fibers, cement kiln dust, ground-granulated blast-
furnace slag, and slag play a major role in stabilizing specific soils [20]. In the previous
works, every stabilizer has been limited to some aspects (e.g., carbon emission, production
cost, groundwater chemistry, change in soil pH, UV radiation, reactivity, etc.) that drive
sustainable stabilizers. This review explores the potential applications of granite dust,
a waste by-product, as an efficient stabilizer for improving the geotechnical properties
of problematic soils, including Atterberg’s limits, compaction properties, unconfined
compressive strength, permeability, and California bearing ratio, among others. The
mechanisms responsible are described based on the physicochemical characteristics of
granite dust. The optimum dosage of granite dust in various soils for different applications
is proposed to facilitate practical utilization.

Granite dust is an industrial by-product with an ever-increasing demand in the con-
struction industry. It is deposited in huge amounts at quarry sites and crushing indus-
tries [21]. Granite dust is a non-plastic material that exhibits high shear strength with
zero carbon emissions. The fine state of stone dust results in a large specific surface area.
The physical properties, chemical composition, and mineralogy of stone dust vary with
the type of parent rock, but is consistent with the quarry at site [22]. Granite dust is an
industrial by-product originating from the primary crushing stage of aggregates [23]. These
are fine aggregates produced with particle diameters less than 4 mm [24]. The quality
of a stone dust depends on the rock type, origin, and processing method. The global
production of stone dusts from different plants is approximately 1.48 billion tons and pro-
duced by 1430 companies. On an average, a typical rock produces roughly approximately
400–500,000 tons of aggregate every year [25]. Approximately, 20–25% of this goes as
unused material [26]. In India, approximately 200 million tons of quarry by-products is
produced annually [27]. Mined boulders and blasted rocks from quarry sites are hauled
into a crusher bin and fed to crushers [25]. Crushing can be done in three to four stages
(i.e., primary, secondary, tertiary, and quaternary). In the primary and secondary stages,
two major crusher units are fed with quarried rock to produce aggregates of different sizes
determined by demand [25]. An overview of production of quarry fines is described in the
Figure 1. Screening is done in each crushing stage to obtain a usable end product.

Table 1 shows that granite dust is an industrial by-product that has high density and
zero carbon emission and is abundant and chemically inert with water. The specific gravity
of granite dust is greater than the specific gravity of soils [21], which ranges from 2.6 to 2.8.
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Figure 1. An overview of stages involved in the production of quarry fines.

Table 1. Applications of different types of stone dust.

Name of Rock Dust Predominant Constituent Specific Gravity Civil Engineering Applications Reference

Dolomite, metamorphic Calcium magnesium carbonate 2.84 Aggregate, ballast, base material [27]

Limestone, sedimentary Calcium carbonate 2.7 Road base and railroad ballast [28]

Shale, sedimentary Silica 2.62 Fills and embankment [29]

Sandstone, sedimentary Silica 2.5 Replacement of natural sand [30]

Granite, igneous Silica 2.7 Filler, subgrade, replacement of
natural sand and sub-base [31]

Marble, metamorphic Dolomite, quartz, and calcite 2.71 Filler in concrete production [32]
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2. Physical and Chemical Properties of Granite Dust
2.1. Morphology and Mineralogy of Granite Dust

The physical appearance of granite dust changes with topography. The X-ray diffrac-
tion and scanning electron microscopy (SEM) of granite dust show mineralogy and mor-
phological variations. Granite is an intrusive igneous rock formed from magma. It is
predominantly white, pink, or gray in color. These rocks mainly comprise feldspar, quartz,
mica, and amphibole minerals. Dust formed out of granite quarry and aggregate crushing
plants varies in the physical appearance of granite dust relevant to location. Table 2 presents
petrological details of different granite dusts sourced from different parts of the world.

Table 2. Petrological details of granite dust(s) from different regions of the world.

Location Petrographic Description Mineralogy Reference

Thane,
Maharashtra, India Irregular shaped angular particles Quartz from XRD [33]

Local quarry in Kedah,
Malaysia

Granular, irregular and angular
geometry

Quartz, Microcline, Calcium Aluminium
Silicate, Kaolinite, Magnesium Sulphate

Hydrate from XRD
[31]

Quarry dust from local
crushing plants,

Guwahati, Assam, India
Sub-angular to angular Quartz and feldspar [34]

Local marble crushing plants,
Pakistan

Angular and flaky in shape and
bearing rough texture

Quartz, Crystobalite, Zeolite,
Wollastonite from XRD [35]

Garchuk quarry,
Guwahati, Assam, India Sub-angular to angular

Quartz, Feldspar,
Biotite, Muscovite and others from

petrographic analysis from XRD
[36]

Quartz, granite, limestone, dolomite, and sandstone are the major rock types used
by the crushed stone industry. Granite dust is produced from aggregate crushing plants.
Most parts of fines are passing the No. 200 sieve and defined as fine aggregate with a
particle size less than 4 mm in diameter. The chemical composition of granite dust is an
important material characteristic which plays a key role in stabilization. It differs with
location, formation and the type of rock available.

2.2. Granite Dust and Composition

Table 3 provides the composition of a granite dust which give a rough estimate of
various chemical elements in support of the content provided in Table 2.

Table 3. Chemical composition of granite dust (Sourced from [36–39]).

Element Composition Range (%)

SiO2 45–75
Al2O3 15–19
CaO 3–14

Fe2O3 6–17
K2O 3–4.5
MgO 1–3.6
Na2O 0–3.7
P2O3 0–0.02
TiO2 0–2.65

3. Granite Dust as a Sustainable Material

Sand mining is the process of removing sand from the foreshore. Approximately
47 to 59 billion tons of material is mined globally. Sand utilization in construction leads to
unjustifiable sand mining caused by the increment in development activities, which are
unacceptable. The available sources of characteristic sand are draining. High-class sand
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can be moved from a significant distance, causing an economical constraint. Therefore,
the structure quality relies on a partial or complete material replacement. Granite dust
discarded in a huge amount creates a financial and ecological expense to the industry [40].
Granite dust can avoid detrimental effects on the environment, which are caused by the
excessive mining of river sand [41]. Some granite dust applications are in geotechnical
aspects like embankment, backfills, road-paving materials, underground cavity fillers,
barrier wall materials and sub-base.

4. Effect of Granite Dust Addition on the Geotechnical Properties
4.1. Atterberg Limits

Granite dust is a non-plastic material that cannot be influenced by water. Hence,
adding granite dust to plastic soils reduces the plasticity index by breaking the particle–
water–particle bond and the liquid and plastic limits. Works have been performed on red
earth, kaolinite, and sun-dried marine clay, where the Atterberg limits decreased with the
dosage increase [21]. The sun-dried marine clay comparatively gave a better response with
granite dust addition compared to the other two because the marine clay is a high-plastic
soil with a poor gradation curve [21] (Table 4).

Table 4. Response of Atterberg limits with an increase in the dosage of granite dust (Modified after [21]).

Soil Type % Granite Dust Specific Gravity Liquid Limit (%) Plastic Limit (%)

Red earth

0 2.70 40 25
20 2.72 35 Non-plastic
40 2.74 27 -
60 2.76 25 -
80 2.78 24 -

Kaolinite

0 2.6 55 30
20 2.64 47 19
40 2.68 37 Non-plastic
60 2.72 30 -
80 2.76 26 -

Sundried marine clay

0 2.62 73 36
20 2.66 57 28
40 2.69 44 21
60 2.72 35 Non-plastic
80 2.76 27 -

The high plasticity of soil decreased with the increase in the amount of added gran-
ite dust. The liquid limit decreased to 52%, with 60% granite dust addition. Similar
works [42,43] have investigated the low-strength/weak soil and concluded that adding
granite dust to plastic and high-plastic soils decreases the liquid and plastic limits. Work
has also been performed on the granite dust–black cotton soil mixtures and observed the de-
creasing behavior of Atterberg limits with an increase in granite dust addition [44]. Table 5
lists the summary of the attempts made to improve the Atterberg’s limits of different soils
with the addition of granite dust.

Table 5. Summary of the attempts to improve the Atterberg’s limits of different soils with the addition
of granite dust.

Soil Type Outcome Reference

Red earth Decreased gradually [21]

Lithomargic clay Significant decrease of liquid limit
and plastic limit [43]

Black cotton soil Liquid limit is decreased by 42% at
40% addition of granite dust [44]
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Decrease in Atterberg’s limits of the soil is due to the decrease in finer fraction of the
heterogeneous mix. Change in the finer fraction affects the water absorbing capacity of
the soil.

4.2. Compaction Attributes

Maximum dry density (MDD) and optimum moisture content (OMC) are two sig-
nificant parameters used to assess the field capacity of soil. Adding granite dust to soil
increases the MDD and reduces the OMC due to the increase in coarser fraction and the
specific gravity of soil–granite dust mixes [43]. Moreover, the increase in the MDD was
due to the shift in the gradation curve from a poor to a well-graded mix. In a work on
quarry reclamation, granite dust was mixed with silty soil. A decrease in the OMC and
an increase in the MDD were observed with the increments in the presence of granite
dust (Figure 2) [45]. Generally high-plastic silts show an improved MDD and a decreased
OMC with the gradual increase in granite dust substitution [42]. Nwaiwu [43] observed an
increase in the MDD of black cotton soil–granite dust mixes and a decrease in the OMC
at higher granite dust contents. Irrespective of compaction energy adopted, the addition
of granite dust improved OMC and MDD relatively for several soils. Similar observa-
tions [22,46] were identified in the case of clays and red earth soils, where an increase in
the MDD of mixes were observed with a simultaneous reduction in the OMC values at
higher percentages of granite dust dosages was noted. The compaction characteristics of
residual soils improved with the addition of granite dust, which consequently led to an
increase in the compaction energy [37].
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Figure 2. Influence of the granite dust dosage on the compaction characteristics S1: 75% soil + 25%
granite dust; S2: 50% soil + 50% granite dust; and S3: 25% soil + 75% granite dust (Modified after [45]).

The maximum dry density of mixed soils improves because of the substitution of dust
particles in the clay voids and, to some extent, in silts. This will ensure that macro and
micro-voids are minimized at higher compactive efforts. The MDD of marine clay increased
by approximately 88%, which is higher compared to other soils as seen in Figure 3 (Adding
granite dust to soils allows less water to absorb due to the increase in the coarser fraction
compared to fines, which is particularly observed in clays, silts and clayey soils). These
changes in the soil–granite mix help to improve the engineering properties of the soil.
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The change in compaction characteristics is due to the change in particle size distribu-
tion of the granite dust mixed soil. Formation of a well graded mix offers greater density
and presence of granite dust breaks the water film around the clay particles.

4.3. California Bearing Ratio

To obtain the CBR, a static penetration test is performed to obtain the susceptibility of
soil against wheel load penetration. According to [42], the CBR value recommended by
the RDA is 15% for subgrade in highway construction. In the case of kaolinite, red earth,
and sun-dried marine clay, the CBR values increased with an increase in the percentage
of granite dust [21]. However, the percentage increase in CBR for a particular dosage of
granite dust is more for clay soil due to the change in grain size distribution (Table 6). Soils
with high clay content showed a high improvement with granite dust addition.

Table 6. CBR characteristics of Granite dust amended soils (Modified after [21]).

Soil Type % Granite Dust Soaked CBR (%) Unsoaked CBR (%)

Red earth

0 8.8 9.9
20 9.8 10.5
40 10.8 12.0
60 13.0 14.3
80 14.7 15.5

Kaolinite

0 5.2 7.8
20 6.7 8.8
40 8.8 10.8
60 18.7 20.8
80 20.8 22.8

Sun-dried marine clay

0 3.8 4.7
20 4.3 5.2
40 5.1 6.2
60 8.9 9.4
80 11.2 11.8
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This increase in the CBR value is also influenced by the shear strength of the particular
soil. In spite of the presence of weak soil, stabilization with granite dust brings the CBR
value to the field requirement that helps to reduce the pavement thickness. The increase in
the CBR values with the increase in the percentage of granite dust was observed until 50%
granite dust addition in the case of black cotton soil [44]. The CBR values of the residual
soils increased with an increase in granite dust in soaked and unsoaked conditions [37].
Table 7 shows summary of earlier works related to improvement in CBR characteristics of
different soils.

Table 7. Summary of works to improve the CBR of the soils with granite dust.

Soil Type Outcome Reference

Marine clay Good improvement at less amount of
granite dust [21]

Residual soil Soaked CBR value is comparatively
higher than un soaked [37]

Black cotton soil Significant increase at 50% addition
of granite dust [44]

4.4. Shear Strength

Sun-dried marine clay highly responded to the granite dust addition compared to red
earth. The presence of granite dust in clays filled the voids and developed friction among
the mixed particles [22]. A significant improvement in the shear strength with the increase
in internal friction and a corresponding decrease in the cohesive nature of high-plastic silt
was observed up to 60% addition of granite dust as seen in Figure 4.
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Figure 4. Variation of shear parameters of high-plastic silt with granite dust addition (Modified
after [42]).

4.5. UCS and Permeability

The unconfined compressive strength of lithomargic clay is improved with addition
of granite dust content up to 20% and decreased with a further increase in granite dust
addition. The coefficient of permeability of lithomargic clay proportionally increased with
the addition of granite dust [46].

The wealth of literature summarized reveals that, granite dust enhances the geotech-
nical properties of silts and clays. High-plastic clays and clayey soils hold poor gradation;
thus, the granite dust addition turns the mix into a well-graded complex that yields a high
confinement as seen from Figure 5.
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5. Granite Dust as a Substitute for Sand

Kumar [47] worked on different sub-base materials like flyash, coarse sand, granite
dust, and river bed material (RBM). Granite dust was found to have the least resistance to
rutting compared to the other three materials used in this study. The RBM has the maximum
resistance to rutting. The static and resilient moduli were both higher for the RBM, implying
that it had a better performance than the other three materials in the field. The internal
friction angle ranged from 26◦ to 39◦, and the specific gravity was nearly close to the specific
gravity of river sand, which is required for the fractional sand replacement [36]. From
the chemical composition of granite dust, silica/quartz (SiO2) is the predominant mineral
that helps give a high shear strength similar to sand. Therefore, practically, granite dust
can be used as a substitute for sand. Some previous investigation(s) [31,35,48–50] proved
that sand can be partially replaced with granite dust without changing the workability
and durability of concrete. Furthermore, the shear strength of sandy soil increases with
an increase in the percentage of the granite dust content in sand–granite dust mixes to a
certain limit. This work concludes that granite dust is the best source of alternative to save
sand availability.

6. Alternate Treatment Methods
Reinforced Granite Dust

Sand was earlier referred to as the best backfill material because of its shear strength
and permeability characteristics. In view of sustainability, being a cohesion less inert
material that can also be used as a backfill due to its bulk utilization, granite dust is also
the best substitute for sand [33]. A backfill material should not possess any lateral dis-
placement of facia walls and should be able to resist the settlement due to loading. Granite
dust is limited in cohesion property and high density; hence, the concept of granite dust
reinforcement has been explored by certain authors. Among several reinforced materials,
geosynthetics are considered as the best reinforcing materials due to their workability.
Rama Subbarao [51] stated that geo grid reinforcement reduces the shear deformations
of granular materials. Reinforced granite dust exhibits a ductile behavior and improves
apparent cohesion, but is insignificant in the case of friction. The deviatory stress is the
governing factor of shear strength in the case of reinforced stone dust, especially in ductile
reinforcements. The EPS geofoam was introduced in granite dust as the load-reduction key.
Geofoam is more noticeable for gravelly and sandy fills. The interface shear strength of
geofoam–granite dust is highly influenced by normal stress applied [52]. In addition, the
presence of geofoam reduces the backfill weight. Reinforced granite dust could be used
as a backfill material, even at a lower relative density that reduces facia displacement and
vertical settlements [53]. The change in the dimensions of the reinforcement and its location
also greatly influence the backfill behavior. Waste plastic strips serve as a reinforcing
material for improving the penetration resistance of granite dust. Granite dust is highly
influenced by the increase in the density of intruded plastic strips [54]. Earlier works have
stated that approximately 1% of plastic strip addition with an aspect ratio of 3 increases the
soil CBR. The CBR was improved by the particle interlocking in reinforced layers under
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the dry condition (unsoaked) and the sedimentation of fines, in which the coarser particles
to the top led to a confinement in the wet condition(soaked) [51].

Backfills and soil walls are some of the bulk applications in geotechnical engineering.
The reinforced granite dust material is the best substitute for sand. Being a high-density
material, the reinforcement helps reduce the pressure on the facia walls, which conse-
quently leads to the reduction of the horizontal displacement and the vertical settlement
due to the interlocking phenomenon (Figure 6). The concept of reinforced granite dust
also helps improve the penetration resistance due to the development of a confinement
among particles.
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7. Effect of Granite Dust and Stabilizer(s) on Geotechnical Behavior
Importance of the Stabilizer

Granite dust is a non-plastic cohesion less material with a specific gravity greater than
that of soil. Adding granite dust to cohesive soil filled the voids in cohesive soil, which
increases the density and the shear strength. However, in some cases, granite dust alone
will not be sufficient to fulfil the requirements that may cause sudden drawdown or a slip
as seen from Figure 7. The soil-granite mix requires a binding agent to bring an efficient
product to work in the field that can withhold the heterogeneous mass.
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Figure 7. Significance of the secondary stabilizer.

When clay soil was stabilized with granite dust, the plastic nature of the soil decreased
with the increase in the granite dust dosage, leading to failure. The presence of a binding
material prevented failure and increased the cohesion which enhanced the engineering
properties. Black cotton soil when amended with lime and granite dust exhibited better
performance compared to untreated scenario [55]. The ettringite formation increased the
strength of the soil–granite dust mix (Figure 8). Granite dust, along with calcium carbide
residue (CCR) in equal amounts, showed a good influence on problematic silty clay in
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terms of the CBR (Figure 9) [26]. The presence of the CCR in silty clay led to pozzolanic
reactions and increased the chemical bonding between particles.
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Figure 9. Response for the soaked CBR test after 14 days of curing. Case I-Soil + 5% granite dust
+ 5% CCR. Case II-Soil + 10% granite dust + 10% CCR (Modified after [26]).

Some works on foundation soil improvement were performed using granite dust and
cement, where the soil was improved with the incremental addition of granite dust with 4%
cement addition. Granite dust with 10% cement addition improved the shear strength and
the hydraulic properties of lithomargic clay [46]. The presence of cement led to ettringite
formation, which helps in developing additional strength and cohesion. The presence of
cement also helped in decreasing the pore volume. Dutta and Sarda [54] used a waste
plastic strip with granite dust/flyash to improve the kaolinite clay properties. The CBR
variation in the mix was attributed to the strip intrusion and the strip length in granite
dust. The high-plastic silt was added with cement and granite to improve the CBR [42].
Quarry wastes in the form of granite powder and muck could be used as a supplemental
subgrade material when added with lime [56]. The effects of quick lime on compacted
granite dust were also studied, and the bearing capacity was found to improve with quick
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lime addition. Table 8 provides the summary of various earlier works which necessitated
the inclusion of binder to granite dust.

Table 8. A Summary of works to improve the properties of soil mixed with granite dust and a binder.

Soil Type Outcome Reference

Black cotton soil with lime
and granite dust

Cohesion increased. Good
improvement observed in

engineering properties
[55]

Silty clay with CCR and
granite dust

Good chemical bonding appeared.
CBR increased [26]

Lithomargic clay with granite
dust and cement

Strength and cohesion increased.
Pore volume decreased [46]

Kaolinite clay with granite
dust/flyash with waste plastic CBR increased [54]

High plastic silt with cement
and granite dust CBR improved [42]

8. Practical Applications of Granite Dust

An embankment was constructed in Korea using locally available silty material and
granite dust sourced from two different quarry sites (biotite granite quarry from Yangju,
Gyeonggi province; granitic gneiss from Gongju, South Chung cheong province) [45]. The
granite dust is added in multiples of 25% from 0 to 100 and its response to enhancement in
targeted geotechnical properties was determined. This case study revealed the fact that,
an embankment of silty material stabilized with granite dust should attain a gradient of
1:1.8 for 10 m height and 1:1.5 for 15 m height in order to satisfy the stability analysis as per
Korean standards. Up on inclusion of granite dust, the specific gravity of the mix increased
whereas the MDD and shear strength of the mix decreased as seen from Table 9.

Table 9. Effect of granite dust on the shear parameters of a local silty soil (Modified after [45]).

Granite Dust:
Natural Soil

Yangju, Gyeonggi Province Gongju, South Chungcheong

C (t/m2) ϕ C(t/m2) Φ

100:0 0.52 30.2 0.45 29.3
75:25 0.51 30.8 0.51 30.6
50:50 0.48 32.1 0.48 31.5
25:75 0.44 33.4 0.4 34.2

In Jimma town of Ginjo kebele, Ethiopia, an expansive soil (clayey soil) at subgrade
level was stabilized using granite dust [57]. The dosage of granite dust was limited to 50%
(added in increments of 5%). CBR requirements for subgrade were met at 30% to 35% of
granite dust addition as seen in Figure 10. The thickness of the subgrade was found to
reduce by 20.6% compared to an untreated case. Their study concluded that clay-granite
dust soil satisfies the requirements for subgrade layer [57].
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Figure 10. Improvement in the CBR of subgrade soil with addition of granite dust (Modified
after [57]).

9. Conclusions

The current review article dealt with the generation of granite dust and shed light on
its influence on the engineering properties of soils exhibiting different mineralogy. The
workability of granite dust amended soils in the presence of an additional stabilizer is
critically reviewed. The performance of granite dust as a backfill and a pavement material
is discussed. The mechanism behind the improvement of each soil engineering property
with granite dust addition is explained. The major outcomes of this review article are:

• This significant improvement in Atterberg limits and Compaction characteristics is
attributed to the increase in the coarser fraction and specific gravity, followed by a
decrease in the water absorption capacity of the soil.

• The interfacial friction of cohesive soil increased and cohesion value decreased due
to the presence of coarser particles that fills the voids in clays, thereby increasing the
friction component between the soil particles.

• Soaked CBR values are increased due to the improvement in corresponding Maximum
dry density and Shear strength.

• A small amount of additive (calcium-based stabilizers) (<10%) with granite dust
enhances the engineering properties of cohesive soils by causing net reduction in the
pore volume, assisting in the rapid formation of ettringite, and substantially enhancing
the tensile strength.

• Granite dust is a highly recommended material as a replacement of sand in con-
crete and geotechnical applications due to its chemical composition and interfacial
friction angle.

Granite dust is a sustainable and remarkable material exhibiting relatively low em-
bodied energy levels. For a given scenario, when granite dust is amended with native soil,
the amount of CO2 released due to granite dust addition is compensated by the reduced
use of locally available materials. Accordingly, granite dust addition results in reduced
carbon footprint values, and this treatment strategy is close to carbon neutral.

Proposed Research Gaps

• To explore the particle size effect of granite dust on the strength characteristics of
the soil.
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• Dynamic studies on the granite dust stabilized soil can be explored for future rail and
roadway applications.

• The stability of embankments and long-term durability of highways constructed with
granite dust amended soils may be carried out.
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